linux/drivers/net/ethernet/sfc/ptp.c
Edward Cree b133638909 sfc: nicer log message on PTP probe fail
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-13 15:11:51 -04:00

1945 lines
56 KiB
C

/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2011-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/* Theory of operation:
*
* PTP support is assisted by firmware running on the MC, which provides
* the hardware timestamping capabilities. Both transmitted and received
* PTP event packets are queued onto internal queues for subsequent processing;
* this is because the MC operations are relatively long and would block
* block NAPI/interrupt operation.
*
* Receive event processing:
* The event contains the packet's UUID and sequence number, together
* with the hardware timestamp. The PTP receive packet queue is searched
* for this UUID/sequence number and, if found, put on a pending queue.
* Packets not matching are delivered without timestamps (MCDI events will
* always arrive after the actual packet).
* It is important for the operation of the PTP protocol that the ordering
* of packets between the event and general port is maintained.
*
* Work queue processing:
* If work waiting, synchronise host/hardware time
*
* Transmit: send packet through MC, which returns the transmission time
* that is converted to an appropriate timestamp.
*
* Receive: the packet's reception time is converted to an appropriate
* timestamp.
*/
#include <linux/ip.h>
#include <linux/udp.h>
#include <linux/time.h>
#include <linux/ktime.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/pps_kernel.h>
#include <linux/ptp_clock_kernel.h>
#include "net_driver.h"
#include "efx.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "io.h"
#include "farch_regs.h"
#include "nic.h"
/* Maximum number of events expected to make up a PTP event */
#define MAX_EVENT_FRAGS 3
/* Maximum delay, ms, to begin synchronisation */
#define MAX_SYNCHRONISE_WAIT_MS 2
/* How long, at most, to spend synchronising */
#define SYNCHRONISE_PERIOD_NS 250000
/* How often to update the shared memory time */
#define SYNCHRONISATION_GRANULARITY_NS 200
/* Minimum permitted length of a (corrected) synchronisation time */
#define DEFAULT_MIN_SYNCHRONISATION_NS 120
/* Maximum permitted length of a (corrected) synchronisation time */
#define MAX_SYNCHRONISATION_NS 1000
/* How many (MC) receive events that can be queued */
#define MAX_RECEIVE_EVENTS 8
/* Length of (modified) moving average. */
#define AVERAGE_LENGTH 16
/* How long an unmatched event or packet can be held */
#define PKT_EVENT_LIFETIME_MS 10
/* Offsets into PTP packet for identification. These offsets are from the
* start of the IP header, not the MAC header. Note that neither PTP V1 nor
* PTP V2 permit the use of IPV4 options.
*/
#define PTP_DPORT_OFFSET 22
#define PTP_V1_VERSION_LENGTH 2
#define PTP_V1_VERSION_OFFSET 28
#define PTP_V1_UUID_LENGTH 6
#define PTP_V1_UUID_OFFSET 50
#define PTP_V1_SEQUENCE_LENGTH 2
#define PTP_V1_SEQUENCE_OFFSET 58
/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
* includes IP header.
*/
#define PTP_V1_MIN_LENGTH 64
#define PTP_V2_VERSION_LENGTH 1
#define PTP_V2_VERSION_OFFSET 29
#define PTP_V2_UUID_LENGTH 8
#define PTP_V2_UUID_OFFSET 48
/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
* the MC only captures the last six bytes of the clock identity. These values
* reflect those, not the ones used in the standard. The standard permits
* mapping of V1 UUIDs to V2 UUIDs with these same values.
*/
#define PTP_V2_MC_UUID_LENGTH 6
#define PTP_V2_MC_UUID_OFFSET 50
#define PTP_V2_SEQUENCE_LENGTH 2
#define PTP_V2_SEQUENCE_OFFSET 58
/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
* includes IP header.
*/
#define PTP_V2_MIN_LENGTH 63
#define PTP_MIN_LENGTH 63
#define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */
#define PTP_EVENT_PORT 319
#define PTP_GENERAL_PORT 320
/* Annoyingly the format of the version numbers are different between
* versions 1 and 2 so it isn't possible to simply look for 1 or 2.
*/
#define PTP_VERSION_V1 1
#define PTP_VERSION_V2 2
#define PTP_VERSION_V2_MASK 0x0f
enum ptp_packet_state {
PTP_PACKET_STATE_UNMATCHED = 0,
PTP_PACKET_STATE_MATCHED,
PTP_PACKET_STATE_TIMED_OUT,
PTP_PACKET_STATE_MATCH_UNWANTED
};
/* NIC synchronised with single word of time only comprising
* partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
*/
#define MC_NANOSECOND_BITS 30
#define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
#define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
/* Maximum parts-per-billion adjustment that is acceptable */
#define MAX_PPB 1000000
/* Number of bits required to hold the above */
#define MAX_PPB_BITS 20
/* Number of extra bits allowed when calculating fractional ns.
* EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
* be less than 63.
*/
#define PPB_EXTRA_BITS 2
/* Precalculate scale word to avoid long long division at runtime */
#define PPB_SCALE_WORD ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
MAX_PPB_BITS)) / 1000000000LL)
#define PTP_SYNC_ATTEMPTS 4
/**
* struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
* @words: UUID and (partial) sequence number
* @expiry: Time after which the packet should be delivered irrespective of
* event arrival.
* @state: The state of the packet - whether it is ready for processing or
* whether that is of no interest.
