mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 11:32:04 +00:00
b14aa6dcd0
call to put_controller_in_performant_mode was in the wrong place The call inadvertently ended up in an error path. Signed-off-by: Mike Miller <mike.miller@hp.com> Cc: Stephen M. Cameron <scameron@beardog.cce.hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
4800 lines
134 KiB
C
4800 lines
134 KiB
C
/*
|
|
* Disk Array driver for HP Smart Array controllers.
|
|
* (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
* 02111-1307, USA.
|
|
*
|
|
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/major.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/init.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/mutex.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/completion.h>
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/sg.h>
|
|
#include <scsi/scsi_ioctl.h>
|
|
#include <linux/cdrom.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/kthread.h>
|
|
|
|
#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
|
|
#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
|
|
#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
|
|
|
|
/* Embedded module documentation macros - see modules.h */
|
|
MODULE_AUTHOR("Hewlett-Packard Company");
|
|
MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
|
|
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
|
|
MODULE_VERSION("3.6.26");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int cciss_allow_hpsa;
|
|
module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
|
|
MODULE_PARM_DESC(cciss_allow_hpsa,
|
|
"Prevent cciss driver from accessing hardware known to be "
|
|
" supported by the hpsa driver");
|
|
|
|
#include "cciss_cmd.h"
|
|
#include "cciss.h"
|
|
#include <linux/cciss_ioctl.h>
|
|
|
|
/* define the PCI info for the cards we can control */
|
|
static const struct pci_device_id cciss_pci_device_id[] = {
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
|
|
{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
|
|
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
|
|
{0,}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
|
|
|
|
/* board_id = Subsystem Device ID & Vendor ID
|
|
* product = Marketing Name for the board
|
|
* access = Address of the struct of function pointers
|
|
*/
|
|
static struct board_type products[] = {
|
|
{0x40700E11, "Smart Array 5300", &SA5_access},
|
|
{0x40800E11, "Smart Array 5i", &SA5B_access},
|
|
{0x40820E11, "Smart Array 532", &SA5B_access},
|
|
{0x40830E11, "Smart Array 5312", &SA5B_access},
|
|
{0x409A0E11, "Smart Array 641", &SA5_access},
|
|
{0x409B0E11, "Smart Array 642", &SA5_access},
|
|
{0x409C0E11, "Smart Array 6400", &SA5_access},
|
|
{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
|
|
{0x40910E11, "Smart Array 6i", &SA5_access},
|
|
{0x3225103C, "Smart Array P600", &SA5_access},
|
|
{0x3235103C, "Smart Array P400i", &SA5_access},
|
|
{0x3211103C, "Smart Array E200i", &SA5_access},
|
|
{0x3212103C, "Smart Array E200", &SA5_access},
|
|
{0x3213103C, "Smart Array E200i", &SA5_access},
|
|
{0x3214103C, "Smart Array E200i", &SA5_access},
|
|
{0x3215103C, "Smart Array E200i", &SA5_access},
|
|
{0x3237103C, "Smart Array E500", &SA5_access},
|
|
/* controllers below this line are also supported by the hpsa driver. */
|
|
#define HPSA_BOUNDARY 0x3223103C
|
|
{0x3223103C, "Smart Array P800", &SA5_access},
|
|
{0x3234103C, "Smart Array P400", &SA5_access},
|
|
{0x323D103C, "Smart Array P700m", &SA5_access},
|
|
{0x3241103C, "Smart Array P212", &SA5_access},
|
|
{0x3243103C, "Smart Array P410", &SA5_access},
|
|
{0x3245103C, "Smart Array P410i", &SA5_access},
|
|
{0x3247103C, "Smart Array P411", &SA5_access},
|
|
{0x3249103C, "Smart Array P812", &SA5_access},
|
|
{0x324A103C, "Smart Array P712m", &SA5_access},
|
|
{0x324B103C, "Smart Array P711m", &SA5_access},
|
|
{0x3250103C, "Smart Array", &SA5_access},
|
|
{0x3251103C, "Smart Array", &SA5_access},
|
|
{0x3252103C, "Smart Array", &SA5_access},
|
|
{0x3253103C, "Smart Array", &SA5_access},
|
|
{0x3254103C, "Smart Array", &SA5_access},
|
|
};
|
|
|
|
/* How long to wait (in milliseconds) for board to go into simple mode */
|
|
#define MAX_CONFIG_WAIT 30000
|
|
#define MAX_IOCTL_CONFIG_WAIT 1000
|
|
|
|
/*define how many times we will try a command because of bus resets */
|
|
#define MAX_CMD_RETRIES 3
|
|
|
|
#define MAX_CTLR 32
|
|
|
|
/* Originally cciss driver only supports 8 major numbers */
|
|
#define MAX_CTLR_ORIG 8
|
|
|
|
static ctlr_info_t *hba[MAX_CTLR];
|
|
|
|
static struct task_struct *cciss_scan_thread;
|
|
static DEFINE_MUTEX(scan_mutex);
|
|
static LIST_HEAD(scan_q);
|
|
|
|
static void do_cciss_request(struct request_queue *q);
|
|
static irqreturn_t do_cciss_intx(int irq, void *dev_id);
|
|
static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
|
|
static int cciss_open(struct block_device *bdev, fmode_t mode);
|
|
static int cciss_release(struct gendisk *disk, fmode_t mode);
|
|
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg);
|
|
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
|
|
|
|
static int cciss_revalidate(struct gendisk *disk);
|
|
static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
|
|
static int deregister_disk(ctlr_info_t *h, int drv_index,
|
|
int clear_all, int via_ioctl);
|
|
|
|
static void cciss_read_capacity(int ctlr, int logvol,
|
|
sector_t *total_size, unsigned int *block_size);
|
|
static void cciss_read_capacity_16(int ctlr, int logvol,
|
|
sector_t *total_size, unsigned int *block_size);
|
|
static void cciss_geometry_inquiry(int ctlr, int logvol,
|
|
sector_t total_size,
|
|
unsigned int block_size, InquiryData_struct *inq_buff,
|
|
drive_info_struct *drv);
|
|
static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
|
|
__u32);
|
|
static void start_io(ctlr_info_t *h);
|
|
static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
|
|
__u8 page_code, unsigned char scsi3addr[],
|
|
int cmd_type);
|
|
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
|
|
int attempt_retry);
|
|
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
|
|
|
|
static int add_to_scan_list(struct ctlr_info *h);
|
|
static int scan_thread(void *data);
|
|
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
|
|
static void cciss_hba_release(struct device *dev);
|
|
static void cciss_device_release(struct device *dev);
|
|
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
|
|
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
|
|
|
|
/* performant mode helper functions */
|
|
static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
|
|
int *bucket_map);
|
|
static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void cciss_procinit(int i);
|
|
#else
|
|
static void cciss_procinit(int i)
|
|
{
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int cciss_compat_ioctl(struct block_device *, fmode_t,
|
|
unsigned, unsigned long);
|
|
#endif
|
|
|
|
static const struct block_device_operations cciss_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = cciss_open,
|
|
.release = cciss_release,
|
|
.locked_ioctl = cciss_ioctl,
|
|
.getgeo = cciss_getgeo,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = cciss_compat_ioctl,
|
|
#endif
|
|
.revalidate_disk = cciss_revalidate,
|
|
};
|
|
|
|
/* set_performant_mode: Modify the tag for cciss performant
|
|
* set bit 0 for pull model, bits 3-1 for block fetch
|
|
* register number
|
|
*/
|
|
static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
|
|
{
|
|
if (likely(h->transMethod == CFGTBL_Trans_Performant))
|
|
c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
|
|
}
|
|
|
|
/*
|
|
* Enqueuing and dequeuing functions for cmdlists.
|
|
*/
|
|
static inline void addQ(struct hlist_head *list, CommandList_struct *c)
|
|
{
|
|
hlist_add_head(&c->list, list);
|
|
}
|
|
|
|
static inline void removeQ(CommandList_struct *c)
|
|
{
|
|
/*
|
|
* After kexec/dump some commands might still
|
|
* be in flight, which the firmware will try
|
|
* to complete. Resetting the firmware doesn't work
|
|
* with old fw revisions, so we have to mark
|
|
* them off as 'stale' to prevent the driver from
|
|
* falling over.
|
|
*/
|
|
if (WARN_ON(hlist_unhashed(&c->list))) {
|
|
c->cmd_type = CMD_MSG_STALE;
|
|
return;
|
|
}
|
|
|
|
hlist_del_init(&c->list);
|
|
}
|
|
|
|
static void enqueue_cmd_and_start_io(ctlr_info_t *h,
|
|
CommandList_struct *c)
|
|
{
|
|
unsigned long flags;
|
|
set_performant_mode(h, c);
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
addQ(&h->reqQ, c);
|
|
h->Qdepth++;
|
|
start_io(h);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
}
|
|
|
|
static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
|
|
int nr_cmds)
|
|
{
|
|
int i;
|
|
|
|
if (!cmd_sg_list)
|
|
return;
|
|
for (i = 0; i < nr_cmds; i++) {
|
|
kfree(cmd_sg_list[i]);
|
|
cmd_sg_list[i] = NULL;
|
|
}
|
|
kfree(cmd_sg_list);
|
|
}
|
|
|
|
static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
|
|
ctlr_info_t *h, int chainsize, int nr_cmds)
|
|
{
|
|
int j;
|
|
SGDescriptor_struct **cmd_sg_list;
|
|
|
|
if (chainsize <= 0)
|
|
return NULL;
|
|
|
|
cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
|
|
if (!cmd_sg_list)
|
|
return NULL;
|
|
|
|
/* Build up chain blocks for each command */
|
|
for (j = 0; j < nr_cmds; j++) {
|
|
/* Need a block of chainsized s/g elements. */
|
|
cmd_sg_list[j] = kmalloc((chainsize *
|
|
sizeof(*cmd_sg_list[j])), GFP_KERNEL);
|
|
if (!cmd_sg_list[j]) {
|
|
dev_err(&h->pdev->dev, "Cannot get memory "
|
|
"for s/g chains.\n");
|
|
goto clean;
|
|
}
|
|
}
|
|
return cmd_sg_list;
|
|
clean:
|
|
cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
|
|
return NULL;
|
|
}
|
|
|
|
static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
|
|
{
|
|
SGDescriptor_struct *chain_sg;
|
|
u64bit temp64;
|
|
|
|
if (c->Header.SGTotal <= h->max_cmd_sgentries)
|
|
return;
|
|
|
|
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
|
|
temp64.val32.lower = chain_sg->Addr.lower;
|
|
temp64.val32.upper = chain_sg->Addr.upper;
|
|
pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
|
|
SGDescriptor_struct *chain_block, int len)
|
|
{
|
|
SGDescriptor_struct *chain_sg;
|
|
u64bit temp64;
|
|
|
|
chain_sg = &c->SG[h->max_cmd_sgentries - 1];
|
|
chain_sg->Ext = CCISS_SG_CHAIN;
|
|
chain_sg->Len = len;
|
|
temp64.val = pci_map_single(h->pdev, chain_block, len,
|
|
PCI_DMA_TODEVICE);
|
|
chain_sg->Addr.lower = temp64.val32.lower;
|
|
chain_sg->Addr.upper = temp64.val32.upper;
|
|
}
|
|
|
|
#include "cciss_scsi.c" /* For SCSI tape support */
|
|
|
|
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
|
|
"UNKNOWN"
|
|
};
|
|
#define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
static inline u32 next_command(ctlr_info_t *h)
|
|
{
|
|
u32 a;
|
|
|
|
if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
|
|
return h->access.command_completed(h);
|
|
|
|
if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
|
|
a = *(h->reply_pool_head); /* Next cmd in ring buffer */
|
|
(h->reply_pool_head)++;
|
|
h->commands_outstanding--;
|
|
} else {
|
|
a = FIFO_EMPTY;
|
|
}
|
|
/* Check for wraparound */
|
|
if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
|
|
h->reply_pool_head = h->reply_pool;
|
|
h->reply_pool_wraparound ^= 1;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
/*
|
|
* Report information about this controller.
|
|
*/
|
|
#define ENG_GIG 1000000000
|
|
#define ENG_GIG_FACTOR (ENG_GIG/512)
|
|
#define ENGAGE_SCSI "engage scsi"
|
|
|
|
static struct proc_dir_entry *proc_cciss;
|
|
|
|
static void cciss_seq_show_header(struct seq_file *seq)
|
|
{
|
|
ctlr_info_t *h = seq->private;
|
|
|
|
seq_printf(seq, "%s: HP %s Controller\n"
|
|
"Board ID: 0x%08lx\n"
|
|
"Firmware Version: %c%c%c%c\n"
|
|
"IRQ: %d\n"
|
|
"Logical drives: %d\n"
|
|
"Current Q depth: %d\n"
|
|
"Current # commands on controller: %d\n"
|
|
"Max Q depth since init: %d\n"
|
|
"Max # commands on controller since init: %d\n"
|
|
"Max SG entries since init: %d\n",
|
|
h->devname,
|
|
h->product_name,
|
|
(unsigned long)h->board_id,
|
|
h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
|
|
h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
|
|
h->num_luns,
|
|
h->Qdepth, h->commands_outstanding,
|
|
h->maxQsinceinit, h->max_outstanding, h->maxSG);
|
|
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
cciss_seq_tape_report(seq, h->ctlr);
|
|
#endif /* CONFIG_CISS_SCSI_TAPE */
|
|
}
|
|
|
|
static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
ctlr_info_t *h = seq->private;
|
|
unsigned ctlr = h->ctlr;
|
|
unsigned long flags;
|
|
|
|
/* prevent displaying bogus info during configuration
|
|
* or deconfiguration of a logical volume
|
|
*/
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
if (h->busy_configuring) {
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
h->busy_configuring = 1;
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
|
|
if (*pos == 0)
|
|
cciss_seq_show_header(seq);
|
|
|
|
return pos;
|
|
}
|
|
|
|
static int cciss_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
sector_t vol_sz, vol_sz_frac;
|
|
ctlr_info_t *h = seq->private;
|
|
unsigned ctlr = h->ctlr;
|
|
loff_t *pos = v;
|
|
drive_info_struct *drv = h->drv[*pos];
|
|
|
|
if (*pos > h->highest_lun)
|
|
return 0;
|
|
|
|
if (drv == NULL) /* it's possible for h->drv[] to have holes. */
|
|
return 0;
|
|
|
|
if (drv->heads == 0)
|
|
return 0;
|
|
|
|
vol_sz = drv->nr_blocks;
|
|
vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
|
|
vol_sz_frac *= 100;
|
|
sector_div(vol_sz_frac, ENG_GIG_FACTOR);
|
|
|
|
if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
|
|
drv->raid_level = RAID_UNKNOWN;
|
|
seq_printf(seq, "cciss/c%dd%d:"
|
|
"\t%4u.%02uGB\tRAID %s\n",
|
|
ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
|
|
raid_label[drv->raid_level]);
|
|
return 0;
|
|
}
|
|
|
|
static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
ctlr_info_t *h = seq->private;
|
|
|
|
if (*pos > h->highest_lun)
|
|
return NULL;
|
|
*pos += 1;
|
|
|
|
return pos;
|
|
}
|
|
|
|
static void cciss_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
ctlr_info_t *h = seq->private;
|
|
|
|
/* Only reset h->busy_configuring if we succeeded in setting
|
|
* it during cciss_seq_start. */
|
|
if (v == ERR_PTR(-EBUSY))
|
|
return;
|
|
|
|
h->busy_configuring = 0;
|
|
}
|
|
|
|
static const struct seq_operations cciss_seq_ops = {
|
|
.start = cciss_seq_start,
|
|
.show = cciss_seq_show,
|
|
.next = cciss_seq_next,
|
|
.stop = cciss_seq_stop,
|
|
};
|
|
|
|
static int cciss_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
int ret = seq_open(file, &cciss_seq_ops);
|
|
struct seq_file *seq = file->private_data;
|
|
|
|
if (!ret)
|
|
seq->private = PDE(inode)->data;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t
|
|
cciss_proc_write(struct file *file, const char __user *buf,
|
|
size_t length, loff_t *ppos)
|
|
{
|
|
int err;
|
|
char *buffer;
|
|
|
|
#ifndef CONFIG_CISS_SCSI_TAPE
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
if (!buf || length > PAGE_SIZE - 1)
|
|
return -EINVAL;
|
|
|
|
buffer = (char *)__get_free_page(GFP_KERNEL);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
|
|
err = -EFAULT;
|
|
if (copy_from_user(buffer, buf, length))
|
|
goto out;
|
|
buffer[length] = '\0';
|
|
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
|
|
struct seq_file *seq = file->private_data;
|
|
ctlr_info_t *h = seq->private;
|
|
|
|
err = cciss_engage_scsi(h->ctlr);
|
|
if (err == 0)
|
|
err = length;
|
|
} else
|
|
#endif /* CONFIG_CISS_SCSI_TAPE */
|
|
err = -EINVAL;
|
|
/* might be nice to have "disengage" too, but it's not
|
|
safely possible. (only 1 module use count, lock issues.) */
|
|
|
|
out:
|
|
free_page((unsigned long)buffer);
|
|
return err;
|
|
}
|
|
|
|
static const struct file_operations cciss_proc_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = cciss_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
.write = cciss_proc_write,
|
|
};
|
|
|
|
static void __devinit cciss_procinit(int i)
|
|
{
|
|
struct proc_dir_entry *pde;
|
|
|
|
if (proc_cciss == NULL)
|
|
proc_cciss = proc_mkdir("driver/cciss", NULL);
|
|
if (!proc_cciss)
|
|
return;
|
|
pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
|
|
S_IROTH, proc_cciss,
|
|
&cciss_proc_fops, hba[i]);
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#define MAX_PRODUCT_NAME_LEN 19
|
|
|
|
#define to_hba(n) container_of(n, struct ctlr_info, dev)
|
|
#define to_drv(n) container_of(n, drive_info_struct, dev)
|
|
|
|
static ssize_t host_store_rescan(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct ctlr_info *h = to_hba(dev);
|
|
|
|
add_to_scan_list(h);
|
|
wake_up_process(cciss_scan_thread);
|
|
wait_for_completion_interruptible(&h->scan_wait);
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
|
|
|
|
static ssize_t dev_show_unique_id(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
drive_info_struct *drv = to_drv(dev);
|
|
struct ctlr_info *h = to_hba(drv->dev.parent);
|
|
__u8 sn[16];
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring)
|
|
ret = -EBUSY;
|
|
else
|
|
memcpy(sn, drv->serial_no, sizeof(sn));
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
|
|
if (ret)
|
|
return ret;
|
|
else
|
|
return snprintf(buf, 16 * 2 + 2,
|
|
"%02X%02X%02X%02X%02X%02X%02X%02X"
|
|
"%02X%02X%02X%02X%02X%02X%02X%02X\n",
|
|
sn[0], sn[1], sn[2], sn[3],
|
|
sn[4], sn[5], sn[6], sn[7],
|
|
sn[8], sn[9], sn[10], sn[11],
|
|
sn[12], sn[13], sn[14], sn[15]);
|
|
}
|
|
static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
|
|
|
|
static ssize_t dev_show_vendor(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
drive_info_struct *drv = to_drv(dev);
|
|
struct ctlr_info *h = to_hba(drv->dev.parent);
|
|
char vendor[VENDOR_LEN + 1];
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring)
|
|
ret = -EBUSY;
|
|
else
|
|
memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
|
|
if (ret)
|
|
return ret;
|
|
else
|
|
return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
|
|
}
|
|
static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
|
|
|
|
static ssize_t dev_show_model(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
drive_info_struct *drv = to_drv(dev);
|
|
struct ctlr_info *h = to_hba(drv->dev.parent);
|
|
char model[MODEL_LEN + 1];
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring)
|
|
ret = -EBUSY;
|
|
else
|
|
memcpy(model, drv->model, MODEL_LEN + 1);
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
|
|
if (ret)
|
|
return ret;
|
|
else
|
|
return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
|
|
}
|
|
static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
|
|
|
|
static ssize_t dev_show_rev(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
drive_info_struct *drv = to_drv(dev);
|
|
struct ctlr_info *h = to_hba(drv->dev.parent);
|
|
char rev[REV_LEN + 1];
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring)
|
|
ret = -EBUSY;
|
|
else
|
|
memcpy(rev, drv->rev, REV_LEN + 1);
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
|
|
if (ret)
|
|
return ret;
|
|
else
|
|
return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
|
|
}
|
|
static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
|
|
|
|
static ssize_t cciss_show_lunid(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
drive_info_struct *drv = to_drv(dev);
|
|
struct ctlr_info *h = to_hba(drv->dev.parent);
|
|
unsigned long flags;
|
|
unsigned char lunid[8];
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring) {
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return -EBUSY;
|
|
}
|
|
if (!drv->heads) {
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return -ENOTTY;
|
|
}
|
|
memcpy(lunid, drv->LunID, sizeof(lunid));
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
|
|
lunid[0], lunid[1], lunid[2], lunid[3],
|
|
lunid[4], lunid[5], lunid[6], lunid[7]);
|
|
}
|
|
static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
|
|
|
|
static ssize_t cciss_show_raid_level(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
drive_info_struct *drv = to_drv(dev);
|
|
struct ctlr_info *h = to_hba(drv->dev.parent);
|
|
int raid;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring) {
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return -EBUSY;
|
|
}
|
|
raid = drv->raid_level;
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
if (raid < 0 || raid > RAID_UNKNOWN)
|
|
raid = RAID_UNKNOWN;
|
|
|
|
return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
|
|
raid_label[raid]);
|
|
}
|
|
static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
|
|
|
|
static ssize_t cciss_show_usage_count(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
drive_info_struct *drv = to_drv(dev);
|
|
struct ctlr_info *h = to_hba(drv->dev.parent);
|
|
unsigned long flags;
|
|
int count;
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring) {
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return -EBUSY;
|
|
}
|
|
count = drv->usage_count;
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return snprintf(buf, 20, "%d\n", count);
|
|
}
|
|
static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
|
|
|
|
static struct attribute *cciss_host_attrs[] = {
|
|
&dev_attr_rescan.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group cciss_host_attr_group = {
|
|
.attrs = cciss_host_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *cciss_host_attr_groups[] = {
|
|
&cciss_host_attr_group,
|
|
NULL
|
|
};
|
|
|
|
static struct device_type cciss_host_type = {
|
|
.name = "cciss_host",
|
|
.groups = cciss_host_attr_groups,
|
|
.release = cciss_hba_release,
|
|
};
|
|
|
|
static struct attribute *cciss_dev_attrs[] = {
|
|
&dev_attr_unique_id.attr,
|
|
&dev_attr_model.attr,
|
|
&dev_attr_vendor.attr,
|
|
&dev_attr_rev.attr,
|
|
&dev_attr_lunid.attr,
|
|
&dev_attr_raid_level.attr,
|
|
&dev_attr_usage_count.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group cciss_dev_attr_group = {
|
|
.attrs = cciss_dev_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *cciss_dev_attr_groups[] = {
|
|
&cciss_dev_attr_group,
|
|
NULL
|
|
};
|
|
|
|
static struct device_type cciss_dev_type = {
|
|
.name = "cciss_device",
|
|
.groups = cciss_dev_attr_groups,
|
|
.release = cciss_device_release,
|
|
};
|
|
|
|
static struct bus_type cciss_bus_type = {
|
|
.name = "cciss",
|
|
};
|
|
|
|
/*
|
|
* cciss_hba_release is called when the reference count
|
|
* of h->dev goes to zero.