*/
struct efx_ptp_match {
u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
unsigned long expiry;
enum ptp_packet_state state;
};
/**
* struct efx_ptp_event_rx - A PTP receive event (from MC)
* @seq0: First part of (PTP) UUID
* @seq1: Second part of (PTP) UUID and sequence number
* @hwtimestamp: Event timestamp
*/
struct efx_ptp_event_rx {
struct list_head link;
u32 seq0;
u32 seq1;
ktime_t hwtimestamp;
unsigned long expiry;
};
/**
* struct efx_ptp_timeset - Synchronisation between host and MC
* @host_start: Host time immediately before hardware timestamp taken
* @major: Hardware timestamp, major
* @minor: Hardware timestamp, minor
* @host_end: Host time immediately after hardware timestamp taken
* @wait: Number of NIC clock ticks between hardware timestamp being read and
* host end time being seen
* @window: Difference of host_end and host_start
* @valid: Whether this timeset is valid
*/
struct efx_ptp_timeset {
u32 host_start;
u32 major;
u32 minor;
u32 host_end;
u32 wait;
u32 window; /* Derived: end - start, allowing for wrap */
};
/**
* struct efx_ptp_data - Precision Time Protocol (PTP) state
* @efx: The NIC context
* @channel: The PTP channel (Siena only)
* @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
* separate events)
* @rxq: Receive queue (awaiting timestamps)
* @txq: Transmit queue
* @evt_list: List of MC receive events awaiting packets
* @evt_free_list: List of free events
* @evt_lock: Lock for manipulating evt_list and evt_free_list
* @rx_evts: Instantiated events (on evt_list and evt_free_list)
* @workwq: Work queue for processing pending PTP operations
* @work: Work task
* @reset_required: A serious error has occurred and the PTP task needs to be
* reset (disable, enable).
* @rxfilter_event: Receive filter when operating
* @rxfilter_general: Receive filter when operating
* @config: Current timestamp configuration
* @enabled: PTP operation enabled
* @mode: Mode in which PTP operating (PTP version)
* @time_format: Time format supported by this NIC
* @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
* @nic_to_kernel_time: Function to convert from NIC to kernel time
* @min_synchronisation_ns: Minimum acceptable corrected sync window
* @ts_corrections.tx: Required driver correction of transmit timestamps
* @ts_corrections.rx: Required driver correction of receive timestamps
* @ts_corrections.pps_out: PPS output error (information only)
* @ts_corrections.pps_in: Required driver correction of PPS input timestamps
* @evt_frags: Partly assembled PTP events
* @evt_frag_idx: Current fragment number
* @evt_code: Last event code
* @start: Address at which MC indicates ready for synchronisation
* @host_time_pps: Host time at last PPS
* @current_adjfreq: Current ppb adjustment.
* @phc_clock: Pointer to registered phc device (if primary function)
* @phc_clock_info: Registration structure for phc device
* @pps_work: pps work task for handling pps events
* @pps_workwq: pps work queue
* @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
* @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
* allocations in main data path).
* @good_syncs: Number of successful synchronisations.
* @fast_syncs: Number of synchronisations requiring short delay
* @bad_syncs: Number of failed synchronisations.
* @sync_timeouts: Number of synchronisation timeouts
* @no_time_syncs: Number of synchronisations with no good times.
* @invalid_sync_windows: Number of sync windows with bad durations.
* @undersize_sync_windows: Number of corrected sync windows that are too small
* @oversize_sync_windows: Number of corrected sync windows that are too large
* @rx_no_timestamp: Number of packets received without a timestamp.
* @timeset: Last set of synchronisation statistics.
*/
struct efx_ptp_data {
struct efx_nic *efx;
struct efx_channel *channel;
bool rx_ts_inline;
struct sk_buff_head rxq;
struct sk_buff_head txq;
struct list_head evt_list;
struct list_head evt_free_list;
spinlock_t evt_lock;
struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
struct workqueue_struct *workwq;
struct work_struct work;
bool reset_required;
u32 rxfilter_event;
u32 rxfilter_general;
bool rxfilter_installed;
struct hwtstamp_config config;
bool enabled;
unsigned int mode;
unsigned int time_format;
void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
s32 correction);
unsigned int min_synchronisation_ns;
struct {
s32 tx;
s32 rx;
s32 pps_out;
s32 pps_in;
} ts_corrections;
efx_qword_t evt_frags[MAX_EVENT_FRAGS];
int evt_frag_idx;
int evt_code;
struct efx_buffer start;
struct pps_event_time host_time_pps;
s64 current_adjfreq;
struct ptp_clock *phc_clock;
struct ptp_clock_info phc_clock_info;
struct work_struct pps_work;
struct workqueue_struct *pps_workwq;
bool nic_ts_enabled;
MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
unsigned int good_syncs;
unsigned int fast_syncs;
unsigned int bad_syncs;
unsigned int sync_timeouts;
unsigned int no_time_syncs;
unsigned int invalid_sync_windows;
unsigned int undersize_sync_windows;
unsigned int oversize_sync_windows;
unsigned int rx_no_timestamp;
struct efx_ptp_timeset
timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
};
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
static int efx_phc_settime(struct ptp_clock_info *ptp,
const struct timespec64 *e_ts);
static int efx_phc_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *request, int on);
#define PTP_SW_STAT(ext_name, field_name) \
{ #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
#define PTP_MC_STAT(ext_name, mcdi_name) \
{ #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
PTP_SW_STAT(ptp_good_syncs, good_syncs),
PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
PTP_MC_STAT(ptp_timestamp_packets, TS),
PTP_MC_STAT(ptp_filter_matches, FM),
PTP_MC_STAT(ptp_non_filter_matches, NFM),
};
#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
static const unsigned long efx_ptp_stat_mask[] = {
[0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
};
size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
{
if (!efx->ptp_data)
return 0;
return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
efx_ptp_stat_mask, strings);
}
size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
size_t i;
int rc;
if (!efx->ptp_data)
return 0;
/* Copy software statistics */
for (i = 0; i < PTP_STAT_COUNT; i++) {
if (efx_ptp_stat_desc[i].dma_width)
continue;
stats[i] = *(unsigned int *)((char *)efx->ptp_data +
efx_ptp_stat_desc[i].offset);
}
/* Fetch MC statistics. We *must* fill in all statistics or
* risk leaking kernel memory to userland, so if the MCDI
* request fails we pretend we got zeroes.