|
|
*/
|
|
static void cciss_hba_release(struct device *dev)
|
|
{
|
|
/*
|
|
* nothing to do, but need this to avoid a warning
|
|
* about not having a release handler from lib/kref.c.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Initialize sysfs entry for each controller. This sets up and registers
|
|
* the 'cciss#' directory for each individual controller under
|
|
* /sys/bus/pci/devices/<dev>/.
|
|
*/
|
|
static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
|
|
{
|
|
device_initialize(&h->dev);
|
|
h->dev.type = &cciss_host_type;
|
|
h->dev.bus = &cciss_bus_type;
|
|
dev_set_name(&h->dev, "%s", h->devname);
|
|
h->dev.parent = &h->pdev->dev;
|
|
|
|
return device_add(&h->dev);
|
|
}
|
|
|
|
/*
|
|
* Remove sysfs entries for an hba.
|
|
*/
|
|
static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
|
|
{
|
|
device_del(&h->dev);
|
|
put_device(&h->dev); /* final put. */
|
|
}
|
|
|
|
/* cciss_device_release is called when the reference count
|
|
* of h->drv[x]dev goes to zero.
|
|
*/
|
|
static void cciss_device_release(struct device *dev)
|
|
{
|
|
drive_info_struct *drv = to_drv(dev);
|
|
kfree(drv);
|
|
}
|
|
|
|
/*
|
|
* Initialize sysfs for each logical drive. This sets up and registers
|
|
* the 'c#d#' directory for each individual logical drive under
|
|
* /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
|
|
* /sys/block/cciss!c#d# to this entry.
|
|
*/
|
|
static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
|
|
int drv_index)
|
|
{
|
|
struct device *dev;
|
|
|
|
if (h->drv[drv_index]->device_initialized)
|
|
return 0;
|
|
|
|
dev = &h->drv[drv_index]->dev;
|
|
device_initialize(dev);
|
|
dev->type = &cciss_dev_type;
|
|
dev->bus = &cciss_bus_type;
|
|
dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
|
|
dev->parent = &h->dev;
|
|
h->drv[drv_index]->device_initialized = 1;
|
|
return device_add(dev);
|
|
}
|
|
|
|
/*
|
|
* Remove sysfs entries for a logical drive.
|
|
*/
|
|
static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
|
|
int ctlr_exiting)
|
|
{
|
|
struct device *dev = &h->drv[drv_index]->dev;
|
|
|
|
/* special case for c*d0, we only destroy it on controller exit */
|
|
if (drv_index == 0 && !ctlr_exiting)
|
|
return;
|
|
|
|
device_del(dev);
|
|
put_device(dev); /* the "final" put. */
|
|
h->drv[drv_index] = NULL;
|
|
}
|
|
|
|
/*
|
|
* For operations that cannot sleep, a command block is allocated at init,
|
|
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
|
|
* which ones are free or in use. For operations that can wait for kmalloc
|
|
* to possible sleep, this routine can be called with get_from_pool set to 0.
|
|
* cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
|
|
*/
|
|
static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
|
|
{
|
|
CommandList_struct *c;
|
|
int i;
|
|
u64bit temp64;
|
|
dma_addr_t cmd_dma_handle, err_dma_handle;
|
|
|
|
if (!get_from_pool) {
|
|
c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
|
|
sizeof(CommandList_struct), &cmd_dma_handle);
|
|
if (c == NULL)
|
|
return NULL;
|
|
memset(c, 0, sizeof(CommandList_struct));
|
|
|
|
c->cmdindex = -1;
|
|
|
|
c->err_info = (ErrorInfo_struct *)
|
|
pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
|
|
&err_dma_handle);
|
|
|
|
if (c->err_info == NULL) {
|
|
pci_free_consistent(h->pdev,
|
|
sizeof(CommandList_struct), c, cmd_dma_handle);
|
|
return NULL;
|
|
}
|
|
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
|
|
} else { /* get it out of the controllers pool */
|
|
|
|
do {
|
|
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
|
|
if (i == h->nr_cmds)
|
|
return NULL;
|
|
} while (test_and_set_bit
|
|
(i & (BITS_PER_LONG - 1),
|
|
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
|
|
#endif
|
|
c = h->cmd_pool + i;
|
|
memset(c, 0, sizeof(CommandList_struct));
|
|
cmd_dma_handle = h->cmd_pool_dhandle
|
|
+ i * sizeof(CommandList_struct);
|
|
c->err_info = h->errinfo_pool + i;
|
|
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
|
|
err_dma_handle = h->errinfo_pool_dhandle
|
|
+ i * sizeof(ErrorInfo_struct);
|
|
h->nr_allocs++;
|
|
|
|
c->cmdindex = i;
|
|
}
|
|
|
|
INIT_HLIST_NODE(&c->list);
|
|
c->busaddr = (__u32) cmd_dma_handle;
|
|
temp64.val = (__u64) err_dma_handle;
|
|
c->ErrDesc.Addr.lower = temp64.val32.lower;
|
|
c->ErrDesc.Addr.upper = temp64.val32.upper;
|
|
c->ErrDesc.Len = sizeof(ErrorInfo_struct);
|
|
|
|
c->ctlr = h->ctlr;
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
* Frees a command block that was previously allocated with cmd_alloc().
|
|
*/
|
|
static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
|
|
{
|
|
int i;
|
|
u64bit temp64;
|
|
|
|
if (!got_from_pool) {
|
|
temp64.val32.lower = c->ErrDesc.Addr.lower;
|
|
temp64.val32.upper = c->ErrDesc.Addr.upper;
|
|
pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
|
|
c->err_info, (dma_addr_t) temp64.val);
|
|
pci_free_consistent(h->pdev, sizeof(CommandList_struct),
|
|
c, (dma_addr_t) c->busaddr);
|
|
} else {
|
|
i = c - h->cmd_pool;
|
|
clear_bit(i & (BITS_PER_LONG - 1),
|
|
h->cmd_pool_bits + (i / BITS_PER_LONG));
|
|
h->nr_frees++;
|
|
}
|
|
}
|
|
|
|
static inline ctlr_info_t *get_host(struct gendisk *disk)
|
|
{
|
|
return disk->queue->queuedata;
|
|
}
|
|
|
|
static inline drive_info_struct *get_drv(struct gendisk *disk)
|
|
{
|
|
return disk->private_data;
|
|
}
|
|
|
|
/*
|
|
* Open. Make sure the device is really there.
|
|
*/
|
|
static int cciss_open(struct block_device *bdev, fmode_t mode)
|
|
{
|
|
ctlr_info_t *host = get_host(bdev->bd_disk);
|
|
drive_info_struct *drv = get_drv(bdev->bd_disk);
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
if (drv->busy_configuring)
|
|
return -EBUSY;
|
|
/*
|
|
* Root is allowed to open raw volume zero even if it's not configured
|
|
* so array config can still work. Root is also allowed to open any
|
|
* volume that has a LUN ID, so it can issue IOCTL to reread the
|
|
* disk information. I don't think I really like this
|
|
* but I'm already using way to many device nodes to claim another one
|
|
* for "raw controller".
|
|
*/
|
|
if (drv->heads == 0) {
|
|
if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
|
|
/* if not node 0 make sure it is a partition = 0 */
|
|
if (MINOR(bdev->bd_dev) & 0x0f) {
|
|
return -ENXIO;
|
|
/* if it is, make sure we have a LUN ID */
|
|
} else if (memcmp(drv->LunID, CTLR_LUNID,
|
|
sizeof(drv->LunID))) {
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
}
|
|
drv->usage_count++;
|
|
host->usage_count++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Close. Sync first.
|
|
*/
|
|
static int cciss_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
ctlr_info_t *host = get_host(disk);
|
|
drive_info_struct *drv = get_drv(disk);
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
drv->usage_count--;
|
|
host->usage_count--;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
static int do_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
int ret;
|
|
lock_kernel();
|
|
ret = cciss_ioctl(bdev, mode, cmd, arg);
|
|
unlock_kernel();
|
|
return ret;
|
|
}
|
|
|
|
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg);
|
|
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg);
|
|
|
|
static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case CCISS_GETPCIINFO:
|
|
case CCISS_GETINTINFO:
|
|
case CCISS_SETINTINFO:
|
|
case CCISS_GETNODENAME:
|
|
case CCISS_SETNODENAME:
|
|
case CCISS_GETHEARTBEAT:
|
|
case CCISS_GETBUSTYPES:
|
|
case CCISS_GETFIRMVER:
|
|
case CCISS_GETDRIVVER:
|
|
case CCISS_REVALIDVOLS:
|
|
case CCISS_DEREGDISK:
|
|
case CCISS_REGNEWDISK:
|
|
case CCISS_REGNEWD:
|
|
case CCISS_RESCANDISK:
|
|
case CCISS_GETLUNINFO:
|
|
return do_ioctl(bdev, mode, cmd, arg);
|
|
|
|
case CCISS_PASSTHRU32:
|
|
return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
|
|
case CCISS_BIG_PASSTHRU32:
|
|
return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
|
|
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
}
|
|
|
|
static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
IOCTL32_Command_struct __user *arg32 =
|
|
(IOCTL32_Command_struct __user *) arg;
|
|
IOCTL_Command_struct arg64;
|
|
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
|
|
int err;
|
|
u32 cp;
|
|
|
|
err = 0;
|
|
err |=
|
|
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
|
|
sizeof(arg64.LUN_info));
|
|
err |=
|
|
copy_from_user(&arg64.Request, &arg32->Request,
|
|
sizeof(arg64.Request));
|
|
err |=
|
|
copy_from_user(&arg64.error_info, &arg32->error_info,
|
|
sizeof(arg64.error_info));
|
|
err |= get_user(arg64.buf_size, &arg32->buf_size);
|
|
err |= get_user(cp, &arg32->buf);
|
|
arg64.buf = compat_ptr(cp);
|
|
err |= copy_to_user(p, &arg64, sizeof(arg64));
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
|
|
if (err)
|
|
return err;
|
|
err |=
|
|
copy_in_user(&arg32->error_info, &p->error_info,
|
|
sizeof(arg32->error_info));
|
|
if (err)
|
|
return -EFAULT;
|
|
return err;
|
|
}
|
|
|
|
static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
|
|
unsigned cmd, unsigned long arg)
|
|
{
|
|
BIG_IOCTL32_Command_struct __user *arg32 =
|
|
(BIG_IOCTL32_Command_struct __user *) arg;
|
|
BIG_IOCTL_Command_struct arg64;
|
|
BIG_IOCTL_Command_struct __user *p =
|
|
compat_alloc_user_space(sizeof(arg64));
|
|
int err;
|
|
u32 cp;
|
|
|
|
err = 0;
|
|
err |=
|
|
copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
|
|
sizeof(arg64.LUN_info));
|
|
err |=
|
|
copy_from_user(&arg64.Request, &arg32->Request,
|
|
sizeof(arg64.Request));
|
|
err |=
|
|
copy_from_user(&arg64.error_info, &arg32->error_info,
|
|
sizeof(arg64.error_info));
|
|
err |= get_user(arg64.buf_size, &arg32->buf_size);
|
|
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
|
|
err |= get_user(cp, &arg32->buf);
|
|
arg64.buf = compat_ptr(cp);
|
|
err |= copy_to_user(p, &arg64, sizeof(arg64));
|
|
|
|
if (err)
|
|
return -EFAULT;
|
|
|
|
err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
|
|
if (err)
|
|
return err;
|
|
err |=
|
|
copy_in_user(&arg32->error_info, &p->error_info,
|
|
sizeof(arg32->error_info));
|
|
if (err)
|
|
return -EFAULT;
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
drive_info_struct *drv = get_drv(bdev->bd_disk);
|
|
|
|
if (!drv->cylinders)
|
|
return -ENXIO;
|
|
|
|
geo->heads = drv->heads;
|
|
geo->sectors = drv->sectors;
|
|
geo->cylinders = drv->cylinders;
|
|
return 0;
|
|
}
|
|
|
|
static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
|
|
{
|
|
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
|
|
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
|
|
(void)check_for_unit_attention(host, c);
|
|
}
|
|
/*
|
|
* ioctl
|
|
*/
|
|
static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct gendisk *disk = bdev->bd_disk;
|
|
ctlr_info_t *host = get_host(disk);
|
|
drive_info_struct *drv = get_drv(disk);
|
|
int ctlr = host->ctlr;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
switch (cmd) {
|
|
case CCISS_GETPCIINFO:
|
|
{
|
|
cciss_pci_info_struct pciinfo;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
pciinfo.domain = pci_domain_nr(host->pdev->bus);
|
|
pciinfo.bus = host->pdev->bus->number;
|
|
pciinfo.dev_fn = host->pdev->devfn;
|
|
pciinfo.board_id = host->board_id;
|
|
if (copy_to_user
|
|
(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_GETINTINFO:
|
|
{
|
|
cciss_coalint_struct intinfo;
|
|
if (!arg)
|
|
return -EINVAL;
|
|
intinfo.delay =
|
|
readl(&host->cfgtable->HostWrite.CoalIntDelay);
|
|
intinfo.count =
|
|
readl(&host->cfgtable->HostWrite.CoalIntCount);
|
|
if (copy_to_user
|
|
(argp, &intinfo, sizeof(cciss_coalint_struct)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_SETINTINFO:
|
|
{
|
|
cciss_coalint_struct intinfo;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (copy_from_user
|
|
(&intinfo, argp, sizeof(cciss_coalint_struct)))
|
|
return -EFAULT;
|
|
if ((intinfo.delay == 0) && (intinfo.count == 0))
|
|
{
|
|
// printk("cciss_ioctl: delay and count cannot be 0\n");
|
|
return -EINVAL;
|
|
}
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
/* Update the field, and then ring the doorbell */
|
|
writel(intinfo.delay,
|
|
&(host->cfgtable->HostWrite.CoalIntDelay));
|
|
writel(intinfo.count,
|
|
&(host->cfgtable->HostWrite.CoalIntCount));
|
|
writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
|
|
|
|
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
|
|
if (!(readl(host->vaddr + SA5_DOORBELL)
|
|
& CFGTBL_ChangeReq))
|
|
break;
|
|
/* delay and try again */
|
|
udelay(1000);
|
|
}
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
if (i >= MAX_IOCTL_CONFIG_WAIT)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
case CCISS_GETNODENAME:
|
|
{
|
|
NodeName_type NodeName;
|
|
int i;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
for (i = 0; i < 16; i++)
|
|
NodeName[i] =
|
|
readb(&host->cfgtable->ServerName[i]);
|
|
if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_SETNODENAME:
|
|
{
|
|
NodeName_type NodeName;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user
|
|
(NodeName, argp, sizeof(NodeName_type)))
|
|
return -EFAULT;
|
|
|
|
spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
|
|
|
|
/* Update the field, and then ring the doorbell */
|
|
for (i = 0; i < 16; i++)
|
|
writeb(NodeName[i],
|
|
&host->cfgtable->ServerName[i]);
|
|
|
|
writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
|
|
|
|
for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
|
|
if (!(readl(host->vaddr + SA5_DOORBELL)
|
|
& CFGTBL_ChangeReq))
|
|
break;
|
|
/* delay and try again */
|
|
udelay(1000);
|
|
}
|
|
spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
|
|
if (i >= MAX_IOCTL_CONFIG_WAIT)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
|
|
case CCISS_GETHEARTBEAT:
|
|
{
|
|
Heartbeat_type heartbeat;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
heartbeat = readl(&host->cfgtable->HeartBeat);
|
|
if (copy_to_user
|
|
(argp, &heartbeat, sizeof(Heartbeat_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_GETBUSTYPES:
|
|
{
|
|
BusTypes_type BusTypes;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
BusTypes = readl(&host->cfgtable->BusTypes);
|
|
if (copy_to_user
|
|
(argp, &BusTypes, sizeof(BusTypes_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_GETFIRMVER:
|
|
{
|
|
FirmwareVer_type firmware;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
memcpy(firmware, host->firm_ver, 4);
|
|
|
|
if (copy_to_user
|
|
(argp, firmware, sizeof(FirmwareVer_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_GETDRIVVER:
|
|
{
|
|
DriverVer_type DriverVer = DRIVER_VERSION;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
if (copy_to_user
|
|
(argp, &DriverVer, sizeof(DriverVer_type)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
case CCISS_DEREGDISK:
|
|
case CCISS_REGNEWD:
|
|
case CCISS_REVALIDVOLS:
|
|
return rebuild_lun_table(host, 0, 1);
|
|
|
|
case CCISS_GETLUNINFO:{
|
|
LogvolInfo_struct luninfo;
|
|
|
|
memcpy(&luninfo.LunID, drv->LunID,
|
|
sizeof(luninfo.LunID));
|
|
luninfo.num_opens = drv->usage_count;
|
|
luninfo.num_parts = 0;
|
|
if (copy_to_user(argp, &luninfo,
|
|
sizeof(LogvolInfo_struct)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
case CCISS_PASSTHRU:
|
|
{
|
|
IOCTL_Command_struct iocommand;
|
|
CommandList_struct *c;
|
|
char *buff = NULL;
|
|
u64bit temp64;
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user
|
|
(&iocommand, argp, sizeof(IOCTL_Command_struct)))
|
|
return -EFAULT;
|
|
if ((iocommand.buf_size < 1) &&
|
|
(iocommand.Request.Type.Direction != XFER_NONE)) {
|
|
return -EINVAL;
|
|
}
|
|
#if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
|
|
/* Check kmalloc limits */
|
|
if (iocommand.buf_size > 128000)
|
|
return -EINVAL;
|
|
#endif
|
|
if (iocommand.buf_size > 0) {
|
|
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
|
|
if (buff == NULL)
|
|
return -EFAULT;
|
|
}
|
|
if (iocommand.Request.Type.Direction == XFER_WRITE) {
|
|
/* Copy the data into the buffer we created */
|
|
if (copy_from_user
|
|
(buff, iocommand.buf, iocommand.buf_size)) {
|
|
kfree(buff);
|
|
return -EFAULT;
|
|
}
|
|
} else {
|
|
memset(buff, 0, iocommand.buf_size);
|
|
}
|
|
if ((c = cmd_alloc(host, 0)) == NULL) {
|
|
kfree(buff);
|
|
return -ENOMEM;
|
|
}
|
|
/* Fill in the command type */
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
/* Fill in Command Header */
|
|
c->Header.ReplyQueue = 0; /* unused in simple mode */
|
|
if (iocommand.buf_size > 0) /* buffer to fill */
|
|
{
|
|
c->Header.SGList = 1;
|
|
c->Header.SGTotal = 1;
|
|
} else /* no buffers to fill */
|
|
{
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
c->Header.LUN = iocommand.LUN_info;
|
|
/* use the kernel address the cmd block for tag */
|
|
c->Header.Tag.lower = c->busaddr;
|
|
|
|
/* Fill in Request block */
|
|
c->Request = iocommand.Request;
|
|
|
|
/* Fill in the scatter gather information */
|
|
if (iocommand.buf_size > 0) {
|
|
temp64.val = pci_map_single(host->pdev, buff,
|
|
iocommand.buf_size,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
c->SG[0].Addr.lower = temp64.val32.lower;
|
|
c->SG[0].Addr.upper = temp64.val32.upper;
|
|
c->SG[0].Len = iocommand.buf_size;
|
|
c->SG[0].Ext = 0; /* we are not chaining */
|
|
}
|
|
c->waiting = &wait;
|
|
|
|
enqueue_cmd_and_start_io(host, c);
|
|
wait_for_completion(&wait);
|
|
|
|
/* unlock the buffers from DMA */
|
|
temp64.val32.lower = c->SG[0].Addr.lower;
|
|
temp64.val32.upper = c->SG[0].Addr.upper;
|
|
pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
|
|
iocommand.buf_size,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
check_ioctl_unit_attention(host, c);
|
|
|
|
/* Copy the error information out */
|
|
iocommand.error_info = *(c->err_info);
|
|
if (copy_to_user
|
|
(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
|
|
kfree(buff);
|
|
cmd_free(host, c, 0);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (iocommand.Request.Type.Direction == XFER_READ) {
|
|
/* Copy the data out of the buffer we created */
|
|
if (copy_to_user
|
|
(iocommand.buf, buff, iocommand.buf_size)) {
|
|
kfree(buff);
|
|
cmd_free(host, c, 0);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
kfree(buff);
|
|
cmd_free(host, c, 0);
|
|
return 0;
|
|
}
|
|
case CCISS_BIG_PASSTHRU:{
|
|
BIG_IOCTL_Command_struct *ioc;
|
|
CommandList_struct *c;
|
|
unsigned char **buff = NULL;
|
|
int *buff_size = NULL;
|
|
u64bit temp64;
|
|
BYTE sg_used = 0;
|
|
int status = 0;
|
|
int i;
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
__u32 left;
|
|
__u32 sz;
|
|
BYTE __user *data_ptr;
|
|
|
|
if (!arg)
|
|
return -EINVAL;
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
ioc = (BIG_IOCTL_Command_struct *)
|
|
kmalloc(sizeof(*ioc), GFP_KERNEL);
|
|
if (!ioc) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
if ((ioc->buf_size < 1) &&
|
|
(ioc->Request.Type.Direction != XFER_NONE)) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
/* Check kmalloc limits using all SGs */
|
|
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
|
|
status = -EINVAL;
|
|
goto cleanup1;
|
|
}
|
|
buff =
|
|
kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
|
|
if (!buff) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
|
|
GFP_KERNEL);
|
|
if (!buff_size) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
left = ioc->buf_size;
|
|
data_ptr = ioc->buf;
|
|
while (left) {
|
|
sz = (left >
|
|
ioc->malloc_size) ? ioc->
|
|
malloc_size : left;
|
|
buff_size[sg_used] = sz;
|
|
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
|
|
if (buff[sg_used] == NULL) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->Request.Type.Direction == XFER_WRITE) {
|
|
if (copy_from_user
|
|
(buff[sg_used], data_ptr, sz)) {
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
} else {
|
|
memset(buff[sg_used], 0, sz);
|
|
}
|
|
left -= sz;
|
|
data_ptr += sz;
|
|
sg_used++;
|
|
}
|
|
if ((c = cmd_alloc(host, 0)) == NULL) {
|
|
status = -ENOMEM;
|
|
goto cleanup1;
|
|
}
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
c->Header.ReplyQueue = 0;
|
|
|
|
if (ioc->buf_size > 0) {
|
|
c->Header.SGList = sg_used;
|
|
c->Header.SGTotal = sg_used;
|
|
} else {
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
c->Header.LUN = ioc->LUN_info;
|
|
c->Header.Tag.lower = c->busaddr;
|
|
|
|
c->Request = ioc->Request;
|
|
if (ioc->buf_size > 0) {
|
|
for (i = 0; i < sg_used; i++) {
|
|
temp64.val =
|
|
pci_map_single(host->pdev, buff[i],
|
|
buff_size[i],
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
c->SG[i].Addr.lower =
|
|
temp64.val32.lower;
|
|
c->SG[i].Addr.upper =
|
|
temp64.val32.upper;
|
|
c->SG[i].Len = buff_size[i];
|
|
c->SG[i].Ext = 0; /* we are not chaining */
|
|
}
|
|
}
|
|
c->waiting = &wait;
|
|
enqueue_cmd_and_start_io(host, c);
|
|
wait_for_completion(&wait);
|
|
/* unlock the buffers from DMA */
|
|
for (i = 0; i < sg_used; i++) {
|
|
temp64.val32.lower = c->SG[i].Addr.lower;
|
|
temp64.val32.upper = c->SG[i].Addr.upper;
|
|
pci_unmap_single(host->pdev,
|
|
(dma_addr_t) temp64.val, buff_size[i],
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
check_ioctl_unit_attention(host, c);
|
|
/* Copy the error information out */
|
|
ioc->error_info = *(c->err_info);
|
|
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
|
|
cmd_free(host, c, 0);
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
if (ioc->Request.Type.Direction == XFER_READ) {
|
|
/* Copy the data out of the buffer we created */
|
|
BYTE __user *ptr = ioc->buf;
|
|
for (i = 0; i < sg_used; i++) {
|
|
if (copy_to_user
|
|
(ptr, buff[i], buff_size[i])) {
|
|
cmd_free(host, c, 0);
|
|
status = -EFAULT;
|
|
goto cleanup1;
|
|
}
|
|
ptr += buff_size[i];
|
|
}
|
|
}
|
|
cmd_free(host, c, 0);
|
|
status = 0;
|
|
cleanup1:
|
|
if (buff) {
|
|
for (i = 0; i < sg_used; i++)
|
|
kfree(buff[i]);
|
|
kfree(buff);
|
|
}
|
|
kfree(buff_size);
|
|
kfree(ioc);
|
|
return status;
|
|
}
|
|
|
|
/* scsi_cmd_ioctl handles these, below, though some are not */
|
|
/* very meaningful for cciss. SG_IO is the main one people want. */
|
|
|
|
case SG_GET_VERSION_NUM:
|
|
case SG_SET_TIMEOUT:
|
|
case SG_GET_TIMEOUT:
|
|
case SG_GET_RESERVED_SIZE:
|
|
case SG_SET_RESERVED_SIZE:
|
|
case SG_EMULATED_HOST:
|
|
case SG_IO:
|
|
case SCSI_IOCTL_SEND_COMMAND:
|
|
return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
|
|
|
|
/* scsi_cmd_ioctl would normally handle these, below, but */
|
|
/* they aren't a good fit for cciss, as CD-ROMs are */
|
|
/* not supported, and we don't have any bus/target/lun */
|
|
/* which we present to the kernel. */
|
|
|
|
case CDROM_SEND_PACKET:
|
|
case CDROMCLOSETRAY:
|
|
case CDROMEJECT:
|
|
case SCSI_IOCTL_GET_IDLUN:
|
|
case SCSI_IOCTL_GET_BUS_NUMBER:
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static void cciss_check_queues(ctlr_info_t *h)
|
|
{
|
|
int start_queue = h->next_to_run;
|
|
int i;
|
|
|
|
/* check to see if we have maxed out the number of commands that can
|
|
* be placed on the queue. If so then exit. We do this check here
|
|
* in case the interrupt we serviced was from an ioctl and did not
|
|
* free any new commands.
|
|
*/
|
|
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
|
|
return;
|
|
|
|
/* We have room on the queue for more commands. Now we need to queue
|
|
* them up. We will also keep track of the next queue to run so
|
|
* that every queue gets a chance to be started first.
|
|
*/
|
|
for (i = 0; i < h->highest_lun + 1; i++) {
|
|
int curr_queue = (start_queue + i) % (h->highest_lun + 1);
|
|
/* make sure the disk has been added and the drive is real
|
|
* because this can be called from the middle of init_one.
|
|
*/
|
|
if (!h->drv[curr_queue])
|
|
continue;
|
|
if (!(h->drv[curr_queue]->queue) ||
|
|
!(h->drv[curr_queue]->heads))
|
|
continue;
|
|
blk_start_queue(h->gendisk[curr_queue]->queue);
|
|
|
|
/* check to see if we have maxed out the number of commands
|
|
* that can be placed on the queue.
|
|
*/
|
|
if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
|
|
if (curr_queue == start_queue) {
|
|
h->next_to_run =
|
|
(start_queue + 1) % (h->highest_lun + 1);
|
|
break;
|
|
} else {
|
|
h->next_to_run = curr_queue;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cciss_softirq_done(struct request *rq)
|
|
{
|
|
CommandList_struct *cmd = rq->completion_data;
|
|
ctlr_info_t *h = hba[cmd->ctlr];
|
|
SGDescriptor_struct *curr_sg = cmd->SG;
|
|
u64bit temp64;
|
|
unsigned long flags;
|
|
int i, ddir;
|
|
int sg_index = 0;
|
|
|
|
if (cmd->Request.Type.Direction == XFER_READ)
|
|
ddir = PCI_DMA_FROMDEVICE;
|
|
else
|
|
ddir = PCI_DMA_TODEVICE;
|
|
|
|
/* command did not need to be retried */
|
|
/* unmap the DMA mapping for all the scatter gather elements */
|
|
for (i = 0; i < cmd->Header.SGList; i++) {
|
|
if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
|
|
cciss_unmap_sg_chain_block(h, cmd);
|
|
/* Point to the next block */
|
|
curr_sg = h->cmd_sg_list[cmd->cmdindex];
|
|
sg_index = 0;
|
|
}
|
|
temp64.val32.lower = curr_sg[sg_index].Addr.lower;
|
|
temp64.val32.upper = curr_sg[sg_index].Addr.upper;
|
|
pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
|
|
ddir);
|
|
++sg_index;
|
|
}
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk("Done with %p\n", rq);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
/* set the residual count for pc requests */
|
|
if (blk_pc_request(rq))
|
|
rq->resid_len = cmd->err_info->ResidualCnt;
|
|
|
|
blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
|
|
|
|
spin_lock_irqsave(&h->lock, flags);
|
|
cmd_free(h, cmd, 1);
|
|
cciss_check_queues(h);
|
|
spin_unlock_irqrestore(&h->lock, flags);
|
|
}
|
|
|
|
static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
|
|
unsigned char scsi3addr[], uint32_t log_unit)
|
|
{
|
|
memcpy(scsi3addr, h->drv[log_unit]->LunID,
|
|
sizeof(h->drv[log_unit]->LunID));
|
|
}
|
|
|
|
/* This function gets the SCSI vendor, model, and revision of a logical drive
|
|
* via the inquiry page 0. Model, vendor, and rev are set to empty strings if
|
|
* they cannot be read.
|
|
*/
|
|
static void cciss_get_device_descr(int ctlr, int logvol,
|
|
char *vendor, char *model, char *rev)
|
|
{
|
|
int rc;
|
|
InquiryData_struct *inq_buf;
|
|
unsigned char scsi3addr[8];
|
|
|
|
*vendor = '\0';
|
|
*model = '\0';
|
|
*rev = '\0';
|
|
|
|
inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
|
|
if (!inq_buf)
|
|
return;
|
|
|
|
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
|
|
rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
|
|
scsi3addr, TYPE_CMD);
|
|
if (rc == IO_OK) {
|
|
memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
|
|
vendor[VENDOR_LEN] = '\0';
|
|
memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
|
|
model[MODEL_LEN] = '\0';
|
|
memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
|
|
rev[REV_LEN] = '\0';
|
|
}
|
|
|
|
kfree(inq_buf);
|
|
return;
|
|
}
|
|
|
|
/* This function gets the serial number of a logical drive via
|
|
* inquiry page 0x83. Serial no. is 16 bytes. If the serial
|
|
* number cannot be had, for whatever reason, 16 bytes of 0xff
|
|
* are returned instead.
|
|
*/
|
|
static void cciss_get_serial_no(int ctlr, int logvol,
|
|
unsigned char *serial_no, int buflen)
|
|
{
|
|
#define PAGE_83_INQ_BYTES 64
|
|
int rc;
|
|
unsigned char *buf;
|
|
unsigned char scsi3addr[8];
|
|
|
|
if (buflen > 16)
|
|
buflen = 16;
|
|
memset(serial_no, 0xff, buflen);
|
|
buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
|
|
if (!buf)
|
|
return;
|
|
memset(serial_no, 0, buflen);
|
|
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
|
|
rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
|
|
PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
|
|
if (rc == IO_OK)
|
|
memcpy(serial_no, &buf[8], buflen);
|
|
kfree(buf);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* cciss_add_disk sets up the block device queue for a logical drive
|
|
*/
|
|
static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
|
|
int drv_index)
|
|
{
|
|
disk->queue = blk_init_queue(do_cciss_request, &h->lock);
|
|
if (!disk->queue)
|
|
goto init_queue_failure;
|
|
sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
|
|
disk->major = h->major;
|
|
disk->first_minor = drv_index << NWD_SHIFT;
|
|
disk->fops = &cciss_fops;
|
|
if (cciss_create_ld_sysfs_entry(h, drv_index))
|
|
goto cleanup_queue;
|
|
disk->private_data = h->drv[drv_index];
|
|
disk->driverfs_dev = &h->drv[drv_index]->dev;
|
|
|
|
/* Set up queue information */
|
|
blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
|
|
|
|
/* This is a hardware imposed limit. */
|
|
blk_queue_max_segments(disk->queue, h->maxsgentries);
|
|
|
|
blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
|
|
|
|
blk_queue_softirq_done(disk->queue, cciss_softirq_done);
|
|
|
|
disk->queue->queuedata = h;
|
|
|
|
blk_queue_logical_block_size(disk->queue,
|
|
h->drv[drv_index]->block_size);
|
|
|
|
/* Make sure all queue data is written out before */
|
|
/* setting h->drv[drv_index]->queue, as setting this */
|
|
/* allows the interrupt handler to start the queue */
|
|
wmb();
|
|
h->drv[drv_index]->queue = disk->queue;
|
|
add_disk(disk);
|
|
return 0;
|
|
|
|
cleanup_queue:
|
|
blk_cleanup_queue(disk->queue);
|
|
disk->queue = NULL;
|
|
init_queue_failure:
|
|
return -1;
|
|
}
|
|
|
|
/* This function will check the usage_count of the drive to be updated/added.
|
|
* If the usage_count is zero and it is a heretofore unknown drive, or,
|
|
* the drive's capacity, geometry, or serial number has changed,
|
|
* then the drive information will be updated and the disk will be
|
|
* re-registered with the kernel. If these conditions don't hold,
|
|
* then it will be left alone for the next reboot. The exception to this
|
|
* is disk 0 which will always be left registered with the kernel since it
|
|
* is also the controller node. Any changes to disk 0 will show up on
|
|
* the next reboot.