*/
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc) {
netif_err(efx, hw, efx->net_dev,
"MC_CMD_PTP_OP_STATUS failed (%d)\n", rc);
memset(outbuf, 0, sizeof(outbuf));
}
efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
efx_ptp_stat_mask,
stats, _MCDI_PTR(outbuf, 0), false);
return PTP_STAT_COUNT;
}
/* For Siena platforms NIC time is s and ns */
static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
{
struct timespec ts = ns_to_timespec(ns);
*nic_major = ts.tv_sec;
*nic_minor = ts.tv_nsec;
}
static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
s32 correction)
{
ktime_t kt = ktime_set(nic_major, nic_minor);
if (correction >= 0)
kt = ktime_add_ns(kt, (u64)correction);
else
kt = ktime_sub_ns(kt, (u64)-correction);
return kt;
}
/* To convert from s27 format to ns we multiply then divide by a power of 2.
* For the conversion from ns to s27, the operation is also converted to a
* multiply and shift.
*/
#define S27_TO_NS_SHIFT (27)
#define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
#define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
/* For Huntington platforms NIC time is in seconds and fractions of a second
* where the minor register only uses 27 bits in units of 2^-27s.
*/
static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
{
struct timespec ts = ns_to_timespec(ns);
u32 maj = ts.tv_sec;
u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
(1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
/* The conversion can result in the minor value exceeding the maximum.
* In this case, round up to the next second.
*/
if (min >= S27_MINOR_MAX) {
min -= S27_MINOR_MAX;
maj++;
}
*nic_major = maj;
*nic_minor = min;
}
static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
{
u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
(1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
return ktime_set(nic_major, ns);
}
static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
s32 correction)
{
/* Apply the correction and deal with carry */
nic_minor += correction;
if ((s32)nic_minor < 0) {
nic_minor += S27_MINOR_MAX;
nic_major--;
} else if (nic_minor >= S27_MINOR_MAX) {
nic_minor -= S27_MINOR_MAX;
nic_major++;
}
return efx_ptp_s27_to_ktime(nic_major, nic_minor);
}
/* Get PTP attributes and set up time conversions */
static int efx_ptp_get_attributes(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
struct efx_ptp_data *ptp = efx->ptp_data;
int rc;
u32 fmt;
size_t out_len;
/* Get the PTP attributes. If the NIC doesn't support the operation we
* use the default format for compatibility with older NICs i.e.
* seconds and nanoseconds.
*/
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &out_len);
if (rc == 0)
fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
else if (rc == -EINVAL)
fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
else
return rc;
if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
} else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
} else {
return -ERANGE;
}
ptp->time_format = fmt;
/* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
* operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
* to use for the minimum acceptable corrected synchronization window.
* If we have the extra information store it. For older firmware that
* does not implement the extended command use the default value.
*/
if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
ptp->min_synchronisation_ns =
MCDI_DWORD(outbuf,
PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
else
ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
return 0;
}
/* Get PTP timestamp corrections */
static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
int rc;
/* Get the timestamp corrections from the NIC. If this operation is
* not supported (older NICs) then no correction is required.
*/
MCDI_SET_DWORD(inbuf, PTP_IN_OP,
MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc == 0) {
efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
} else if (rc == -EINVAL) {
efx->ptp_data->ts_corrections.tx = 0;
efx->ptp_data->ts_corrections.rx = 0;
efx->ptp_data->ts_corrections.pps_out = 0;
efx->ptp_data->ts_corrections.pps_in = 0;
} else {
return rc;
}
return 0;
}
/* Enable MCDI PTP support. */
static int efx_ptp_enable(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
int rc;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
efx->ptp_data->channel ?
efx->ptp_data->channel->channel : 0);
MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
rc = (rc == -EALREADY) ? 0 : rc;
if (rc)
efx_mcdi_display_error(efx, MC_CMD_PTP,
MC_CMD_PTP_IN_ENABLE_LEN,
outbuf, sizeof(outbuf), rc);
return rc;
}
/* Disable MCDI PTP support.
*
* Note that this function should never rely on the presence of ptp_data -
* may be called before that exists.
*/
static int efx_ptp_disable(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
int rc;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
rc = (rc == -EALREADY) ? 0 : rc;
/* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
* should only have been called during probe.
*/
if (rc == -ENOSYS || rc == -EPERM)
netif_info(efx, probe, efx->net_dev, "no PTP support\n");
else if (rc)
efx_mcdi_display_error(efx, MC_CMD_PTP,
MC_CMD_PTP_IN_DISABLE_LEN,
outbuf, sizeof(outbuf), rc);
return rc;
}
static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
{
struct sk_buff *skb;
while ((skb = skb_dequeue(q))) {
local_bh_disable();
netif_receive_skb(skb);
local_bh_enable();
}
}
static void efx_ptp_handle_no_channel(struct efx_nic *efx)
{
netif_err(efx, drv, efx->net_dev,
"ERROR: PTP requires MSI-X and 1 additional interrupt"
"vector. PTP disabled\n");
}
/* Repeatedly send the host time to the MC which will capture the hardware
* time.