|
|
*/
|
|
static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
|
|
int via_ioctl)
|
|
{
|
|
ctlr_info_t *h = hba[ctlr];
|
|
struct gendisk *disk;
|
|
InquiryData_struct *inq_buff = NULL;
|
|
unsigned int block_size;
|
|
sector_t total_size;
|
|
unsigned long flags = 0;
|
|
int ret = 0;
|
|
drive_info_struct *drvinfo;
|
|
|
|
/* Get information about the disk and modify the driver structure */
|
|
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
|
|
drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
|
|
if (inq_buff == NULL || drvinfo == NULL)
|
|
goto mem_msg;
|
|
|
|
/* testing to see if 16-byte CDBs are already being used */
|
|
if (h->cciss_read == CCISS_READ_16) {
|
|
cciss_read_capacity_16(h->ctlr, drv_index,
|
|
&total_size, &block_size);
|
|
|
|
} else {
|
|
cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
|
|
/* if read_capacity returns all F's this volume is >2TB */
|
|
/* in size so we switch to 16-byte CDB's for all */
|
|
/* read/write ops */
|
|
if (total_size == 0xFFFFFFFFULL) {
|
|
cciss_read_capacity_16(ctlr, drv_index,
|
|
&total_size, &block_size);
|
|
h->cciss_read = CCISS_READ_16;
|
|
h->cciss_write = CCISS_WRITE_16;
|
|
} else {
|
|
h->cciss_read = CCISS_READ_10;
|
|
h->cciss_write = CCISS_WRITE_10;
|
|
}
|
|
}
|
|
|
|
cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
|
|
inq_buff, drvinfo);
|
|
drvinfo->block_size = block_size;
|
|
drvinfo->nr_blocks = total_size + 1;
|
|
|
|
cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
|
|
drvinfo->model, drvinfo->rev);
|
|
cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
|
|
sizeof(drvinfo->serial_no));
|
|
/* Save the lunid in case we deregister the disk, below. */
|
|
memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
|
|
sizeof(drvinfo->LunID));
|
|
|
|
/* Is it the same disk we already know, and nothing's changed? */
|
|
if (h->drv[drv_index]->raid_level != -1 &&
|
|
((memcmp(drvinfo->serial_no,
|
|
h->drv[drv_index]->serial_no, 16) == 0) &&
|
|
drvinfo->block_size == h->drv[drv_index]->block_size &&
|
|
drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
|
|
drvinfo->heads == h->drv[drv_index]->heads &&
|
|
drvinfo->sectors == h->drv[drv_index]->sectors &&
|
|
drvinfo->cylinders == h->drv[drv_index]->cylinders))
|
|
/* The disk is unchanged, nothing to update */
|
|
goto freeret;
|
|
|
|
/* If we get here it's not the same disk, or something's changed,
|
|
* so we need to * deregister it, and re-register it, if it's not
|
|
* in use.
|
|
* If the disk already exists then deregister it before proceeding
|
|
* (unless it's the first disk (for the controller node).
|
|
*/
|
|
if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
|
|
printk(KERN_WARNING "disk %d has changed.\n", drv_index);
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
h->drv[drv_index]->busy_configuring = 1;
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
|
|
/* deregister_disk sets h->drv[drv_index]->queue = NULL
|
|
* which keeps the interrupt handler from starting
|
|
* the queue.
|
|
*/
|
|
ret = deregister_disk(h, drv_index, 0, via_ioctl);
|
|
}
|
|
|
|
/* If the disk is in use return */
|
|
if (ret)
|
|
goto freeret;
|
|
|
|
/* Save the new information from cciss_geometry_inquiry
|
|
* and serial number inquiry. If the disk was deregistered
|
|
* above, then h->drv[drv_index] will be NULL.
|
|
*/
|
|
if (h->drv[drv_index] == NULL) {
|
|
drvinfo->device_initialized = 0;
|
|
h->drv[drv_index] = drvinfo;
|
|
drvinfo = NULL; /* so it won't be freed below. */
|
|
} else {
|
|
/* special case for cxd0 */
|
|
h->drv[drv_index]->block_size = drvinfo->block_size;
|
|
h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
|
|
h->drv[drv_index]->heads = drvinfo->heads;
|
|
h->drv[drv_index]->sectors = drvinfo->sectors;
|
|
h->drv[drv_index]->cylinders = drvinfo->cylinders;
|
|
h->drv[drv_index]->raid_level = drvinfo->raid_level;
|
|
memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
|
|
memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
|
|
VENDOR_LEN + 1);
|
|
memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
|
|
memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
|
|
}
|
|
|
|
++h->num_luns;
|
|
disk = h->gendisk[drv_index];
|
|
set_capacity(disk, h->drv[drv_index]->nr_blocks);
|
|
|
|
/* If it's not disk 0 (drv_index != 0)
|
|
* or if it was disk 0, but there was previously
|
|
* no actual corresponding configured logical drive
|
|
* (raid_leve == -1) then we want to update the
|
|
* logical drive's information.
|
|
*/
|
|
if (drv_index || first_time) {
|
|
if (cciss_add_disk(h, disk, drv_index) != 0) {
|
|
cciss_free_gendisk(h, drv_index);
|
|
cciss_free_drive_info(h, drv_index);
|
|
printk(KERN_WARNING "cciss:%d could not update "
|
|
"disk %d\n", h->ctlr, drv_index);
|
|
--h->num_luns;
|
|
}
|
|
}
|
|
|
|
freeret:
|
|
kfree(inq_buff);
|
|
kfree(drvinfo);
|
|
return;
|
|
mem_msg:
|
|
printk(KERN_ERR "cciss: out of memory\n");
|
|
goto freeret;
|
|
}
|
|
|
|
/* This function will find the first index of the controllers drive array
|
|
* that has a null drv pointer and allocate the drive info struct and
|
|
* will return that index This is where new drives will be added.
|
|
* If the index to be returned is greater than the highest_lun index for
|
|
* the controller then highest_lun is set * to this new index.
|
|
* If there are no available indexes or if tha allocation fails, then -1
|
|
* is returned. * "controller_node" is used to know if this is a real
|
|
* logical drive, or just the controller node, which determines if this
|
|
* counts towards highest_lun.
|
|
*/
|
|
static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
|
|
{
|
|
int i;
|
|
drive_info_struct *drv;
|
|
|
|
/* Search for an empty slot for our drive info */
|
|
for (i = 0; i < CISS_MAX_LUN; i++) {
|
|
|
|
/* if not cxd0 case, and it's occupied, skip it. */
|
|
if (h->drv[i] && i != 0)
|
|
continue;
|
|
/*
|
|
* If it's cxd0 case, and drv is alloc'ed already, and a
|
|
* disk is configured there, skip it.
|
|
*/
|
|
if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
|
|
continue;
|
|
|
|
/*
|
|
* We've found an empty slot. Update highest_lun
|
|
* provided this isn't just the fake cxd0 controller node.
|
|
*/
|
|
if (i > h->highest_lun && !controller_node)
|
|
h->highest_lun = i;
|
|
|
|
/* If adding a real disk at cxd0, and it's already alloc'ed */
|
|
if (i == 0 && h->drv[i] != NULL)
|
|
return i;
|
|
|
|
/*
|
|
* Found an empty slot, not already alloc'ed. Allocate it.
|
|
* Mark it with raid_level == -1, so we know it's new later on.
|
|
*/
|
|
drv = kzalloc(sizeof(*drv), GFP_KERNEL);
|
|
if (!drv)
|
|
return -1;
|
|
drv->raid_level = -1; /* so we know it's new */
|
|
h->drv[i] = drv;
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
|
|
{
|
|
kfree(h->drv[drv_index]);
|
|
h->drv[drv_index] = NULL;
|
|
}
|
|
|
|
static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
|
|
{
|
|
put_disk(h->gendisk[drv_index]);
|
|
h->gendisk[drv_index] = NULL;
|
|
}
|
|
|
|
/* cciss_add_gendisk finds a free hba[]->drv structure
|
|
* and allocates a gendisk if needed, and sets the lunid
|
|
* in the drvinfo structure. It returns the index into
|
|
* the ->drv[] array, or -1 if none are free.
|
|
* is_controller_node indicates whether highest_lun should
|
|
* count this disk, or if it's only being added to provide
|
|
* a means to talk to the controller in case no logical
|
|
* drives have yet been configured.
|
|
*/
|
|
static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
|
|
int controller_node)
|
|
{
|
|
int drv_index;
|
|
|
|
drv_index = cciss_alloc_drive_info(h, controller_node);
|
|
if (drv_index == -1)
|
|
return -1;
|
|
|
|
/*Check if the gendisk needs to be allocated */
|
|
if (!h->gendisk[drv_index]) {
|
|
h->gendisk[drv_index] =
|
|
alloc_disk(1 << NWD_SHIFT);
|
|
if (!h->gendisk[drv_index]) {
|
|
printk(KERN_ERR "cciss%d: could not "
|
|
"allocate a new disk %d\n",
|
|
h->ctlr, drv_index);
|
|
goto err_free_drive_info;
|
|
}
|
|
}
|
|
memcpy(h->drv[drv_index]->LunID, lunid,
|
|
sizeof(h->drv[drv_index]->LunID));
|
|
if (cciss_create_ld_sysfs_entry(h, drv_index))
|
|
goto err_free_disk;
|
|
/* Don't need to mark this busy because nobody */
|
|
/* else knows about this disk yet to contend */
|
|
/* for access to it. */
|
|
h->drv[drv_index]->busy_configuring = 0;
|
|
wmb();
|
|
return drv_index;
|
|
|
|
err_free_disk:
|
|
cciss_free_gendisk(h, drv_index);
|
|
err_free_drive_info:
|
|
cciss_free_drive_info(h, drv_index);
|
|
return -1;
|
|
}
|
|
|
|
/* This is for the special case of a controller which
|
|
* has no logical drives. In this case, we still need
|
|
* to register a disk so the controller can be accessed
|
|
* by the Array Config Utility.
|
|
*/
|
|
static void cciss_add_controller_node(ctlr_info_t *h)
|
|
{
|
|
struct gendisk *disk;
|
|
int drv_index;
|
|
|
|
if (h->gendisk[0] != NULL) /* already did this? Then bail. */
|
|
return;
|
|
|
|
drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
|
|
if (drv_index == -1)
|
|
goto error;
|
|
h->drv[drv_index]->block_size = 512;
|
|
h->drv[drv_index]->nr_blocks = 0;
|
|
h->drv[drv_index]->heads = 0;
|
|
h->drv[drv_index]->sectors = 0;
|
|
h->drv[drv_index]->cylinders = 0;
|
|
h->drv[drv_index]->raid_level = -1;
|
|
memset(h->drv[drv_index]->serial_no, 0, 16);
|
|
disk = h->gendisk[drv_index];
|
|
if (cciss_add_disk(h, disk, drv_index) == 0)
|
|
return;
|
|
cciss_free_gendisk(h, drv_index);
|
|
cciss_free_drive_info(h, drv_index);
|
|
error:
|
|
printk(KERN_WARNING "cciss%d: could not "
|
|
"add disk 0.\n", h->ctlr);
|
|
return;
|
|
}
|
|
|
|
/* This function will add and remove logical drives from the Logical
|
|
* drive array of the controller and maintain persistency of ordering
|
|
* so that mount points are preserved until the next reboot. This allows
|
|
* for the removal of logical drives in the middle of the drive array
|
|
* without a re-ordering of those drives.
|
|
* INPUT
|
|
* h = The controller to perform the operations on
|
|
*/
|
|
static int rebuild_lun_table(ctlr_info_t *h, int first_time,
|
|
int via_ioctl)
|
|
{
|
|
int ctlr = h->ctlr;
|
|
int num_luns;
|
|
ReportLunData_struct *ld_buff = NULL;
|
|
int return_code;
|
|
int listlength = 0;
|
|
int i;
|
|
int drv_found;
|
|
int drv_index = 0;
|
|
unsigned char lunid[8] = CTLR_LUNID;
|
|
unsigned long flags;
|
|
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
|
|
/* Set busy_configuring flag for this operation */
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
if (h->busy_configuring) {
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return -EBUSY;
|
|
}
|
|
h->busy_configuring = 1;
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
|
|
ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
|
|
if (ld_buff == NULL)
|
|
goto mem_msg;
|
|
|
|
return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
|
|
sizeof(ReportLunData_struct),
|
|
0, CTLR_LUNID, TYPE_CMD);
|
|
|
|
if (return_code == IO_OK)
|
|
listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
|
|
else { /* reading number of logical volumes failed */
|
|
printk(KERN_WARNING "cciss: report logical volume"
|
|
" command failed\n");
|
|
listlength = 0;
|
|
goto freeret;
|
|
}
|
|
|
|
num_luns = listlength / 8; /* 8 bytes per entry */
|
|
if (num_luns > CISS_MAX_LUN) {
|
|
num_luns = CISS_MAX_LUN;
|
|
printk(KERN_WARNING "cciss: more luns configured"
|
|
" on controller than can be handled by"
|
|
" this driver.\n");
|
|
}
|
|
|
|
if (num_luns == 0)
|
|
cciss_add_controller_node(h);
|
|
|
|
/* Compare controller drive array to driver's drive array
|
|
* to see if any drives are missing on the controller due
|
|
* to action of Array Config Utility (user deletes drive)
|
|
* and deregister logical drives which have disappeared.
|
|
*/
|
|
for (i = 0; i <= h->highest_lun; i++) {
|
|
int j;
|
|
drv_found = 0;
|
|
|
|
/* skip holes in the array from already deleted drives */
|
|
if (h->drv[i] == NULL)
|
|
continue;
|
|
|
|
for (j = 0; j < num_luns; j++) {
|
|
memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
|
|
if (memcmp(h->drv[i]->LunID, lunid,
|
|
sizeof(lunid)) == 0) {
|
|
drv_found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!drv_found) {
|
|
/* Deregister it from the OS, it's gone. */
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
h->drv[i]->busy_configuring = 1;
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return_code = deregister_disk(h, i, 1, via_ioctl);
|
|
if (h->drv[i] != NULL)
|
|
h->drv[i]->busy_configuring = 0;
|
|
}
|
|
}
|
|
|
|
/* Compare controller drive array to driver's drive array.
|
|
* Check for updates in the drive information and any new drives
|
|
* on the controller due to ACU adding logical drives, or changing
|
|
* a logical drive's size, etc. Reregister any new/changed drives
|
|
*/
|
|
for (i = 0; i < num_luns; i++) {
|
|
int j;
|
|
|
|
drv_found = 0;
|
|
|
|
memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
|
|
/* Find if the LUN is already in the drive array
|
|
* of the driver. If so then update its info
|
|
* if not in use. If it does not exist then find
|
|
* the first free index and add it.
|
|
*/
|
|
for (j = 0; j <= h->highest_lun; j++) {
|
|
if (h->drv[j] != NULL &&
|
|
memcmp(h->drv[j]->LunID, lunid,
|
|
sizeof(h->drv[j]->LunID)) == 0) {
|
|
drv_index = j;
|
|
drv_found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* check if the drive was found already in the array */
|
|
if (!drv_found) {
|
|
drv_index = cciss_add_gendisk(h, lunid, 0);
|
|
if (drv_index == -1)
|
|
goto freeret;
|
|
}
|
|
cciss_update_drive_info(ctlr, drv_index, first_time,
|
|
via_ioctl);
|
|
} /* end for */
|
|
|
|
freeret:
|
|
kfree(ld_buff);
|
|
h->busy_configuring = 0;
|
|
/* We return -1 here to tell the ACU that we have registered/updated
|
|
* all of the drives that we can and to keep it from calling us
|
|
* additional times.
|
|
*/
|
|
return -1;
|
|
mem_msg:
|
|
printk(KERN_ERR "cciss: out of memory\n");
|
|
h->busy_configuring = 0;
|
|
goto freeret;
|
|
}
|
|
|
|
static void cciss_clear_drive_info(drive_info_struct *drive_info)
|
|
{
|
|
/* zero out the disk size info */
|
|
drive_info->nr_blocks = 0;
|
|
drive_info->block_size = 0;
|
|
drive_info->heads = 0;
|
|
drive_info->sectors = 0;
|
|
drive_info->cylinders = 0;
|
|
drive_info->raid_level = -1;
|
|
memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
|
|
memset(drive_info->model, 0, sizeof(drive_info->model));
|
|
memset(drive_info->rev, 0, sizeof(drive_info->rev));
|
|
memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
|
|
/*
|
|
* don't clear the LUNID though, we need to remember which
|
|
* one this one is.
|
|
*/
|
|
}
|
|
|
|
/* This function will deregister the disk and it's queue from the
|
|
* kernel. It must be called with the controller lock held and the
|
|
* drv structures busy_configuring flag set. It's parameters are:
|
|
*
|
|
* disk = This is the disk to be deregistered
|
|
* drv = This is the drive_info_struct associated with the disk to be
|
|
* deregistered. It contains information about the disk used
|
|
* by the driver.
|
|
* clear_all = This flag determines whether or not the disk information
|
|
* is going to be completely cleared out and the highest_lun
|
|
* reset. Sometimes we want to clear out information about
|
|
* the disk in preparation for re-adding it. In this case
|
|
* the highest_lun should be left unchanged and the LunID
|
|
* should not be cleared.
|
|
* via_ioctl
|
|
* This indicates whether we've reached this path via ioctl.
|
|
* This affects the maximum usage count allowed for c0d0 to be messed with.
|
|
* If this path is reached via ioctl(), then the max_usage_count will
|
|
* be 1, as the process calling ioctl() has got to have the device open.
|
|
* If we get here via sysfs, then the max usage count will be zero.
|
|
*/
|
|
static int deregister_disk(ctlr_info_t *h, int drv_index,
|
|
int clear_all, int via_ioctl)
|
|
{
|
|
int i;
|
|
struct gendisk *disk;
|
|
drive_info_struct *drv;
|
|
int recalculate_highest_lun;
|
|
|
|
if (!capable(CAP_SYS_RAWIO))
|
|
return -EPERM;
|
|
|
|
drv = h->drv[drv_index];
|
|
disk = h->gendisk[drv_index];
|
|
|
|
/* make sure logical volume is NOT is use */
|
|
if (clear_all || (h->gendisk[0] == disk)) {
|
|
if (drv->usage_count > via_ioctl)
|
|
return -EBUSY;
|
|
} else if (drv->usage_count > 0)
|
|
return -EBUSY;
|
|
|
|
recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
|
|
|
|
/* invalidate the devices and deregister the disk. If it is disk
|
|
* zero do not deregister it but just zero out it's values. This
|
|
* allows us to delete disk zero but keep the controller registered.
|
|
*/
|
|
if (h->gendisk[0] != disk) {
|
|
struct request_queue *q = disk->queue;
|
|
if (disk->flags & GENHD_FL_UP) {
|
|
cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
|
|
del_gendisk(disk);
|
|
}
|
|
if (q)
|
|
blk_cleanup_queue(q);
|
|
/* If clear_all is set then we are deleting the logical
|
|
* drive, not just refreshing its info. For drives
|
|
* other than disk 0 we will call put_disk. We do not
|
|
* do this for disk 0 as we need it to be able to
|
|
* configure the controller.
|
|
*/
|
|
if (clear_all){
|
|
/* This isn't pretty, but we need to find the
|
|
* disk in our array and NULL our the pointer.
|
|
* This is so that we will call alloc_disk if
|
|
* this index is used again later.
|
|
*/
|
|
for (i=0; i < CISS_MAX_LUN; i++){
|
|
if (h->gendisk[i] == disk) {
|
|
h->gendisk[i] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
put_disk(disk);
|
|
}
|
|
} else {
|
|
set_capacity(disk, 0);
|
|
cciss_clear_drive_info(drv);
|
|
}
|
|
|
|
--h->num_luns;
|
|
|
|
/* if it was the last disk, find the new hightest lun */
|
|
if (clear_all && recalculate_highest_lun) {
|
|
int newhighest = -1;
|
|
for (i = 0; i <= h->highest_lun; i++) {
|
|
/* if the disk has size > 0, it is available */
|
|
if (h->drv[i] && h->drv[i]->heads)
|
|
newhighest = i;
|
|
}
|
|
h->highest_lun = newhighest;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
|
|
size_t size, __u8 page_code, unsigned char *scsi3addr,
|
|
int cmd_type)
|
|
{
|
|
ctlr_info_t *h = hba[ctlr];
|
|
u64bit buff_dma_handle;
|
|
int status = IO_OK;
|
|
|
|
c->cmd_type = CMD_IOCTL_PEND;
|
|
c->Header.ReplyQueue = 0;
|
|
if (buff != NULL) {
|
|
c->Header.SGList = 1;
|
|
c->Header.SGTotal = 1;
|
|
} else {
|
|
c->Header.SGList = 0;
|
|
c->Header.SGTotal = 0;
|
|
}
|
|
c->Header.Tag.lower = c->busaddr;
|
|
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
|
|
|
|
c->Request.Type.Type = cmd_type;
|
|
if (cmd_type == TYPE_CMD) {
|
|
switch (cmd) {
|
|
case CISS_INQUIRY:
|
|
/* are we trying to read a vital product page */
|
|
if (page_code != 0) {
|
|
c->Request.CDB[1] = 0x01;
|
|
c->Request.CDB[2] = page_code;
|
|
}
|
|
c->Request.CDBLen = 6;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = CISS_INQUIRY;
|
|
c->Request.CDB[4] = size & 0xFF;
|
|
break;
|
|
case CISS_REPORT_LOG:
|
|
case CISS_REPORT_PHYS:
|
|
/* Talking to controller so It's a physical command
|
|
mode = 00 target = 0. Nothing to write.
|
|
*/
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
|
|
c->Request.CDB[7] = (size >> 16) & 0xFF;
|
|
c->Request.CDB[8] = (size >> 8) & 0xFF;
|
|
c->Request.CDB[9] = size & 0xFF;
|
|
break;
|
|
|
|
case CCISS_READ_CAPACITY:
|
|
c->Request.CDBLen = 10;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
break;
|
|
case CCISS_READ_CAPACITY_16:
|
|
c->Request.CDBLen = 16;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_READ;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
c->Request.CDB[1] = 0x10;
|
|
c->Request.CDB[10] = (size >> 24) & 0xFF;
|
|
c->Request.CDB[11] = (size >> 16) & 0xFF;
|
|
c->Request.CDB[12] = (size >> 8) & 0xFF;
|
|
c->Request.CDB[13] = size & 0xFF;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
break;
|
|
case CCISS_CACHE_FLUSH:
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = BMIC_WRITE;
|
|
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
|
|
break;
|
|
case TEST_UNIT_READY:
|
|
c->Request.CDBLen = 6;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_NONE;
|
|
c->Request.Timeout = 0;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING
|
|
"cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
|
|
return IO_ERROR;
|
|
}
|
|
} else if (cmd_type == TYPE_MSG) {
|
|
switch (cmd) {
|
|
case 0: /* ABORT message */
|
|
c->Request.CDBLen = 12;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd; /* abort */
|
|
c->Request.CDB[1] = 0; /* abort a command */
|
|
/* buff contains the tag of the command to abort */
|
|
memcpy(&c->Request.CDB[4], buff, 8);
|
|
break;
|
|
case 1: /* RESET message */
|
|
c->Request.CDBLen = 16;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_NONE;
|
|
c->Request.Timeout = 0;
|
|
memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
|
|
c->Request.CDB[0] = cmd; /* reset */
|
|
c->Request.CDB[1] = 0x03; /* reset a target */
|
|
break;
|
|
case 3: /* No-Op message */
|
|
c->Request.CDBLen = 1;
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction = XFER_WRITE;
|
|
c->Request.Timeout = 0;
|
|
c->Request.CDB[0] = cmd;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING
|
|
"cciss%d: unknown message type %d\n", ctlr, cmd);
|
|
return IO_ERROR;
|
|
}
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"cciss%d: unknown command type %d\n", ctlr, cmd_type);
|
|
return IO_ERROR;
|
|
}
|
|
/* Fill in the scatter gather information */
|
|
if (size > 0) {
|
|
buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
|
|
buff, size,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
|
|
c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
|
|
c->SG[0].Len = size;
|
|
c->SG[0].Ext = 0; /* we are not chaining */
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
|
|
{
|
|
switch (c->err_info->ScsiStatus) {
|
|
case SAM_STAT_GOOD:
|
|
return IO_OK;
|
|
case SAM_STAT_CHECK_CONDITION:
|
|
switch (0xf & c->err_info->SenseInfo[2]) {
|
|
case 0: return IO_OK; /* no sense */
|
|
case 1: return IO_OK; /* recovered error */
|
|
default:
|
|
if (check_for_unit_attention(h, c))
|
|
return IO_NEEDS_RETRY;
|
|
printk(KERN_WARNING "cciss%d: cmd 0x%02x "
|
|
"check condition, sense key = 0x%02x\n",
|
|
h->ctlr, c->Request.CDB[0],
|
|
c->err_info->SenseInfo[2]);
|
|
}
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "cciss%d: cmd 0x%02x"
|
|
"scsi status = 0x%02x\n", h->ctlr,
|
|
c->Request.CDB[0], c->err_info->ScsiStatus);
|
|
break;
|
|
}
|
|
return IO_ERROR;
|
|
}
|
|
|
|
static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
|
|
{
|
|
int return_status = IO_OK;
|
|
|
|
if (c->err_info->CommandStatus == CMD_SUCCESS)
|
|
return IO_OK;
|
|
|
|
switch (c->err_info->CommandStatus) {
|
|
case CMD_TARGET_STATUS:
|
|
return_status = check_target_status(h, c);
|
|
break;
|
|
case CMD_DATA_UNDERRUN:
|
|
case CMD_DATA_OVERRUN:
|
|
/* expected for inquiry and report lun commands */
|
|
break;
|
|
case CMD_INVALID:
|
|
printk(KERN_WARNING "cciss: cmd 0x%02x is "
|
|
"reported invalid\n", c->Request.CDB[0]);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_PROTOCOL_ERR:
|
|
printk(KERN_WARNING "cciss: cmd 0x%02x has "
|
|
"protocol error \n", c->Request.CDB[0]);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_HARDWARE_ERR:
|
|
printk(KERN_WARNING "cciss: cmd 0x%02x had "
|
|
" hardware error\n", c->Request.CDB[0]);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_CONNECTION_LOST:
|
|
printk(KERN_WARNING "cciss: cmd 0x%02x had "
|
|
"connection lost\n", c->Request.CDB[0]);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_ABORTED:
|
|
printk(KERN_WARNING "cciss: cmd 0x%02x was "
|
|
"aborted\n", c->Request.CDB[0]);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_ABORT_FAILED:
|
|
printk(KERN_WARNING "cciss: cmd 0x%02x reports "
|
|
"abort failed\n", c->Request.CDB[0]);
|
|
return_status = IO_ERROR;
|
|
break;
|
|
case CMD_UNSOLICITED_ABORT:
|
|
printk(KERN_WARNING
|
|
"cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
|
|
c->Request.CDB[0]);
|
|
return_status = IO_NEEDS_RETRY;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "cciss: cmd 0x%02x returned "
|
|
"unknown status %x\n", c->Request.CDB[0],
|
|
c->err_info->CommandStatus);
|
|
return_status = IO_ERROR;
|
|
}
|
|
return return_status;
|
|
}
|
|
|
|
static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
|
|
int attempt_retry)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
u64bit buff_dma_handle;
|
|
int return_status = IO_OK;
|
|
|
|
resend_cmd2:
|
|
c->waiting = &wait;
|
|
enqueue_cmd_and_start_io(h, c);
|
|
|
|
wait_for_completion(&wait);
|
|
|
|
if (c->err_info->CommandStatus == 0 || !attempt_retry)
|
|
goto command_done;
|
|
|
|
return_status = process_sendcmd_error(h, c);
|
|
|
|
if (return_status == IO_NEEDS_RETRY &&
|
|
c->retry_count < MAX_CMD_RETRIES) {
|
|
printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
|
|
c->Request.CDB[0]);
|
|
c->retry_count++;
|
|
/* erase the old error information */
|
|
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
|
|
return_status = IO_OK;
|
|
INIT_COMPLETION(wait);
|
|
goto resend_cmd2;
|
|
}
|
|
|
|
command_done:
|
|
/* unlock the buffers from DMA */
|
|
buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
|
|
buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
|
|
pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
|
|
c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
|
|
return return_status;
|
|
}
|
|
|
|
static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
|
|
__u8 page_code, unsigned char scsi3addr[],
|
|
int cmd_type)
|
|
{
|
|
ctlr_info_t *h = hba[ctlr];
|
|
CommandList_struct *c;
|
|
int return_status;
|
|
|
|
c = cmd_alloc(h, 0);
|
|
if (!c)
|
|
return -ENOMEM;
|
|
return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
|
|
scsi3addr, cmd_type);
|
|
if (return_status == IO_OK)
|
|
return_status = sendcmd_withirq_core(h, c, 1);
|
|
|
|
cmd_free(h, c, 0);
|
|
return return_status;
|
|
}
|
|
|
|
static void cciss_geometry_inquiry(int ctlr, int logvol,
|
|
sector_t total_size,
|
|
unsigned int block_size,
|
|
InquiryData_struct *inq_buff,
|
|
drive_info_struct *drv)
|
|
{
|
|
int return_code;
|
|
unsigned long t;
|
|
unsigned char scsi3addr[8];
|
|
|
|
memset(inq_buff, 0, sizeof(InquiryData_struct));
|
|
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
|
|
return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
|
|
sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
|
|
if (return_code == IO_OK) {
|
|
if (inq_buff->data_byte[8] == 0xFF) {
|
|
printk(KERN_WARNING
|
|
"cciss: reading geometry failed, volume "
|
|
"does not support reading geometry\n");
|
|
drv->heads = 255;
|
|
drv->sectors = 32; /* Sectors per track */
|
|
drv->cylinders = total_size + 1;
|
|
drv->raid_level = RAID_UNKNOWN;
|
|
} else {
|
|
drv->heads = inq_buff->data_byte[6];
|
|
drv->sectors = inq_buff->data_byte[7];
|
|
drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
|
|
drv->cylinders += inq_buff->data_byte[5];
|
|
drv->raid_level = inq_buff->data_byte[8];
|
|
}
|
|
drv->block_size = block_size;
|
|
drv->nr_blocks = total_size + 1;
|
|
t = drv->heads * drv->sectors;
|
|
if (t > 1) {
|
|
sector_t real_size = total_size + 1;
|
|
unsigned long rem = sector_div(real_size, t);
|
|
if (rem)
|
|
real_size++;
|
|
drv->cylinders = real_size;
|
|
}
|
|
} else { /* Get geometry failed */
|
|
printk(KERN_WARNING "cciss: reading geometry failed\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
|
|
unsigned int *block_size)
|
|
{
|
|
ReadCapdata_struct *buf;
|
|
int return_code;
|
|
unsigned char scsi3addr[8];
|
|
|
|
buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
|
|
if (!buf) {
|
|
printk(KERN_WARNING "cciss: out of memory\n");
|
|
return;
|
|
}
|
|
|
|
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
|
|
return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
|
|
sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
|
|
if (return_code == IO_OK) {
|
|
*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
|
|
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
|
|
} else { /* read capacity command failed */
|
|
printk(KERN_WARNING "cciss: read capacity failed\n");
|
|
*total_size = 0;
|
|
*block_size = BLOCK_SIZE;
|
|
}
|
|
kfree(buf);
|
|
}
|
|
|
|
static void cciss_read_capacity_16(int ctlr, int logvol,
|
|
sector_t *total_size, unsigned int *block_size)
|
|
{
|
|
ReadCapdata_struct_16 *buf;
|
|
int return_code;
|
|
unsigned char scsi3addr[8];
|
|
|
|
buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
|
|
if (!buf) {
|
|
printk(KERN_WARNING "cciss: out of memory\n");
|
|
return;
|
|
}
|
|
|
|
log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
|
|
return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
|
|
ctlr, buf, sizeof(ReadCapdata_struct_16),
|
|
0, scsi3addr, TYPE_CMD);
|
|
if (return_code == IO_OK) {
|
|
*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
|
|
*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
|
|
} else { /* read capacity command failed */
|
|
printk(KERN_WARNING "cciss: read capacity failed\n");
|
|
*total_size = 0;
|
|
*block_size = BLOCK_SIZE;
|
|
}
|
|
printk(KERN_INFO " blocks= %llu block_size= %d\n",
|
|
(unsigned long long)*total_size+1, *block_size);
|
|
kfree(buf);
|
|
}
|
|
|
|
static int cciss_revalidate(struct gendisk *disk)
|
|
{
|
|
ctlr_info_t *h = get_host(disk);
|
|
drive_info_struct *drv = get_drv(disk);
|
|
int logvol;
|
|
int FOUND = 0;
|
|
unsigned int block_size;
|
|
sector_t total_size;
|
|
InquiryData_struct *inq_buff = NULL;
|
|
|
|
for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
|
|
if (memcmp(h->drv[logvol]->LunID, drv->LunID,
|
|
sizeof(drv->LunID)) == 0) {
|
|
FOUND = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!FOUND)
|
|
return 1;
|
|
|
|
inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
|
|
if (inq_buff == NULL) {
|
|
printk(KERN_WARNING "cciss: out of memory\n");
|
|
return 1;
|
|
}
|
|
if (h->cciss_read == CCISS_READ_10) {
|
|
cciss_read_capacity(h->ctlr, logvol,
|
|
&total_size, &block_size);
|
|
} else {
|
|
cciss_read_capacity_16(h->ctlr, logvol,
|
|
&total_size, &block_size);
|
|
}
|
|
cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
|
|
inq_buff, drv);
|
|
|
|
blk_queue_logical_block_size(drv->queue, drv->block_size);
|
|
set_capacity(disk, drv->nr_blocks);
|
|
|
|
kfree(inq_buff);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Map (physical) PCI mem into (virtual) kernel space
|
|
*/
|
|
static void __iomem *remap_pci_mem(ulong base, ulong size)
|
|
{
|
|
ulong page_base = ((ulong) base) & PAGE_MASK;
|
|
ulong page_offs = ((ulong) base) - page_base;
|
|
void __iomem *page_remapped = ioremap(page_base, page_offs + size);
|
|
|
|
return page_remapped ? (page_remapped + page_offs) : NULL;
|
|
}
|
|
|
|
/*
|
|
* Takes jobs of the Q and sends them to the hardware, then puts it on
|
|
* the Q to wait for completion.
|
|
*/
|
|
static void start_io(ctlr_info_t *h)
|
|
{
|
|
CommandList_struct *c;
|
|
|
|
while (!hlist_empty(&h->reqQ)) {
|
|
c = hlist_entry(h->reqQ.first, CommandList_struct, list);
|
|
/* can't do anything if fifo is full */
|
|
if ((h->access.fifo_full(h))) {
|
|
printk(KERN_WARNING "cciss: fifo full\n");
|
|
break;
|
|
}
|
|
|
|
/* Get the first entry from the Request Q */
|
|
removeQ(c);
|
|
h->Qdepth--;
|
|
|
|
/* Tell the controller execute command */
|
|
h->access.submit_command(h, c);
|
|
|
|
/* Put job onto the completed Q */
|
|
addQ(&h->cmpQ, c);
|
|
}
|
|
}
|
|
|
|
/* Assumes that CCISS_LOCK(h->ctlr) is held. */
|
|
/* Zeros out the error record and then resends the command back */
|
|
/* to the controller */
|
|
static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
|
|
{
|
|
/* erase the old error information */
|
|
memset(c->err_info, 0, sizeof(ErrorInfo_struct));
|
|
|
|
/* add it to software queue and then send it to the controller */
|
|
addQ(&h->reqQ, c);
|
|
h->Qdepth++;
|
|
if (h->Qdepth > h->maxQsinceinit)
|
|
h->maxQsinceinit = h->Qdepth;
|
|
|
|
start_io(h);
|
|
}
|
|
|
|
static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
|
|
unsigned int msg_byte, unsigned int host_byte,
|
|
unsigned int driver_byte)
|
|
{
|
|
/* inverse of macros in scsi.h */
|
|
return (scsi_status_byte & 0xff) |
|
|
((msg_byte & 0xff) << 8) |
|
|
((host_byte & 0xff) << 16) |
|
|
((driver_byte & 0xff) << 24);
|
|
}
|
|
|
|
static inline int evaluate_target_status(ctlr_info_t *h,
|
|
CommandList_struct *cmd, int *retry_cmd)
|
|
{
|
|
unsigned char sense_key;
|
|
unsigned char status_byte, msg_byte, host_byte, driver_byte;
|
|
int error_value;
|
|
|
|
*retry_cmd = 0;
|
|
/* If we get in here, it means we got "target status", that is, scsi status */
|
|
status_byte = cmd->err_info->ScsiStatus;
|
|
driver_byte = DRIVER_OK;
|
|
msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
|
|
|
|
if (blk_pc_request(cmd->rq))
|
|
host_byte = DID_PASSTHROUGH;
|
|
else
|
|
host_byte = DID_OK;
|
|
|
|
error_value = make_status_bytes(status_byte, msg_byte,
|
|
host_byte, driver_byte);
|
|
|
|
if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
|
|
if (!blk_pc_request(cmd->rq))
|
|
printk(KERN_WARNING "cciss: cmd %p "
|
|
"has SCSI Status 0x%x\n",
|
|
cmd, cmd->err_info->ScsiStatus);
|
|
return error_value;
|
|
}
|
|
|
|
/* check the sense key */
|
|
sense_key = 0xf & cmd->err_info->SenseInfo[2];
|
|
/* no status or recovered error */
|
|
if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
|
|
error_value = 0;
|
|
|
|
if (check_for_unit_attention(h, cmd)) {
|
|
*retry_cmd = !blk_pc_request(cmd->rq);
|
|
return 0;
|
|
}
|
|
|
|
if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
|
|
if (error_value != 0)
|
|
printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
|
|
" sense key = 0x%x\n", cmd, sense_key);
|
|
return error_value;
|
|
}
|
|
|
|
/* SG_IO or similar, copy sense data back */
|
|
if (cmd->rq->sense) {
|
|
if (cmd->rq->sense_len > cmd->err_info->SenseLen)
|
|
cmd->rq->sense_len = cmd->err_info->SenseLen;
|
|
memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
|
|
cmd->rq->sense_len);
|
|
} else
|
|
cmd->rq->sense_len = 0;
|
|
|
|
return error_value;
|
|
}
|
|
|
|
/* checks the status of the job and calls complete buffers to mark all
|
|
* buffers for the completed job. Note that this function does not need
|
|
* to hold the hba/queue lock.