*/
static void efx_ptp_send_times(struct efx_nic *efx,
struct pps_event_time *last_time)
{
struct pps_event_time now;
struct timespec limit;
struct efx_ptp_data *ptp = efx->ptp_data;
struct timespec start;
int *mc_running = ptp->start.addr;
pps_get_ts(&now);
start = now.ts_real;
limit = now.ts_real;
timespec_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
/* Write host time for specified period or until MC is done */
while ((timespec_compare(&now.ts_real, &limit) < 0) &&
ACCESS_ONCE(*mc_running)) {
struct timespec update_time;
unsigned int host_time;
/* Don't update continuously to avoid saturating the PCIe bus */
update_time = now.ts_real;
timespec_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
do {
pps_get_ts(&now);
} while ((timespec_compare(&now.ts_real, &update_time) < 0) &&
ACCESS_ONCE(*mc_running));
/* Synchronise NIC with single word of time only */
host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
now.ts_real.tv_nsec);
/* Update host time in NIC memory */
efx->type->ptp_write_host_time(efx, host_time);
}
*last_time = now;
}
/* Read a timeset from the MC's results and partial process. */
static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
struct efx_ptp_timeset *timeset)
{
unsigned start_ns, end_ns;
timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
/* Ignore seconds */
start_ns = timeset->host_start & MC_NANOSECOND_MASK;
end_ns = timeset->host_end & MC_NANOSECOND_MASK;
/* Allow for rollover */
if (end_ns < start_ns)
end_ns += NSEC_PER_SEC;
/* Determine duration of operation */
timeset->window = end_ns - start_ns;
}
/* Process times received from MC.
*
* Extract times from returned results, and establish the minimum value
* seen. The minimum value represents the "best" possible time and events
* too much greater than this are rejected - the machine is, perhaps, too
* busy. A number of readings are taken so that, hopefully, at least one good
* synchronisation will be seen in the results.
*/
static int
efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
size_t response_length,
const struct pps_event_time *last_time)
{
unsigned number_readings =
MCDI_VAR_ARRAY_LEN(response_length,
PTP_OUT_SYNCHRONIZE_TIMESET);
unsigned i;
unsigned ngood = 0;
unsigned last_good = 0;
struct efx_ptp_data *ptp = efx->ptp_data;
u32 last_sec;
u32 start_sec;
struct timespec delta;
ktime_t mc_time;
if (number_readings == 0)
return -EAGAIN;
/* Read the set of results and find the last good host-MC
* synchronization result. The MC times when it finishes reading the
* host time so the corrected window time should be fairly constant
* for a given platform. Increment stats for any results that appear
* to be erroneous.
*/
for (i = 0; i < number_readings; i++) {
s32 window, corrected;
struct timespec wait;
efx_ptp_read_timeset(
MCDI_ARRAY_STRUCT_PTR(synch_buf,
PTP_OUT_SYNCHRONIZE_TIMESET, i),
&ptp->timeset[i]);
wait = ktime_to_timespec(
ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
window = ptp->timeset[i].window;
corrected = window - wait.tv_nsec;
/* We expect the uncorrected synchronization window to be at
* least as large as the interval between host start and end
* times. If it is smaller than this then this is mostly likely
* to be a consequence of the host's time being adjusted.
* Check that the corrected sync window is in a reasonable
* range. If it is out of range it is likely to be because an
* interrupt or other delay occurred between reading the system
* time and writing it to MC memory.
*/
if (window < SYNCHRONISATION_GRANULARITY_NS) {
++ptp->invalid_sync_windows;
} else if (corrected >= MAX_SYNCHRONISATION_NS) {
++ptp->oversize_sync_windows;
} else if (corrected < ptp->min_synchronisation_ns) {
++ptp->undersize_sync_windows;
} else {
ngood++;
last_good = i;
}
}
if (ngood == 0) {
netif_warn(efx, drv, efx->net_dev,
"PTP no suitable synchronisations\n");
return -EAGAIN;
}
/* Calculate delay from last good sync (host time) to last_time.
* It is possible that the seconds rolled over between taking
* the start reading and the last value written by the host. The
* timescales are such that a gap of more than one second is never
* expected. delta is *not* normalised.
*/
start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
if (start_sec != last_sec &&
((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
netif_warn(efx, hw, efx->net_dev,
"PTP bad synchronisation seconds\n");
return -EAGAIN;
}
delta.tv_sec = (last_sec - start_sec) & 1;
delta.tv_nsec =
last_time->ts_real.tv_nsec -
(ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
/* Convert the NIC time at last good sync into kernel time.
* No correction is required - this time is the output of a
* firmware process.
*/
mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
ptp->timeset[last_good].minor, 0);
/* Calculate delay from NIC top of second to last_time */
delta.tv_nsec += ktime_to_timespec(mc_time).tv_nsec;
/* Set PPS timestamp to match NIC top of second */
ptp->host_time_pps = *last_time;
pps_sub_ts(&ptp->host_time_pps, delta);
return 0;
}
/* Synchronize times between the host and the MC */
static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
{
struct efx_ptp_data *ptp = efx->ptp_data;
MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
size_t response_length;
int rc;
unsigned long timeout;
struct pps_event_time last_time = {};
unsigned int loops = 0;
int *start = ptp->start.addr;
MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
num_readings);
MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
ptp->start.dma_addr);
/* Clear flag that signals MC ready */
ACCESS_ONCE(*start) = 0;
rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
EFX_BUG_ON_PARANOID(rc);
/* Wait for start from MCDI (or timeout) */
timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
udelay(20); /* Usually start MCDI execution quickly */
loops++;
}
if (loops <= 1)
++ptp->fast_syncs;
if (!time_before(jiffies, timeout))
++ptp->sync_timeouts;
if (ACCESS_ONCE(*start))
efx_ptp_send_times(efx, &last_time);
/* Collect results */
rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
synch_buf, sizeof(synch_buf),
&response_length);
if (rc == 0) {
rc = efx_ptp_process_times(efx, synch_buf, response_length,
&last_time);
if (rc == 0)
++ptp->good_syncs;
else
++ptp->no_time_syncs;
}
/* Increment the bad syncs counter if the synchronize fails, whatever
* the reason.
*/
if (rc != 0)
++ptp->bad_syncs;
return rc;
}
/* Transmit a PTP packet, via the MCDI interface, to the wire. */
static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
{
struct efx_ptp_data *ptp_data = efx->ptp_data;
struct skb_shared_hwtstamps timestamps;
int rc = -EIO;
MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
size_t len;
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
if (skb_shinfo(skb)->nr_frags != 0) {
rc = skb_linearize(skb);
if (rc != 0)
goto fail;
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
rc = skb_checksum_help(skb);
if (rc != 0)
goto fail;
}
skb_copy_from_linear_data(skb,
MCDI_PTR(ptp_data->txbuf,
PTP_IN_TRANSMIT_PACKET),
skb->len);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
txtime, sizeof(txtime), &len);
if (rc != 0)
goto fail;
memset(&timestamps, 0, sizeof(timestamps));
timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
ptp_data->ts_corrections.tx);
skb_tstamp_tx(skb, &timestamps);
rc = 0;
fail:
dev_kfree_skb(skb);
return rc;
}
static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct list_head *cursor;
struct list_head *next;
if (ptp->rx_ts_inline)
return;
/* Drop time-expired events */
spin_lock_bh(&ptp->evt_lock);
if (!list_empty(&ptp->evt_list)) {
list_for_each_safe(cursor, next, &ptp->evt_list) {
struct efx_ptp_event_rx *evt;
evt = list_entry(cursor, struct efx_ptp_event_rx,
link);
if (time_after(jiffies, evt->expiry)) {
list_move(&evt->link, &ptp->evt_free_list);
netif_warn(efx, hw, efx->net_dev,
"PTP rx event dropped\n");
}
}
}
spin_unlock_bh(&ptp->evt_lock);
}
static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
struct sk_buff *skb)
{
struct efx_ptp_data *ptp = efx->ptp_data;
bool evts_waiting;
struct list_head *cursor;
struct list_head *next;
struct efx_ptp_match *match;
enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
WARN_ON_ONCE(ptp->rx_ts_inline);
spin_lock_bh(&ptp->evt_lock);
evts_waiting = !list_empty(&ptp->evt_list);
spin_unlock_bh(&ptp->evt_lock);
if (!evts_waiting)
return PTP_PACKET_STATE_UNMATCHED;
match = (struct efx_ptp_match *)skb->cb;
/* Look for a matching timestamp in the event queue */
spin_lock_bh(&ptp->evt_lock);
list_for_each_safe(cursor, next, &ptp->evt_list) {
struct efx_ptp_event_rx *evt;
evt = list_entry(cursor, struct efx_ptp_event_rx, link);
if ((evt->seq0 == match->words[0]) &&
(evt->seq1 == match->words[1])) {
struct skb_shared_hwtstamps *timestamps;
/* Match - add in hardware timestamp */
timestamps = skb_hwtstamps(skb);
timestamps->hwtstamp = evt->hwtimestamp;
match->state = PTP_PACKET_STATE_MATCHED;
rc = PTP_PACKET_STATE_MATCHED;
list_move(&evt->link, &ptp->evt_free_list);
break;
}
}
spin_unlock_bh(&ptp->evt_lock);
return rc;
}
/* Process any queued receive events and corresponding packets
*
* q is returned with all the packets that are ready for delivery.
*/
static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct sk_buff *skb;
while ((skb = skb_dequeue(&ptp->rxq))) {
struct efx_ptp_match *match;
match = (struct efx_ptp_match *)skb->cb;
if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
__skb_queue_tail(q, skb);
} else if (efx_ptp_match_rx(efx, skb) ==
PTP_PACKET_STATE_MATCHED) {
__skb_queue_tail(q, skb);
} else if (time_after(jiffies, match->expiry)) {
match->state = PTP_PACKET_STATE_TIMED_OUT;
++ptp->rx_no_timestamp;
__skb_queue_tail(q, skb);
} else {
/* Replace unprocessed entry and stop */
skb_queue_head(&ptp->rxq, skb);
break;
}
}
}
/* Complete processing of a received packet */
static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
{
local_bh_disable();
netif_receive_skb(skb);
local_bh_enable();
}
static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
if (ptp->rxfilter_installed) {
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_general);
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_event);
ptp->rxfilter_installed = false;
}
}
static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct efx_filter_spec rxfilter;
int rc;
if (!ptp->channel || ptp->rxfilter_installed)
return 0;
/* Must filter on both event and general ports to ensure
* that there is no packet re-ordering.