|
|
*/
|
|
static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
|
|
int timeout)
|
|
{
|
|
int retry_cmd = 0;
|
|
struct request *rq = cmd->rq;
|
|
|
|
rq->errors = 0;
|
|
|
|
if (timeout)
|
|
rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
|
|
|
|
if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
|
|
goto after_error_processing;
|
|
|
|
switch (cmd->err_info->CommandStatus) {
|
|
case CMD_TARGET_STATUS:
|
|
rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
|
|
break;
|
|
case CMD_DATA_UNDERRUN:
|
|
if (blk_fs_request(cmd->rq)) {
|
|
printk(KERN_WARNING "cciss: cmd %p has"
|
|
" completed with data underrun "
|
|
"reported\n", cmd);
|
|
cmd->rq->resid_len = cmd->err_info->ResidualCnt;
|
|
}
|
|
break;
|
|
case CMD_DATA_OVERRUN:
|
|
if (blk_fs_request(cmd->rq))
|
|
printk(KERN_WARNING "cciss: cmd %p has"
|
|
" completed with data overrun "
|
|
"reported\n", cmd);
|
|
break;
|
|
case CMD_INVALID:
|
|
printk(KERN_WARNING "cciss: cmd %p is "
|
|
"reported invalid\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_PROTOCOL_ERR:
|
|
printk(KERN_WARNING "cciss: cmd %p has "
|
|
"protocol error \n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_HARDWARE_ERR:
|
|
printk(KERN_WARNING "cciss: cmd %p had "
|
|
" hardware error\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_CONNECTION_LOST:
|
|
printk(KERN_WARNING "cciss: cmd %p had "
|
|
"connection lost\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_ABORTED:
|
|
printk(KERN_WARNING "cciss: cmd %p was "
|
|
"aborted\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
|
|
break;
|
|
case CMD_ABORT_FAILED:
|
|
printk(KERN_WARNING "cciss: cmd %p reports "
|
|
"abort failed\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
case CMD_UNSOLICITED_ABORT:
|
|
printk(KERN_WARNING "cciss%d: unsolicited "
|
|
"abort %p\n", h->ctlr, cmd);
|
|
if (cmd->retry_count < MAX_CMD_RETRIES) {
|
|
retry_cmd = 1;
|
|
printk(KERN_WARNING
|
|
"cciss%d: retrying %p\n", h->ctlr, cmd);
|
|
cmd->retry_count++;
|
|
} else
|
|
printk(KERN_WARNING
|
|
"cciss%d: %p retried too "
|
|
"many times\n", h->ctlr, cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
|
|
break;
|
|
case CMD_TIMEOUT:
|
|
printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "cciss: cmd %p returned "
|
|
"unknown status %x\n", cmd,
|
|
cmd->err_info->CommandStatus);
|
|
rq->errors = make_status_bytes(SAM_STAT_GOOD,
|
|
cmd->err_info->CommandStatus, DRIVER_OK,
|
|
blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
|
|
}
|
|
|
|
after_error_processing:
|
|
|
|
/* We need to return this command */
|
|
if (retry_cmd) {
|
|
resend_cciss_cmd(h, cmd);
|
|
return;
|
|
}
|
|
cmd->rq->completion_data = cmd;
|
|
blk_complete_request(cmd->rq);
|
|
}
|
|
|
|
static inline u32 cciss_tag_contains_index(u32 tag)
|
|
{
|
|
#define DIRECT_LOOKUP_BIT 0x10
|
|
return tag & DIRECT_LOOKUP_BIT;
|
|
}
|
|
|
|
static inline u32 cciss_tag_to_index(u32 tag)
|
|
{
|
|
#define DIRECT_LOOKUP_SHIFT 5
|
|
return tag >> DIRECT_LOOKUP_SHIFT;
|
|
}
|
|
|
|
static inline u32 cciss_tag_discard_error_bits(u32 tag)
|
|
{
|
|
#define CCISS_ERROR_BITS 0x03
|
|
return tag & ~CCISS_ERROR_BITS;
|
|
}
|
|
|
|
static inline void cciss_mark_tag_indexed(u32 *tag)
|
|
{
|
|
*tag |= DIRECT_LOOKUP_BIT;
|
|
}
|
|
|
|
static inline void cciss_set_tag_index(u32 *tag, u32 index)
|
|
{
|
|
*tag |= (index << DIRECT_LOOKUP_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Get a request and submit it to the controller.
|
|
*/
|
|
static void do_cciss_request(struct request_queue *q)
|
|
{
|
|
ctlr_info_t *h = q->queuedata;
|
|
CommandList_struct *c;
|
|
sector_t start_blk;
|
|
int seg;
|
|
struct request *creq;
|
|
u64bit temp64;
|
|
struct scatterlist *tmp_sg;
|
|
SGDescriptor_struct *curr_sg;
|
|
drive_info_struct *drv;
|
|
int i, dir;
|
|
int sg_index = 0;
|
|
int chained = 0;
|
|
|
|
/* We call start_io here in case there is a command waiting on the
|
|
* queue that has not been sent.
|
|
*/
|
|
if (blk_queue_plugged(q))
|
|
goto startio;
|
|
|
|
queue:
|
|
creq = blk_peek_request(q);
|
|
if (!creq)
|
|
goto startio;
|
|
|
|
BUG_ON(creq->nr_phys_segments > h->maxsgentries);
|
|
|
|
if ((c = cmd_alloc(h, 1)) == NULL)
|
|
goto full;
|
|
|
|
blk_start_request(creq);
|
|
|
|
tmp_sg = h->scatter_list[c->cmdindex];
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
c->cmd_type = CMD_RWREQ;
|
|
c->rq = creq;
|
|
|
|
/* fill in the request */
|
|
drv = creq->rq_disk->private_data;
|
|
c->Header.ReplyQueue = 0; /* unused in simple mode */
|
|
/* got command from pool, so use the command block index instead */
|
|
/* for direct lookups. */
|
|
/* The first 2 bits are reserved for controller error reporting. */
|
|
cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
|
|
cciss_mark_tag_indexed(&c->Header.Tag.lower);
|
|
memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
|
|
c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
|
|
c->Request.Type.Type = TYPE_CMD; /* It is a command. */
|
|
c->Request.Type.Attribute = ATTR_SIMPLE;
|
|
c->Request.Type.Direction =
|
|
(rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
|
|
c->Request.Timeout = 0; /* Don't time out */
|
|
c->Request.CDB[0] =
|
|
(rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
|
|
start_blk = blk_rq_pos(creq);
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
|
|
(int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
sg_init_table(tmp_sg, h->maxsgentries);
|
|
seg = blk_rq_map_sg(q, creq, tmp_sg);
|
|
|
|
/* get the DMA records for the setup */
|
|
if (c->Request.Type.Direction == XFER_READ)
|
|
dir = PCI_DMA_FROMDEVICE;
|
|
else
|
|
dir = PCI_DMA_TODEVICE;
|
|
|
|
curr_sg = c->SG;
|
|
sg_index = 0;
|
|
chained = 0;
|
|
|
|
for (i = 0; i < seg; i++) {
|
|
if (((sg_index+1) == (h->max_cmd_sgentries)) &&
|
|
!chained && ((seg - i) > 1)) {
|
|
/* Point to next chain block. */
|
|
curr_sg = h->cmd_sg_list[c->cmdindex];
|
|
sg_index = 0;
|
|
chained = 1;
|
|
}
|
|
curr_sg[sg_index].Len = tmp_sg[i].length;
|
|
temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
|
|
tmp_sg[i].offset,
|
|
tmp_sg[i].length, dir);
|
|
curr_sg[sg_index].Addr.lower = temp64.val32.lower;
|
|
curr_sg[sg_index].Addr.upper = temp64.val32.upper;
|
|
curr_sg[sg_index].Ext = 0; /* we are not chaining */
|
|
++sg_index;
|
|
}
|
|
if (chained)
|
|
cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
|
|
(seg - (h->max_cmd_sgentries - 1)) *
|
|
sizeof(SGDescriptor_struct));
|
|
|
|
/* track how many SG entries we are using */
|
|
if (seg > h->maxSG)
|
|
h->maxSG = seg;
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
|
|
"chained[%d]\n",
|
|
blk_rq_sectors(creq), seg, chained);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
c->Header.SGTotal = seg + chained;
|
|
if (seg <= h->max_cmd_sgentries)
|
|
c->Header.SGList = c->Header.SGTotal;
|
|
else
|
|
c->Header.SGList = h->max_cmd_sgentries;
|
|
set_performant_mode(h, c);
|
|
|
|
if (likely(blk_fs_request(creq))) {
|
|
if(h->cciss_read == CCISS_READ_10) {
|
|
c->Request.CDB[1] = 0;
|
|
c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
|
|
c->Request.CDB[3] = (start_blk >> 16) & 0xff;
|
|
c->Request.CDB[4] = (start_blk >> 8) & 0xff;
|
|
c->Request.CDB[5] = start_blk & 0xff;
|
|
c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
|
|
c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
|
|
c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
|
|
c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
|
|
} else {
|
|
u32 upper32 = upper_32_bits(start_blk);
|
|
|
|
c->Request.CDBLen = 16;
|
|
c->Request.CDB[1]= 0;
|
|
c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
|
|
c->Request.CDB[3]= (upper32 >> 16) & 0xff;
|
|
c->Request.CDB[4]= (upper32 >> 8) & 0xff;
|
|
c->Request.CDB[5]= upper32 & 0xff;
|
|
c->Request.CDB[6]= (start_blk >> 24) & 0xff;
|
|
c->Request.CDB[7]= (start_blk >> 16) & 0xff;
|
|
c->Request.CDB[8]= (start_blk >> 8) & 0xff;
|
|
c->Request.CDB[9]= start_blk & 0xff;
|
|
c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
|
|
c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
|
|
c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
|
|
c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
|
|
c->Request.CDB[14] = c->Request.CDB[15] = 0;
|
|
}
|
|
} else if (blk_pc_request(creq)) {
|
|
c->Request.CDBLen = creq->cmd_len;
|
|
memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
|
|
} else {
|
|
printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
|
|
BUG();
|
|
}
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
addQ(&h->reqQ, c);
|
|
h->Qdepth++;
|
|
if (h->Qdepth > h->maxQsinceinit)
|
|
h->maxQsinceinit = h->Qdepth;
|
|
|
|
goto queue;
|
|
full:
|
|
blk_stop_queue(q);
|
|
startio:
|
|
/* We will already have the driver lock here so not need
|
|
* to lock it.
|
|
*/
|
|
start_io(h);
|
|
}
|
|
|
|
static inline unsigned long get_next_completion(ctlr_info_t *h)
|
|
{
|
|
return h->access.command_completed(h);
|
|
}
|
|
|
|
static inline int interrupt_pending(ctlr_info_t *h)
|
|
{
|
|
return h->access.intr_pending(h);
|
|
}
|
|
|
|
static inline long interrupt_not_for_us(ctlr_info_t *h)
|
|
{
|
|
return !(h->msi_vector || h->msix_vector) &&
|
|
((h->access.intr_pending(h) == 0) ||
|
|
(h->interrupts_enabled == 0));
|
|
}
|
|
|
|
static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
|
|
u32 raw_tag)
|
|
{
|
|
if (unlikely(tag_index >= h->nr_cmds)) {
|
|
dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
|
|
u32 raw_tag)
|
|
{
|
|
removeQ(c);
|
|
if (likely(c->cmd_type == CMD_RWREQ))
|
|
complete_command(h, c, 0);
|
|
else if (c->cmd_type == CMD_IOCTL_PEND)
|
|
complete(c->waiting);
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
else if (c->cmd_type == CMD_SCSI)
|
|
complete_scsi_command(c, 0, raw_tag);
|
|
#endif
|
|
}
|
|
|
|
/* process completion of an indexed ("direct lookup") command */
|
|
static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
|
|
{
|
|
u32 tag_index;
|
|
CommandList_struct *c;
|
|
|
|
tag_index = cciss_tag_to_index(raw_tag);
|
|
if (bad_tag(h, tag_index, raw_tag))
|
|
return next_command(h);
|
|
c = h->cmd_pool + tag_index;
|
|
finish_cmd(h, c, raw_tag);
|
|
return next_command(h);
|
|
}
|
|
|
|
/* process completion of a non-indexed command */
|
|
static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
|
|
{
|
|
u32 tag;
|
|
CommandList_struct *c = NULL;
|
|
struct hlist_node *tmp;
|
|
__u32 busaddr_masked, tag_masked;
|
|
|
|
tag = cciss_tag_discard_error_bits(raw_tag);
|
|
hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
|
|
busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
|
|
tag_masked = cciss_tag_discard_error_bits(tag);
|
|
if (busaddr_masked == tag_masked) {
|
|
finish_cmd(h, c, raw_tag);
|
|
return next_command(h);
|
|
}
|
|
}
|
|
bad_tag(h, h->nr_cmds + 1, raw_tag);
|
|
return next_command(h);
|
|
}
|
|
|
|
static irqreturn_t do_cciss_intx(int irq, void *dev_id)
|
|
{
|
|
ctlr_info_t *h = dev_id;
|
|
unsigned long flags;
|
|
u32 raw_tag;
|
|
|
|
if (interrupt_not_for_us(h))
|
|
return IRQ_NONE;
|
|
/*
|
|
* If there are completed commands in the completion queue,
|
|
* we had better do something about it.
|
|
*/
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
while (interrupt_pending(h)) {
|
|
raw_tag = get_next_completion(h);
|
|
while (raw_tag != FIFO_EMPTY) {
|
|
if (cciss_tag_contains_index(raw_tag))
|
|
raw_tag = process_indexed_cmd(h, raw_tag);
|
|
else
|
|
raw_tag = process_nonindexed_cmd(h, raw_tag);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
|
|
* check the interrupt pending register because it is not set.
|
|
*/
|
|
static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
|
|
{
|
|
ctlr_info_t *h = dev_id;
|
|
unsigned long flags;
|
|
u32 raw_tag;
|
|
|
|
if (interrupt_not_for_us(h))
|
|
return IRQ_NONE;
|
|
/*
|
|
* If there are completed commands in the completion queue,
|
|
* we had better do something about it.
|
|
*/
|
|
spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
|
|
raw_tag = get_next_completion(h);
|
|
while (raw_tag != FIFO_EMPTY) {
|
|
if (cciss_tag_contains_index(raw_tag))
|
|
raw_tag = process_indexed_cmd(h, raw_tag);
|
|
else
|
|
raw_tag = process_nonindexed_cmd(h, raw_tag);
|
|
}
|
|
|
|
spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* add_to_scan_list() - add controller to rescan queue
|
|
* @h: Pointer to the controller.
|
|
*
|
|
* Adds the controller to the rescan queue if not already on the queue.
|
|
*
|
|
* returns 1 if added to the queue, 0 if skipped (could be on the
|
|
* queue already, or the controller could be initializing or shutting
|
|
* down).
|
|
**/
|
|
static int add_to_scan_list(struct ctlr_info *h)
|
|
{
|
|
struct ctlr_info *test_h;
|
|
int found = 0;
|
|
int ret = 0;
|
|
|
|
if (h->busy_initializing)
|
|
return 0;
|
|
|
|
if (!mutex_trylock(&h->busy_shutting_down))
|
|
return 0;
|
|
|
|
mutex_lock(&scan_mutex);
|
|
list_for_each_entry(test_h, &scan_q, scan_list) {
|
|
if (test_h == h) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found && !h->busy_scanning) {
|
|
INIT_COMPLETION(h->scan_wait);
|
|
list_add_tail(&h->scan_list, &scan_q);
|
|
ret = 1;
|
|
}
|
|
mutex_unlock(&scan_mutex);
|
|
mutex_unlock(&h->busy_shutting_down);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* remove_from_scan_list() - remove controller from rescan queue
|
|
* @h: Pointer to the controller.
|
|
*
|
|
* Removes the controller from the rescan queue if present. Blocks if
|
|
* the controller is currently conducting a rescan. The controller
|
|
* can be in one of three states:
|
|
* 1. Doesn't need a scan
|
|
* 2. On the scan list, but not scanning yet (we remove it)
|
|
* 3. Busy scanning (and not on the list). In this case we want to wait for
|
|
* the scan to complete to make sure the scanning thread for this
|
|
* controller is completely idle.
|
|
**/
|
|
static void remove_from_scan_list(struct ctlr_info *h)
|
|
{
|
|
struct ctlr_info *test_h, *tmp_h;
|
|
|
|
mutex_lock(&scan_mutex);
|
|
list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
|
|
if (test_h == h) { /* state 2. */
|
|
list_del(&h->scan_list);
|
|
complete_all(&h->scan_wait);
|
|
mutex_unlock(&scan_mutex);
|
|
return;
|
|
}
|
|
}
|
|
if (h->busy_scanning) { /* state 3. */
|
|
mutex_unlock(&scan_mutex);
|
|
wait_for_completion(&h->scan_wait);
|
|
} else { /* state 1, nothing to do. */
|
|
mutex_unlock(&scan_mutex);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* scan_thread() - kernel thread used to rescan controllers
|
|
* @data: Ignored.
|
|
*
|
|
* A kernel thread used scan for drive topology changes on
|
|
* controllers. The thread processes only one controller at a time
|
|
* using a queue. Controllers are added to the queue using
|
|
* add_to_scan_list() and removed from the queue either after done
|
|
* processing or using remove_from_scan_list().
|
|
*
|
|
* returns 0.
|
|
**/
|
|
static int scan_thread(void *data)
|
|
{
|
|
struct ctlr_info *h;
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
if (kthread_should_stop())
|
|
break;
|
|
|
|
while (1) {
|
|
mutex_lock(&scan_mutex);
|
|
if (list_empty(&scan_q)) {
|
|
mutex_unlock(&scan_mutex);
|
|
break;
|
|
}
|
|
|
|
h = list_entry(scan_q.next,
|
|
struct ctlr_info,
|
|
scan_list);
|
|
list_del(&h->scan_list);
|
|
h->busy_scanning = 1;
|
|
mutex_unlock(&scan_mutex);
|
|
|
|
rebuild_lun_table(h, 0, 0);
|
|
complete_all(&h->scan_wait);
|
|
mutex_lock(&scan_mutex);
|
|
h->busy_scanning = 0;
|
|
mutex_unlock(&scan_mutex);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
|
|
{
|
|
if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
|
|
return 0;
|
|
|
|
switch (c->err_info->SenseInfo[12]) {
|
|
case STATE_CHANGED:
|
|
printk(KERN_WARNING "cciss%d: a state change "
|
|
"detected, command retried\n", h->ctlr);
|
|
return 1;
|
|
break;
|
|
case LUN_FAILED:
|
|
printk(KERN_WARNING "cciss%d: LUN failure "
|
|
"detected, action required\n", h->ctlr);
|
|
return 1;
|
|
break;
|
|
case REPORT_LUNS_CHANGED:
|
|
printk(KERN_WARNING "cciss%d: report LUN data "
|
|
"changed\n", h->ctlr);
|
|
/*
|
|
* Here, we could call add_to_scan_list and wake up the scan thread,
|
|
* except that it's quite likely that we will get more than one
|
|
* REPORT_LUNS_CHANGED condition in quick succession, which means
|
|
* that those which occur after the first one will likely happen
|
|
* *during* the scan_thread's rescan. And the rescan code is not
|
|
* robust enough to restart in the middle, undoing what it has already
|
|
* done, and it's not clear that it's even possible to do this, since
|
|
* part of what it does is notify the block layer, which starts
|
|
* doing it's own i/o to read partition tables and so on, and the
|
|
* driver doesn't have visibility to know what might need undoing.
|
|
* In any event, if possible, it is horribly complicated to get right
|
|
* so we just don't do it for now.
|
|
*
|
|
* Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
|
|
*/
|
|
return 1;
|
|
break;
|
|
case POWER_OR_RESET:
|
|
printk(KERN_WARNING "cciss%d: a power on "
|
|
"or device reset detected\n", h->ctlr);
|
|
return 1;
|
|
break;
|
|
case UNIT_ATTENTION_CLEARED:
|
|
printk(KERN_WARNING "cciss%d: unit attention "
|
|
"cleared by another initiator\n", h->ctlr);
|
|
return 1;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "cciss%d: unknown "
|
|
"unit attention detected\n", h->ctlr);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We cannot read the structure directly, for portability we must use
|
|
* the io functions.
|
|
* This is for debug only.