*/
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
efx_rx_queue_index(
efx_channel_get_rx_queue(ptp->channel)));
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
htonl(PTP_ADDRESS),
htons(PTP_EVENT_PORT));
if (rc != 0)
return rc;
rc = efx_filter_insert_filter(efx, &rxfilter, true);
if (rc < 0)
return rc;
ptp->rxfilter_event = rc;
efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
efx_rx_queue_index(
efx_channel_get_rx_queue(ptp->channel)));
rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
htonl(PTP_ADDRESS),
htons(PTP_GENERAL_PORT));
if (rc != 0)
goto fail;
rc = efx_filter_insert_filter(efx, &rxfilter, true);
if (rc < 0)
goto fail;
ptp->rxfilter_general = rc;
ptp->rxfilter_installed = true;
return 0;
fail:
efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
ptp->rxfilter_event);
return rc;
}
static int efx_ptp_start(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
int rc;
ptp->reset_required = false;
rc = efx_ptp_insert_multicast_filters(efx);
if (rc)
return rc;
rc = efx_ptp_enable(efx);
if (rc != 0)
goto fail;
ptp->evt_frag_idx = 0;
ptp->current_adjfreq = 0;
return 0;
fail:
efx_ptp_remove_multicast_filters(efx);
return rc;
}
static int efx_ptp_stop(struct efx_nic *efx)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct list_head *cursor;
struct list_head *next;
int rc;
if (ptp == NULL)
return 0;
rc = efx_ptp_disable(efx);
efx_ptp_remove_multicast_filters(efx);
/* Make sure RX packets are really delivered */
efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
skb_queue_purge(&efx->ptp_data->txq);
/* Drop any pending receive events */
spin_lock_bh(&efx->ptp_data->evt_lock);
list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
list_move(cursor, &efx->ptp_data->evt_free_list);
}
spin_unlock_bh(&efx->ptp_data->evt_lock);
return rc;
}
static int efx_ptp_restart(struct efx_nic *efx)
{
if (efx->ptp_data && efx->ptp_data->enabled)
return efx_ptp_start(efx);
return 0;
}
static void efx_ptp_pps_worker(struct work_struct *work)
{
struct efx_ptp_data *ptp =
container_of(work, struct efx_ptp_data, pps_work);
struct efx_nic *efx = ptp->efx;
struct ptp_clock_event ptp_evt;
if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
return;
ptp_evt.type = PTP_CLOCK_PPSUSR;
ptp_evt.pps_times = ptp->host_time_pps;
ptp_clock_event(ptp->phc_clock, &ptp_evt);
}
static void efx_ptp_worker(struct work_struct *work)
{
struct efx_ptp_data *ptp_data =
container_of(work, struct efx_ptp_data, work);
struct efx_nic *efx = ptp_data->efx;
struct sk_buff *skb;
struct sk_buff_head tempq;
if (ptp_data->reset_required) {
efx_ptp_stop(efx);
efx_ptp_start(efx);
return;
}
efx_ptp_drop_time_expired_events(efx);
__skb_queue_head_init(&tempq);
efx_ptp_process_events(efx, &tempq);
while ((skb = skb_dequeue(&ptp_data->txq)))
efx_ptp_xmit_skb(efx, skb);
while ((skb = __skb_dequeue(&tempq)))
efx_ptp_process_rx(efx, skb);
}
static const struct ptp_clock_info efx_phc_clock_info = {
.owner = THIS_MODULE,
.name = "sfc",
.max_adj = MAX_PPB,
.n_alarm = 0,
.n_ext_ts = 0,
.n_per_out = 0,
.n_pins = 0,
.pps = 1,
.adjfreq = efx_phc_adjfreq,
.adjtime = efx_phc_adjtime,
.gettime64 = efx_phc_gettime,
.settime64 = efx_phc_settime,
.enable = efx_phc_enable,
};
/* Initialise PTP state. */
int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
{
struct efx_ptp_data *ptp;
int rc = 0;
unsigned int pos;
ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
efx->ptp_data = ptp;
if (!efx->ptp_data)
return -ENOMEM;
ptp->efx = efx;
ptp->channel = channel;
ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
if (rc != 0)
goto fail1;
skb_queue_head_init(&ptp->rxq);
skb_queue_head_init(&ptp->txq);
ptp->workwq = create_singlethread_workqueue("sfc_ptp");
if (!ptp->workwq) {
rc = -ENOMEM;
goto fail2;
}
INIT_WORK(&ptp->work, efx_ptp_worker);
ptp->config.flags = 0;
ptp->config.tx_type = HWTSTAMP_TX_OFF;
ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
INIT_LIST_HEAD(&ptp->evt_list);
INIT_LIST_HEAD(&ptp->evt_free_list);
spin_lock_init(&ptp->evt_lock);
for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
/* Get the NIC PTP attributes and set up time conversions */
rc = efx_ptp_get_attributes(efx);
if (rc < 0)
goto fail3;
/* Get the timestamp corrections */
rc = efx_ptp_get_timestamp_corrections(efx);
if (rc < 0)
goto fail3;
if (efx->mcdi->fn_flags &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
ptp->phc_clock_info = efx_phc_clock_info;
ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
&efx->pci_dev->dev);
if (IS_ERR(ptp->phc_clock)) {
rc = PTR_ERR(ptp->phc_clock);
goto fail3;
}
INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
if (!ptp->pps_workwq) {
rc = -ENOMEM;
goto fail4;
}
}
ptp->nic_ts_enabled = false;
return 0;
fail4:
ptp_clock_unregister(efx->ptp_data->phc_clock);
fail3:
destroy_workqueue(efx->ptp_data->workwq);
fail2:
efx_nic_free_buffer(efx, &ptp->start);
fail1:
kfree(efx->ptp_data);
efx->ptp_data = NULL;
return rc;
}
/* Initialise PTP channel.
*
* Setting core_index to zero causes the queue to be initialised and doesn't
* overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
*/
static int efx_ptp_probe_channel(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
channel->irq_moderation = 0;
channel->rx_queue.core_index = 0;
return efx_ptp_probe(efx, channel);
}
void efx_ptp_remove(struct efx_nic *efx)
{
if (!efx->ptp_data)
return;
(void)efx_ptp_disable(efx);
cancel_work_sync(&efx->ptp_data->work);
cancel_work_sync(&efx->ptp_data->pps_work);
skb_queue_purge(&efx->ptp_data->rxq);
skb_queue_purge(&efx->ptp_data->txq);
if (efx->ptp_data->phc_clock) {
destroy_workqueue(efx->ptp_data->pps_workwq);
ptp_clock_unregister(efx->ptp_data->phc_clock);
}
destroy_workqueue(efx->ptp_data->workwq);
efx_nic_free_buffer(efx, &efx->ptp_data->start);
kfree(efx->ptp_data);
}
static void efx_ptp_remove_channel(struct efx_channel *channel)
{
efx_ptp_remove(channel->efx);
}
static void efx_ptp_get_channel_name(struct efx_channel *channel,
char *buf, size_t len)
{
snprintf(buf, len, "%s-ptp", channel->efx->name);
}
/* Determine whether this packet should be processed by the PTP module
* or transmitted conventionally.
*/
bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
return efx->ptp_data &&
efx->ptp_data->enabled &&
skb->len >= PTP_MIN_LENGTH &&
skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
likely(skb->protocol == htons(ETH_P_IP)) &&
skb_transport_header_was_set(skb) &&
skb_network_header_len(skb) >= sizeof(struct iphdr) &&
ip_hdr(skb)->protocol == IPPROTO_UDP &&
skb_headlen(skb) >=
skb_transport_offset(skb) + sizeof(struct udphdr) &&
udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
}
/* Receive a PTP packet. Packets are queued until the arrival of
* the receive timestamp from the MC - this will probably occur after the
* packet arrival because of the processing in the MC.
*/
static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
{
struct efx_nic *efx = channel->efx;
struct efx_ptp_data *ptp = efx->ptp_data;
struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
u8 *match_data_012, *match_data_345;
unsigned int version;
u8 *data;
match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
/* Correct version? */
if (ptp->mode == MC_CMD_PTP_MODE_V1) {
if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
return false;
}
data = skb->data;
version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
if (version != PTP_VERSION_V1) {
return false;
}
/* PTP V1 uses all six bytes of the UUID to match the packet
* to the timestamp
*/
match_data_012 = data + PTP_V1_UUID_OFFSET;
match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
} else {
if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
return false;
}
data = skb->data;
version = data[PTP_V2_VERSION_OFFSET];
if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
return false;
}
/* The original V2 implementation uses bytes 2-7 of
* the UUID to match the packet to the timestamp. This
* discards two of the bytes of the MAC address used
* to create the UUID (SF bug 33070). The PTP V2
* enhanced mode fixes this issue and uses bytes 0-2
* and byte 5-7 of the UUID.
*/
match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
if (ptp->mode == MC_CMD_PTP_MODE_V2) {
match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
} else {
match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
}
}
/* Does this packet require timestamping? */
if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
match->state = PTP_PACKET_STATE_UNMATCHED;
/* We expect the sequence number to be in the same position in
* the packet for PTP V1 and V2
*/
BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
/* Extract UUID/Sequence information */
match->words[0] = (match_data_012[0] |
(match_data_012[1] << 8) |
(match_data_012[2] << 16) |
(match_data_345[0] << 24));
match->words[1] = (match_data_345[1] |
(match_data_345[2] << 8) |
(data[PTP_V1_SEQUENCE_OFFSET +
PTP_V1_SEQUENCE_LENGTH - 1] <<
16));
} else {
match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
}
skb_queue_tail(&ptp->rxq, skb);
queue_work(ptp->workwq, &ptp->work);
return true;
}
/* Transmit a PTP packet. This has to be transmitted by the MC
* itself, through an MCDI call. MCDI calls aren't permitted
* in the transmit path so defer the actual transmission to a suitable worker.
*/
int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
{
struct efx_ptp_data *ptp = efx->ptp_data;
skb_queue_tail(&ptp->txq, skb);
if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
(skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
efx_xmit_hwtstamp_pending(skb);
queue_work(ptp->workwq, &ptp->work);
return NETDEV_TX_OK;
}
int efx_ptp_get_mode(struct efx_nic *efx)
{
return efx->ptp_data->mode;
}
int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
unsigned int new_mode)
{
if ((enable_wanted != efx->ptp_data->enabled) ||
(enable_wanted && (efx->ptp_data->mode != new_mode))) {
int rc = 0;
if (enable_wanted) {
/* Change of mode requires disable */
if (efx->ptp_data->enabled &&
(efx->ptp_data->mode != new_mode)) {
efx->ptp_data->enabled = false;
rc = efx_ptp_stop(efx);
if (rc != 0)
return rc;
}
/* Set new operating mode and establish
* baseline synchronisation, which must
* succeed.