|
|
*/
|
|
#ifdef CCISS_DEBUG
|
|
static void print_cfg_table(CfgTable_struct *tb)
|
|
{
|
|
int i;
|
|
char temp_name[17];
|
|
|
|
printk("Controller Configuration information\n");
|
|
printk("------------------------------------\n");
|
|
for (i = 0; i < 4; i++)
|
|
temp_name[i] = readb(&(tb->Signature[i]));
|
|
temp_name[4] = '\0';
|
|
printk(" Signature = %s\n", temp_name);
|
|
printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
|
|
printk(" Transport methods supported = 0x%x\n",
|
|
readl(&(tb->TransportSupport)));
|
|
printk(" Transport methods active = 0x%x\n",
|
|
readl(&(tb->TransportActive)));
|
|
printk(" Requested transport Method = 0x%x\n",
|
|
readl(&(tb->HostWrite.TransportRequest)));
|
|
printk(" Coalesce Interrupt Delay = 0x%x\n",
|
|
readl(&(tb->HostWrite.CoalIntDelay)));
|
|
printk(" Coalesce Interrupt Count = 0x%x\n",
|
|
readl(&(tb->HostWrite.CoalIntCount)));
|
|
printk(" Max outstanding commands = 0x%d\n",
|
|
readl(&(tb->CmdsOutMax)));
|
|
printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
|
|
for (i = 0; i < 16; i++)
|
|
temp_name[i] = readb(&(tb->ServerName[i]));
|
|
temp_name[16] = '\0';
|
|
printk(" Server Name = %s\n", temp_name);
|
|
printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
|
|
}
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
|
|
{
|
|
int i, offset, mem_type, bar_type;
|
|
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
|
|
return 0;
|
|
offset = 0;
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
|
|
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
|
|
offset += 4;
|
|
else {
|
|
mem_type = pci_resource_flags(pdev, i) &
|
|
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
|
|
switch (mem_type) {
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_32:
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
|
|
offset += 4; /* 32 bit */
|
|
break;
|
|
case PCI_BASE_ADDRESS_MEM_TYPE_64:
|
|
offset += 8;
|
|
break;
|
|
default: /* reserved in PCI 2.2 */
|
|
printk(KERN_WARNING
|
|
"Base address is invalid\n");
|
|
return -1;
|
|
break;
|
|
}
|
|
}
|
|
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
|
|
return i + 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Fill in bucket_map[], given nsgs (the max number of
|
|
* scatter gather elements supported) and bucket[],
|
|
* which is an array of 8 integers. The bucket[] array
|
|
* contains 8 different DMA transfer sizes (in 16
|
|
* byte increments) which the controller uses to fetch
|
|
* commands. This function fills in bucket_map[], which
|
|
* maps a given number of scatter gather elements to one of
|
|
* the 8 DMA transfer sizes. The point of it is to allow the
|
|
* controller to only do as much DMA as needed to fetch the
|
|
* command, with the DMA transfer size encoded in the lower
|
|
* bits of the command address.
|
|
*/
|
|
static void calc_bucket_map(int bucket[], int num_buckets,
|
|
int nsgs, int *bucket_map)
|
|
{
|
|
int i, j, b, size;
|
|
|
|
/* even a command with 0 SGs requires 4 blocks */
|
|
#define MINIMUM_TRANSFER_BLOCKS 4
|
|
#define NUM_BUCKETS 8
|
|
/* Note, bucket_map must have nsgs+1 entries. */
|
|
for (i = 0; i <= nsgs; i++) {
|
|
/* Compute size of a command with i SG entries */
|
|
size = i + MINIMUM_TRANSFER_BLOCKS;
|
|
b = num_buckets; /* Assume the biggest bucket */
|
|
/* Find the bucket that is just big enough */
|
|
for (j = 0; j < 8; j++) {
|
|
if (bucket[j] >= size) {
|
|
b = j;
|
|
break;
|
|
}
|
|
}
|
|
/* for a command with i SG entries, use bucket b. */
|
|
bucket_map[i] = b;
|
|
}
|
|
}
|
|
|
|
static void
|
|
cciss_put_controller_into_performant_mode(ctlr_info_t *h)
|
|
{
|
|
int l = 0;
|
|
__u32 trans_support;
|
|
__u32 trans_offset;
|
|
/*
|
|
* 5 = 1 s/g entry or 4k
|
|
* 6 = 2 s/g entry or 8k
|
|
* 8 = 4 s/g entry or 16k
|
|
* 10 = 6 s/g entry or 24k
|
|
*/
|
|
int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
|
|
unsigned long register_value;
|
|
|
|
BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
|
|
|
|
/* Attempt to put controller into performant mode if supported */
|
|
/* Does board support performant mode? */
|
|
trans_support = readl(&(h->cfgtable->TransportSupport));
|
|
if (!(trans_support & PERFORMANT_MODE))
|
|
return;
|
|
|
|
printk(KERN_WARNING "cciss%d: Placing controller into "
|
|
"performant mode\n", h->ctlr);
|
|
/* Performant mode demands commands on a 32 byte boundary
|
|
* pci_alloc_consistent aligns on page boundarys already.
|
|
* Just need to check if divisible by 32
|
|
*/
|
|
if ((sizeof(CommandList_struct) % 32) != 0) {
|
|
printk(KERN_WARNING "%s %d %s\n",
|
|
"cciss info: command size[",
|
|
(int)sizeof(CommandList_struct),
|
|
"] not divisible by 32, no performant mode..\n");
|
|
return;
|
|
}
|
|
|
|
/* Performant mode ring buffer and supporting data structures */
|
|
h->reply_pool = (__u64 *)pci_alloc_consistent(
|
|
h->pdev, h->max_commands * sizeof(__u64),
|
|
&(h->reply_pool_dhandle));
|
|
|
|
/* Need a block fetch table for performant mode */
|
|
h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
|
|
sizeof(__u32)), GFP_KERNEL);
|
|
|
|
if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
|
|
goto clean_up;
|
|
|
|
h->reply_pool_wraparound = 1; /* spec: init to 1 */
|
|
|
|
/* Controller spec: zero out this buffer. */
|
|
memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
|
|
h->reply_pool_head = h->reply_pool;
|
|
|
|
trans_offset = readl(&(h->cfgtable->TransMethodOffset));
|
|
calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
|
|
h->blockFetchTable);
|
|
writel(bft[0], &h->transtable->BlockFetch0);
|
|
writel(bft[1], &h->transtable->BlockFetch1);
|
|
writel(bft[2], &h->transtable->BlockFetch2);
|
|
writel(bft[3], &h->transtable->BlockFetch3);
|
|
writel(bft[4], &h->transtable->BlockFetch4);
|
|
writel(bft[5], &h->transtable->BlockFetch5);
|
|
writel(bft[6], &h->transtable->BlockFetch6);
|
|
writel(bft[7], &h->transtable->BlockFetch7);
|
|
|
|
/* size of controller ring buffer */
|
|
writel(h->max_commands, &h->transtable->RepQSize);
|
|
writel(1, &h->transtable->RepQCount);
|
|
writel(0, &h->transtable->RepQCtrAddrLow32);
|
|
writel(0, &h->transtable->RepQCtrAddrHigh32);
|
|
writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
|
|
writel(0, &h->transtable->RepQAddr0High32);
|
|
writel(CFGTBL_Trans_Performant,
|
|
&(h->cfgtable->HostWrite.TransportRequest));
|
|
|
|
h->transMethod = CFGTBL_Trans_Performant;
|
|
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
|
|
/* under certain very rare conditions, this can take awhile.
|
|
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
|
|
* as we enter this code.) */
|
|
for (l = 0; l < MAX_CONFIG_WAIT; l++) {
|
|
register_value = readl(h->vaddr + SA5_DOORBELL);
|
|
if (!(register_value & CFGTBL_ChangeReq))
|
|
break;
|
|
/* delay and try again */
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(10);
|
|
}
|
|
register_value = readl(&(h->cfgtable->TransportActive));
|
|
if (!(register_value & CFGTBL_Trans_Performant)) {
|
|
printk(KERN_WARNING "cciss: unable to get board into"
|
|
" performant mode\n");
|
|
return;
|
|
}
|
|
|
|
/* Change the access methods to the performant access methods */
|
|
h->access = SA5_performant_access;
|
|
|
|
return;
|
|
clean_up:
|
|
kfree(h->blockFetchTable);
|
|
if (h->reply_pool)
|
|
pci_free_consistent(h->pdev,
|
|
h->max_commands * sizeof(__u64),
|
|
h->reply_pool,
|
|
h->reply_pool_dhandle);
|
|
return;
|
|
|
|
} /* cciss_put_controller_into_performant_mode */
|
|
|
|
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
|
|
* controllers that are capable. If not, we use IO-APIC mode.
|
|
*/
|
|
|
|
static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
|
|
struct pci_dev *pdev, __u32 board_id)
|
|
{
|
|
#ifdef CONFIG_PCI_MSI
|
|
int err;
|
|
struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
|
|
{0, 2}, {0, 3}
|
|
};
|
|
|
|
/* Some boards advertise MSI but don't really support it */
|
|
if ((board_id == 0x40700E11) ||
|
|
(board_id == 0x40800E11) ||
|
|
(board_id == 0x40820E11) || (board_id == 0x40830E11))
|
|
goto default_int_mode;
|
|
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
|
|
err = pci_enable_msix(pdev, cciss_msix_entries, 4);
|
|
if (!err) {
|
|
c->intr[0] = cciss_msix_entries[0].vector;
|
|
c->intr[1] = cciss_msix_entries[1].vector;
|
|
c->intr[2] = cciss_msix_entries[2].vector;
|
|
c->intr[3] = cciss_msix_entries[3].vector;
|
|
c->msix_vector = 1;
|
|
return;
|
|
}
|
|
if (err > 0) {
|
|
printk(KERN_WARNING "cciss: only %d MSI-X vectors "
|
|
"available\n", err);
|
|
goto default_int_mode;
|
|
} else {
|
|
printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
|
|
err);
|
|
goto default_int_mode;
|
|
}
|
|
}
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
|
|
if (!pci_enable_msi(pdev)) {
|
|
c->msi_vector = 1;
|
|
} else {
|
|
printk(KERN_WARNING "cciss: MSI init failed\n");
|
|
}
|
|
}
|
|
default_int_mode:
|
|
#endif /* CONFIG_PCI_MSI */
|
|
/* if we get here we're going to use the default interrupt mode */
|
|
c->intr[PERF_MODE_INT] = pdev->irq;
|
|
return;
|
|
}
|
|
|
|
static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
|
|
{
|
|
ushort subsystem_vendor_id, subsystem_device_id, command;
|
|
__u32 board_id, scratchpad = 0;
|
|
__u64 cfg_offset;
|
|
__u32 cfg_base_addr;
|
|
__u64 cfg_base_addr_index;
|
|
int i, prod_index, err;
|
|
__u32 trans_offset;
|
|
|
|
subsystem_vendor_id = pdev->subsystem_vendor;
|
|
subsystem_device_id = pdev->subsystem_device;
|
|
board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
|
|
subsystem_vendor_id);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(products); i++) {
|
|
/* Stand aside for hpsa driver on request */
|
|
if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
|
|
return -ENODEV;
|
|
if (board_id == products[i].board_id)
|
|
break;
|
|
}
|
|
prod_index = i;
|
|
if (prod_index == ARRAY_SIZE(products)) {
|
|
dev_warn(&pdev->dev,
|
|
"unrecognized board ID: 0x%08lx, ignoring.\n",
|
|
(unsigned long) board_id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* check to see if controller has been disabled */
|
|
/* BEFORE trying to enable it */
|
|
(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
|
|
if (!(command & 0x02)) {
|
|
printk(KERN_WARNING
|
|
"cciss: controller appears to be disabled\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
err = pci_enable_device(pdev);
|
|
if (err) {
|
|
printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
|
|
return err;
|
|
}
|
|
|
|
err = pci_request_regions(pdev, "cciss");
|
|
if (err) {
|
|
printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
|
|
"aborting\n");
|
|
return err;
|
|
}
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk("command = %x\n", command);
|
|
printk("irq = %x\n", pdev->irq);
|
|
printk("board_id = %x\n", board_id);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
|
|
* else we use the IO-APIC interrupt assigned to us by system ROM.
|
|
*/
|
|
cciss_interrupt_mode(c, pdev, board_id);
|
|
|
|
/* find the memory BAR */
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
|
|
break;
|
|
}
|
|
if (i == DEVICE_COUNT_RESOURCE) {
|
|
printk(KERN_WARNING "cciss: No memory BAR found\n");
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
|
|
c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
|
|
* already removed
|
|
*/
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk("address 0 = %lx\n", c->paddr);
|
|
#endif /* CCISS_DEBUG */
|
|
c->vaddr = remap_pci_mem(c->paddr, 0x250);
|
|
|
|
/* Wait for the board to become ready. (PCI hotplug needs this.)
|
|
* We poll for up to 120 secs, once per 100ms. */
|
|
for (i = 0; i < 1200; i++) {
|
|
scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
|
|
if (scratchpad == CCISS_FIRMWARE_READY)
|
|
break;
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
|
|
}
|
|
if (scratchpad != CCISS_FIRMWARE_READY) {
|
|
printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
|
|
/* get the address index number */
|
|
cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
|
|
cfg_base_addr &= (__u32) 0x0000ffff;
|
|
#ifdef CCISS_DEBUG
|
|
printk("cfg base address = %x\n", cfg_base_addr);
|
|
#endif /* CCISS_DEBUG */
|
|
cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
|
|
#ifdef CCISS_DEBUG
|
|
printk("cfg base address index = %llx\n",
|
|
(unsigned long long)cfg_base_addr_index);
|
|
#endif /* CCISS_DEBUG */
|
|
if (cfg_base_addr_index == -1) {
|
|
printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
|
|
cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
|
|
#ifdef CCISS_DEBUG
|
|
printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
|
|
#endif /* CCISS_DEBUG */
|
|
c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
|
|
cfg_base_addr_index) +
|
|
cfg_offset, sizeof(CfgTable_struct));
|
|
/* Find performant mode table. */
|
|
trans_offset = readl(&(c->cfgtable->TransMethodOffset));
|
|
c->transtable = remap_pci_mem(pci_resource_start(pdev,
|
|
cfg_base_addr_index) + cfg_offset+trans_offset,
|
|
sizeof(*c->transtable));
|
|
c->board_id = board_id;
|
|
|
|
#ifdef CCISS_DEBUG
|
|
print_cfg_table(c->cfgtable);
|
|
#endif /* CCISS_DEBUG */
|
|
|
|
/* Some controllers support Zero Memory Raid (ZMR).
|
|
* When configured in ZMR mode the number of supported
|
|
* commands drops to 64. So instead of just setting an
|
|
* arbitrary value we make the driver a little smarter.
|
|
* We read the config table to tell us how many commands
|
|
* are supported on the controller then subtract 4 to
|
|
* leave a little room for ioctl calls.
|
|
*/
|
|
c->max_commands = readl(&(c->cfgtable->MaxPerformantModeCommands));
|
|
c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
|
|
|
|
/*
|
|
* Limit native command to 32 s/g elements to save dma'able memory.
|
|
* Howvever spec says if 0, use 31
|
|
*/
|
|
|
|
c->max_cmd_sgentries = 31;
|
|
if (c->maxsgentries > 512) {
|
|
c->max_cmd_sgentries = 32;
|
|
c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
|
|
c->maxsgentries -= 1; /* account for chain pointer */
|
|
} else {
|
|
c->maxsgentries = 31; /* Default to traditional value */
|
|
c->chainsize = 0; /* traditional */
|
|
}
|
|
|
|
c->product_name = products[prod_index].product_name;
|
|
c->access = *(products[prod_index].access);
|
|
c->nr_cmds = c->max_commands - 4;
|
|
if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
|
|
(readb(&c->cfgtable->Signature[1]) != 'I') ||
|
|
(readb(&c->cfgtable->Signature[2]) != 'S') ||
|
|
(readb(&c->cfgtable->Signature[3]) != 'S')) {
|
|
printk("Does not appear to be a valid CISS config table\n");
|
|
err = -ENODEV;
|
|
goto err_out_free_res;
|
|
}
|
|
#ifdef CONFIG_X86
|
|
{
|
|
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
|
|
__u32 prefetch;
|
|
prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
|
|
prefetch |= 0x100;
|
|
writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
|
|
}
|
|
#endif
|
|
|
|
/* Disabling DMA prefetch and refetch for the P600.
|
|
* An ASIC bug may result in accesses to invalid memory addresses.
|
|
* We've disabled prefetch for some time now. Testing with XEN
|
|
* kernels revealed a bug in the refetch if dom0 resides on a P600.
|
|
*/
|
|
if(board_id == 0x3225103C) {
|
|
__u32 dma_prefetch;
|
|
__u32 dma_refetch;
|
|
dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
|
|
dma_prefetch |= 0x8000;
|
|
writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
|
|
pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
|
|
dma_refetch |= 0x1;
|
|
pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
|
|
}
|
|
|
|
#ifdef CCISS_DEBUG
|
|
printk(KERN_WARNING "Trying to put board into Performant mode\n");
|
|
#endif /* CCISS_DEBUG */
|
|
cciss_put_controller_into_performant_mode(c);
|
|
return 0;
|
|
|
|
err_out_free_res:
|
|
/*
|
|
* Deliberately omit pci_disable_device(): it does something nasty to
|
|
* Smart Array controllers that pci_enable_device does not undo
|
|
*/
|
|
pci_release_regions(pdev);
|
|
return err;
|
|
}
|
|
|
|
/* Function to find the first free pointer into our hba[] array
|
|
* Returns -1 if no free entries are left.
|
|
*/
|
|
static int alloc_cciss_hba(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_CTLR; i++) {
|
|
if (!hba[i]) {
|
|
ctlr_info_t *p;
|
|
|
|
p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
|
|
if (!p)
|
|
goto Enomem;
|
|
hba[i] = p;
|
|
return i;
|
|
}
|
|
}
|
|
printk(KERN_WARNING "cciss: This driver supports a maximum"
|
|
" of %d controllers.\n", MAX_CTLR);
|
|
return -1;
|
|
Enomem:
|
|
printk(KERN_ERR "cciss: out of memory.\n");
|
|
return -1;
|
|
}
|
|
|
|
static void free_hba(int n)
|
|
{
|
|
ctlr_info_t *h = hba[n];
|
|
int i;
|
|
|
|
hba[n] = NULL;
|
|
for (i = 0; i < h->highest_lun + 1; i++)
|
|
if (h->gendisk[i] != NULL)
|
|
put_disk(h->gendisk[i]);
|
|
kfree(h);
|
|
}
|
|
|
|
/* Send a message CDB to the firmware. */
|
|
static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
|
|
{
|
|
typedef struct {
|
|
CommandListHeader_struct CommandHeader;
|
|
RequestBlock_struct Request;
|
|
ErrDescriptor_struct ErrorDescriptor;
|
|
} Command;
|
|
static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
|
|
Command *cmd;
|
|
dma_addr_t paddr64;
|
|
uint32_t paddr32, tag;
|
|
void __iomem *vaddr;
|
|
int i, err;
|
|
|
|
vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
|
|
if (vaddr == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* The Inbound Post Queue only accepts 32-bit physical addresses for the
|
|
CCISS commands, so they must be allocated from the lower 4GiB of
|
|
memory. */
|
|
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (err) {
|
|
iounmap(vaddr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
|
|
if (cmd == NULL) {
|
|
iounmap(vaddr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* This must fit, because of the 32-bit consistent DMA mask. Also,
|
|
although there's no guarantee, we assume that the address is at
|
|
least 4-byte aligned (most likely, it's page-aligned). */
|
|
paddr32 = paddr64;
|
|
|
|
cmd->CommandHeader.ReplyQueue = 0;
|
|
cmd->CommandHeader.SGList = 0;
|
|
cmd->CommandHeader.SGTotal = 0;
|
|
cmd->CommandHeader.Tag.lower = paddr32;
|
|
cmd->CommandHeader.Tag.upper = 0;
|
|
memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
|
|
|
|
cmd->Request.CDBLen = 16;
|
|
cmd->Request.Type.Type = TYPE_MSG;
|
|
cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
|
|
cmd->Request.Type.Direction = XFER_NONE;
|
|
cmd->Request.Timeout = 0; /* Don't time out */
|
|
cmd->Request.CDB[0] = opcode;
|
|
cmd->Request.CDB[1] = type;
|
|
memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
|
|
|
|
cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
|
|
cmd->ErrorDescriptor.Addr.upper = 0;
|
|
cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
|
|
|
|
writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
|
|
if ((tag & ~3) == paddr32)
|
|
break;
|
|
schedule_timeout_uninterruptible(HZ);
|
|
}
|
|
|
|
iounmap(vaddr);
|
|
|
|
/* we leak the DMA buffer here ... no choice since the controller could
|
|
still complete the command. */
|
|
if (i == 10) {
|
|
printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
|
|
opcode, type);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
|
|
|
|
if (tag & 2) {
|
|
printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
|
|
opcode, type);
|
|
return -EIO;
|
|
}
|
|
|
|
printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
|
|
opcode, type);
|
|
return 0;
|
|
}
|
|
|
|
#define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
|
|
#define cciss_noop(p) cciss_message(p, 3, 0)
|
|
|
|
static __devinit int cciss_reset_msi(struct pci_dev *pdev)
|
|
{
|
|
/* the #defines are stolen from drivers/pci/msi.h. */
|
|
#define msi_control_reg(base) (base + PCI_MSI_FLAGS)
|
|
#define PCI_MSIX_FLAGS_ENABLE (1 << 15)
|
|
|
|
int pos;
|
|
u16 control = 0;
|
|
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
|
|
if (pos) {
|
|
pci_read_config_word(pdev, msi_control_reg(pos), &control);
|
|
if (control & PCI_MSI_FLAGS_ENABLE) {
|
|
printk(KERN_INFO "cciss: resetting MSI\n");
|
|
pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
|
|
}
|
|
}
|
|
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
|
|
if (pos) {
|
|
pci_read_config_word(pdev, msi_control_reg(pos), &control);
|
|
if (control & PCI_MSIX_FLAGS_ENABLE) {
|
|
printk(KERN_INFO "cciss: resetting MSI-X\n");
|
|
pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This does a hard reset of the controller using PCI power management
|
|
* states. */
|
|
static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
|
|
{
|
|
u16 pmcsr, saved_config_space[32];
|
|
int i, pos;
|
|
|
|
printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
|
|
|
|
/* This is very nearly the same thing as
|
|
|
|
pci_save_state(pci_dev);
|
|
pci_set_power_state(pci_dev, PCI_D3hot);
|
|
pci_set_power_state(pci_dev, PCI_D0);
|
|
pci_restore_state(pci_dev);
|
|
|
|
but we can't use these nice canned kernel routines on
|
|
kexec, because they also check the MSI/MSI-X state in PCI
|
|
configuration space and do the wrong thing when it is
|
|
set/cleared. Also, the pci_save/restore_state functions
|
|
violate the ordering requirements for restoring the
|
|
configuration space from the CCISS document (see the
|
|
comment below). So we roll our own .... */
|
|
|
|
for (i = 0; i < 32; i++)
|
|
pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
|
|
|
|
pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
|
|
if (pos == 0) {
|
|
printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Quoting from the Open CISS Specification: "The Power
|
|
* Management Control/Status Register (CSR) controls the power
|
|
* state of the device. The normal operating state is D0,
|
|
* CSR=00h. The software off state is D3, CSR=03h. To reset
|
|
* the controller, place the interface device in D3 then to
|
|
* D0, this causes a secondary PCI reset which will reset the
|
|
* controller." */
|
|
|
|
/* enter the D3hot power management state */
|
|
pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
pmcsr |= PCI_D3hot;
|
|
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
|
|
|
|
schedule_timeout_uninterruptible(HZ >> 1);
|
|
|
|
/* enter the D0 power management state */
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
pmcsr |= PCI_D0;
|
|
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
|
|
|
|
schedule_timeout_uninterruptible(HZ >> 1);
|
|
|
|
/* Restore the PCI configuration space. The Open CISS
|
|
* Specification says, "Restore the PCI Configuration
|
|
* Registers, offsets 00h through 60h. It is important to
|
|
* restore the command register, 16-bits at offset 04h,
|
|
* last. Do not restore the configuration status register,
|
|
* 16-bits at offset 06h." Note that the offset is 2*i. */
|
|
for (i = 0; i < 32; i++) {
|
|
if (i == 2 || i == 3)
|
|
continue;
|
|
pci_write_config_word(pdev, 2*i, saved_config_space[i]);
|
|
}
|
|
wmb();
|
|
pci_write_config_word(pdev, 4, saved_config_space[2]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is it. Find all the controllers and register them. I really hate
|
|
* stealing all these major device numbers.
|
|
* returns the number of block devices registered.
|
|
*/
|
|
static int __devinit cciss_init_one(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
int i;
|
|
int j = 0;
|
|
int k = 0;
|
|
int rc;
|
|
int dac, return_code;
|
|
InquiryData_struct *inq_buff;
|
|
|
|
if (reset_devices) {
|
|
/* Reset the controller with a PCI power-cycle */
|
|
if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
|
|
return -ENODEV;
|
|
|
|
/* Now try to get the controller to respond to a no-op. Some
|
|
devices (notably the HP Smart Array 5i Controller) need
|
|
up to 30 seconds to respond. */
|
|
for (i=0; i<30; i++) {
|
|
if (cciss_noop(pdev) == 0)
|
|
break;
|
|
|
|
schedule_timeout_uninterruptible(HZ);
|
|
}
|
|
if (i == 30) {
|
|
printk(KERN_ERR "cciss: controller seems dead\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
i = alloc_cciss_hba();
|
|
if (i < 0)
|
|
return -1;
|
|
hba[i]->busy_initializing = 1;
|
|
INIT_HLIST_HEAD(&hba[i]->cmpQ);
|
|
INIT_HLIST_HEAD(&hba[i]->reqQ);
|
|
mutex_init(&hba[i]->busy_shutting_down);
|
|
|
|
if (cciss_pci_init(hba[i], pdev) != 0)
|
|
goto clean_no_release_regions;
|
|
|
|
sprintf(hba[i]->devname, "cciss%d", i);
|
|
hba[i]->ctlr = i;
|
|
hba[i]->pdev = pdev;
|
|
|
|
init_completion(&hba[i]->scan_wait);
|
|
|
|
if (cciss_create_hba_sysfs_entry(hba[i]))
|
|
goto clean0;
|
|
|
|
/* configure PCI DMA stuff */
|
|
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
|
|
dac = 1;
|
|
else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
|
|
dac = 0;
|
|
else {
|
|
printk(KERN_ERR "cciss: no suitable DMA available\n");
|
|
goto clean1;
|
|
}
|
|
|
|
/*
|
|
* register with the major number, or get a dynamic major number
|
|
* by passing 0 as argument. This is done for greater than
|
|
* 8 controller support.
|
|
*/
|
|
if (i < MAX_CTLR_ORIG)
|
|
hba[i]->major = COMPAQ_CISS_MAJOR + i;
|
|
rc = register_blkdev(hba[i]->major, hba[i]->devname);
|
|
if (rc == -EBUSY || rc == -EINVAL) {
|
|
printk(KERN_ERR
|
|
"cciss: Unable to get major number %d for %s "
|
|
"on hba %d\n", hba[i]->major, hba[i]->devname, i);
|
|
goto clean1;
|
|
} else {
|
|
if (i >= MAX_CTLR_ORIG)
|
|
hba[i]->major = rc;
|
|
}
|
|
|
|
/* make sure the board interrupts are off */
|
|
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
|
|
if (hba[i]->msi_vector || hba[i]->msix_vector) {
|
|
if (request_irq(hba[i]->intr[PERF_MODE_INT],
|
|
do_cciss_msix_intr,
|
|
IRQF_DISABLED, hba[i]->devname, hba[i])) {
|
|
printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
|
|
hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
|
|
goto clean2;
|
|
}
|
|
} else {
|
|
if (request_irq(hba[i]->intr[PERF_MODE_INT], do_cciss_intx,
|
|
IRQF_DISABLED, hba[i]->devname, hba[i])) {
|
|
printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
|
|
hba[i]->intr[PERF_MODE_INT], hba[i]->devname);
|
|
goto clean2;
|
|
}
|
|
}
|
|
|
|
printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
|
|
hba[i]->devname, pdev->device, pci_name(pdev),
|
|
hba[i]->intr[PERF_MODE_INT], dac ? "" : " not");
|
|
|
|
hba[i]->cmd_pool_bits =
|
|
kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
|
|
* sizeof(unsigned long), GFP_KERNEL);
|
|
hba[i]->cmd_pool = (CommandList_struct *)
|
|
pci_alloc_consistent(hba[i]->pdev,
|
|
hba[i]->nr_cmds * sizeof(CommandList_struct),
|
|
&(hba[i]->cmd_pool_dhandle));
|
|
hba[i]->errinfo_pool = (ErrorInfo_struct *)
|
|
pci_alloc_consistent(hba[i]->pdev,
|
|
hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
|
|
&(hba[i]->errinfo_pool_dhandle));
|
|
if ((hba[i]->cmd_pool_bits == NULL)
|
|
|| (hba[i]->cmd_pool == NULL)
|
|
|| (hba[i]->errinfo_pool == NULL)) {
|
|
printk(KERN_ERR "cciss: out of memory");
|
|
goto clean4;
|
|
}
|
|
|
|
/* Need space for temp scatter list */
|
|
hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
|
|
sizeof(struct scatterlist *),
|
|
GFP_KERNEL);
|
|
for (k = 0; k < hba[i]->nr_cmds; k++) {
|
|
hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
|
|
hba[i]->maxsgentries,
|
|
GFP_KERNEL);
|
|
if (hba[i]->scatter_list[k] == NULL) {
|
|
printk(KERN_ERR "cciss%d: could not allocate "
|
|
"s/g lists\n", i);
|
|
goto clean4;
|
|
}
|
|
}
|
|
hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
|
|
hba[i]->chainsize, hba[i]->nr_cmds);
|
|
if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
|
|
goto clean4;
|
|
|
|
spin_lock_init(&hba[i]->lock);
|
|
|
|
/* Initialize the pdev driver private data.
|
|
have it point to hba[i]. */
|
|
pci_set_drvdata(pdev, hba[i]);
|
|
/* command and error info recs zeroed out before
|
|
they are used */
|
|
memset(hba[i]->cmd_pool_bits, 0,
|
|
DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
|
|
* sizeof(unsigned long));
|
|
|
|
hba[i]->num_luns = 0;
|
|
hba[i]->highest_lun = -1;
|
|
for (j = 0; j < CISS_MAX_LUN; j++) {
|
|
hba[i]->drv[j] = NULL;
|
|
hba[i]->gendisk[j] = NULL;
|
|
}
|
|
|
|
cciss_scsi_setup(i);
|
|
|
|
/* Turn the interrupts on so we can service requests */
|
|
hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
|
|
|
|
/* Get the firmware version */
|
|
inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
|
|
if (inq_buff == NULL) {
|
|
printk(KERN_ERR "cciss: out of memory\n");
|
|
goto clean4;
|
|
}
|
|
|
|
return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
|
|
sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
|
|
if (return_code == IO_OK) {
|
|
hba[i]->firm_ver[0] = inq_buff->data_byte[32];
|
|
hba[i]->firm_ver[1] = inq_buff->data_byte[33];
|
|
hba[i]->firm_ver[2] = inq_buff->data_byte[34];
|
|
hba[i]->firm_ver[3] = inq_buff->data_byte[35];
|
|
} else { /* send command failed */
|
|
printk(KERN_WARNING "cciss: unable to determine firmware"
|
|
" version of controller\n");
|
|
}
|
|
kfree(inq_buff);
|
|
|
|
cciss_procinit(i);
|
|
|
|
hba[i]->cciss_max_sectors = 8192;
|
|
|
|
rebuild_lun_table(hba[i], 1, 0);
|
|
hba[i]->busy_initializing = 0;
|
|
return 1;
|
|
|
|
clean4:
|
|
kfree(hba[i]->cmd_pool_bits);
|
|
/* Free up sg elements */
|
|
for (k = 0; k < hba[i]->nr_cmds; k++)
|
|
kfree(hba[i]->scatter_list[k]);
|
|
kfree(hba[i]->scatter_list);
|
|
cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
|
|
if (hba[i]->cmd_pool)
|
|
pci_free_consistent(hba[i]->pdev,
|
|
hba[i]->nr_cmds * sizeof(CommandList_struct),
|
|
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
|
|
if (hba[i]->errinfo_pool)
|
|
pci_free_consistent(hba[i]->pdev,
|
|
hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
|
|
hba[i]->errinfo_pool,
|
|
hba[i]->errinfo_pool_dhandle);
|
|
free_irq(hba[i]->intr[PERF_MODE_INT], hba[i]);
|
|
clean2:
|
|
unregister_blkdev(hba[i]->major, hba[i]->devname);
|
|
clean1:
|
|
cciss_destroy_hba_sysfs_entry(hba[i]);
|
|
clean0:
|
|
pci_release_regions(pdev);
|
|
clean_no_release_regions:
|
|
hba[i]->busy_initializing = 0;
|
|
|
|
/*
|
|
* Deliberately omit pci_disable_device(): it does something nasty to
|
|
* Smart Array controllers that pci_enable_device does not undo
|
|
*/
|
|
pci_set_drvdata(pdev, NULL);
|
|
free_hba(i);
|
|
return -1;
|
|
}
|
|
|
|
static void cciss_shutdown(struct pci_dev *pdev)
|
|
{
|
|
ctlr_info_t *h;
|
|
char *flush_buf;
|
|
int return_code;
|
|
|
|
h = pci_get_drvdata(pdev);
|
|
flush_buf = kzalloc(4, GFP_KERNEL);
|
|
if (!flush_buf) {
|
|
printk(KERN_WARNING
|
|
"cciss:%d cache not flushed, out of memory.\n",
|
|
h->ctlr);
|
|
return;
|
|
}
|
|
/* write all data in the battery backed cache to disk */
|
|
memset(flush_buf, 0, 4);
|
|
return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
|
|
4, 0, CTLR_LUNID, TYPE_CMD);
|
|
kfree(flush_buf);
|
|
if (return_code != IO_OK)
|
|
printk(KERN_WARNING "cciss%d: Error flushing cache\n",
|
|
h->ctlr);
|
|
h->access.set_intr_mask(h, CCISS_INTR_OFF);
|
|
free_irq(h->intr[PERF_MODE_INT], h);
|
|
}
|
|
|
|
static void __devexit cciss_remove_one(struct pci_dev *pdev)
|
|
{
|
|
ctlr_info_t *tmp_ptr;
|
|
int i, j;
|
|
|
|
if (pci_get_drvdata(pdev) == NULL) {
|
|
printk(KERN_ERR "cciss: Unable to remove device \n");
|
|
return;
|
|
}
|
|
|
|
tmp_ptr = pci_get_drvdata(pdev);
|
|
i = tmp_ptr->ctlr;
|
|
if (hba[i] == NULL) {
|
|
printk(KERN_ERR "cciss: device appears to "
|
|
"already be removed \n");
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&hba[i]->busy_shutting_down);
|
|
|
|
remove_from_scan_list(hba[i]);
|
|
remove_proc_entry(hba[i]->devname, proc_cciss);
|
|
unregister_blkdev(hba[i]->major, hba[i]->devname);
|
|
|
|
/* remove it from the disk list */
|
|
for (j = 0; j < CISS_MAX_LUN; j++) {
|
|
struct gendisk *disk = hba[i]->gendisk[j];
|
|
if (disk) {
|
|
struct request_queue *q = disk->queue;
|
|
|
|
if (disk->flags & GENHD_FL_UP) {
|
|
cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
|
|
del_gendisk(disk);
|
|
}
|
|
if (q)
|
|
blk_cleanup_queue(q);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_CISS_SCSI_TAPE
|
|
cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
|
|
#endif
|
|
|
|
cciss_shutdown(pdev);
|
|
|
|
#ifdef CONFIG_PCI_MSI
|
|
if (hba[i]->msix_vector)
|
|
pci_disable_msix(hba[i]->pdev);
|
|
else if (hba[i]->msi_vector)
|
|
pci_disable_msi(hba[i]->pdev);
|
|
#endif /* CONFIG_PCI_MSI */
|
|
|
|
iounmap(hba[i]->vaddr);
|
|
|
|
pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
|
|
hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
|
|
pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
|
|
hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
|
|
kfree(hba[i]->cmd_pool_bits);
|
|
/* Free up sg elements */
|
|
for (j = 0; j < hba[i]->nr_cmds; j++)
|
|
kfree(hba[i]->scatter_list[j]);
|
|
kfree(hba[i]->scatter_list);
|
|
cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
|
|
/*
|
|
* Deliberately omit pci_disable_device(): it does something nasty to
|
|
* Smart Array controllers that pci_enable_device does not undo
|
|
*/
|
|
pci_release_regions(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
cciss_destroy_hba_sysfs_entry(hba[i]);
|
|
mutex_unlock(&hba[i]->busy_shutting_down);
|
|
free_hba(i);
|
|
}
|
|
|
|
static struct pci_driver cciss_pci_driver = {
|
|
.name = "cciss",
|
|
.probe = cciss_init_one,
|
|
.remove = __devexit_p(cciss_remove_one),
|
|
.id_table = cciss_pci_device_id, /* id_table */
|
|
.shutdown = cciss_shutdown,
|
|
};
|
|
|
|
/*
|
|
* This is it. Register the PCI driver information for the cards we control
|
|
* the OS will call our registered routines when it finds one of our cards.
|
|
*/
|
|
static int __init cciss_init(void)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* The hardware requires that commands are aligned on a 64-bit
|
|
* boundary. Given that we use pci_alloc_consistent() to allocate an
|
|
* array of them, the size must be a multiple of 8 bytes.
|
|
*/
|
|
BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
|
|
printk(KERN_INFO DRIVER_NAME "\n");
|
|
|
|
err = bus_register(&cciss_bus_type);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Start the scan thread */
|
|
cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
|
|
if (IS_ERR(cciss_scan_thread)) {
|
|
err = PTR_ERR(cciss_scan_thread);
|
|
goto err_bus_unregister;
|
|
}
|
|
|
|
/* Register for our PCI devices */
|
|
err = pci_register_driver(&cciss_pci_driver);
|
|
if (err)
|
|
goto err_thread_stop;
|
|
|
|
return err;
|
|
|
|
err_thread_stop:
|
|
kthread_stop(cciss_scan_thread);
|
|
err_bus_unregister:
|
|
bus_unregister(&cciss_bus_type);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void __exit cciss_cleanup(void)
|
|
{
|
|
int i;
|
|
|
|
pci_unregister_driver(&cciss_pci_driver);
|
|
/* double check that all controller entrys have been removed */
|
|
for (i = 0; i < MAX_CTLR; i++) {
|
|
if (hba[i] != NULL) {
|
|
printk(KERN_WARNING "cciss: had to remove"
|
|
" controller %d\n", i);
|
|
cciss_remove_one(hba[i]->pdev);
|
|
}
|
|
}
|
|
kthread_stop(cciss_scan_thread);
|
|
remove_proc_entry("driver/cciss", NULL);
|
|
bus_unregister(&cciss_bus_type);
|
|
}
|
|
|
|
module_init(cciss_init);
|
|
module_exit(cciss_cleanup);
|