*/
efx->ptp_data->mode = new_mode;
if (netif_running(efx->net_dev))
rc = efx_ptp_start(efx);
if (rc == 0) {
rc = efx_ptp_synchronize(efx,
PTP_SYNC_ATTEMPTS * 2);
if (rc != 0)
efx_ptp_stop(efx);
}
} else {
rc = efx_ptp_stop(efx);
}
if (rc != 0)
return rc;
efx->ptp_data->enabled = enable_wanted;
}
return 0;
}
static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
{
int rc;
if (init->flags)
return -EINVAL;
if ((init->tx_type != HWTSTAMP_TX_OFF) &&
(init->tx_type != HWTSTAMP_TX_ON))
return -ERANGE;
rc = efx->type->ptp_set_ts_config(efx, init);
if (rc)
return rc;
efx->ptp_data->config = *init;
return 0;
}
void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
{
struct efx_ptp_data *ptp = efx->ptp_data;
struct efx_nic *primary = efx->primary;
ASSERT_RTNL();
if (!ptp)
return;
ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE);
if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
ts_info->phc_index =
ptp_clock_index(primary->ptp_data->phc_clock);
ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
}
int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
{
struct hwtstamp_config config;
int rc;
/* Not a PTP enabled port */
if (!efx->ptp_data)
return -EOPNOTSUPP;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
rc = efx_ptp_ts_init(efx, &config);
if (rc != 0)
return rc;
return copy_to_user(ifr->ifr_data, &config, sizeof(config))
? -EFAULT : 0;
}
int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
{
if (!efx->ptp_data)
return -EOPNOTSUPP;
return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
}
static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
{
struct efx_ptp_data *ptp = efx->ptp_data;
netif_err(efx, hw, efx->net_dev,
"PTP unexpected event length: got %d expected %d\n",
ptp->evt_frag_idx, expected_frag_len);
ptp->reset_required = true;
queue_work(ptp->workwq, &ptp->work);
}
/* Process a completed receive event. Put it on the event queue and
* start worker thread. This is required because event and their
* correspoding packets may come in either order.
*/
static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
struct efx_ptp_event_rx *evt = NULL;
if (WARN_ON_ONCE(ptp->rx_ts_inline))
return;
if (ptp->evt_frag_idx != 3) {
ptp_event_failure(efx, 3);
return;
}
spin_lock_bh(&ptp->evt_lock);
if (!list_empty(&ptp->evt_free_list)) {
evt = list_first_entry(&ptp->evt_free_list,
struct efx_ptp_event_rx, link);
list_del(&evt->link);
evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
MCDI_EVENT_SRC) |
(EFX_QWORD_FIELD(ptp->evt_frags[1],
MCDI_EVENT_SRC) << 8) |
(EFX_QWORD_FIELD(ptp->evt_frags[0],
MCDI_EVENT_SRC) << 16));
evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
ptp->ts_corrections.rx);
evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
list_add_tail(&evt->link, &ptp->evt_list);
queue_work(ptp->workwq, &ptp->work);
} else if (net_ratelimit()) {
/* Log a rate-limited warning message. */
netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
}
spin_unlock_bh(&ptp->evt_lock);
}
static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
if (ptp->evt_frag_idx != 1) {
ptp_event_failure(efx, 1);
return;
}
netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
}
static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
{
if (ptp->nic_ts_enabled)
queue_work(ptp->pps_workwq, &ptp->pps_work);
}
void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
{
struct efx_ptp_data *ptp = efx->ptp_data;
int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
if (!ptp) {
if (net_ratelimit())
netif_warn(efx, drv, efx->net_dev,
"Received PTP event but PTP not set up\n");
return;
}
if (!ptp->enabled)
return;
if (ptp->evt_frag_idx == 0) {
ptp->evt_code = code;
} else if (ptp->evt_code != code) {
netif_err(efx, hw, efx->net_dev,
"PTP out of sequence event %d\n", code);
ptp->evt_frag_idx = 0;
}
ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
if (!MCDI_EVENT_FIELD(*ev, CONT)) {
/* Process resulting event */
switch (code) {
case MCDI_EVENT_CODE_PTP_RX:
ptp_event_rx(efx, ptp);
break;
case MCDI_EVENT_CODE_PTP_FAULT:
ptp_event_fault(efx, ptp);
break;
case MCDI_EVENT_CODE_PTP_PPS:
ptp_event_pps(efx, ptp);
break;
default:
netif_err(efx, hw, efx->net_dev,
"PTP unknown event %d\n", code);
break;
}
ptp->evt_frag_idx = 0;
} else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
netif_err(efx, hw, efx->net_dev,
"PTP too many event fragments\n");
ptp->evt_frag_idx = 0;
}
}
void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
{
channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
channel->sync_timestamp_minor =
MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
/* if sync events have been disabled then we want to silently ignore
* this event, so throw away result.
*/
(void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
SYNC_EVENTS_VALID);
}
/* make some assumptions about the time representation rather than abstract it,
* since we currently only support one type of inline timestamping and only on
* EF10.
*/
#define MINOR_TICKS_PER_SECOND 0x8000000
/* Fuzz factor for sync events to be out of order with RX events */
#define FUZZ (MINOR_TICKS_PER_SECOND / 10)
#define EXPECTED_SYNC_EVENTS_PER_SECOND 4
static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
{
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
#else
const u8 *data = eh + efx->rx_packet_ts_offset;
return (u32)data[0] |
(u32)data[1] << 8 |
(u32)data[2] << 16 |
(u32)data[3] << 24;
#endif
}
void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
struct sk_buff *skb)
{
struct efx_nic *efx = channel->efx;
u32 pkt_timestamp_major, pkt_timestamp_minor;
u32 diff, carry;
struct skb_shared_hwtstamps *timestamps;
pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
skb_mac_header(skb)) +
(u32) efx->ptp_data->ts_corrections.rx) &
(MINOR_TICKS_PER_SECOND - 1);
/* get the difference between the packet and sync timestamps,
* modulo one second
*/
diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
(MINOR_TICKS_PER_SECOND - 1);
/* do we roll over a second boundary and need to carry the one? */
carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
1 : 0;
if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
FUZZ) {
/* packet is ahead of the sync event by a quarter of a second or
* less (allowing for fuzz)
*/
pkt_timestamp_major = channel->sync_timestamp_major + carry;
} else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
/* packet is behind the sync event but within the fuzz factor.
* This means the RX packet and sync event crossed as they were
* placed on the event queue, which can sometimes happen.
*/
pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
} else {
/* it's outside tolerance in both directions. this might be
* indicative of us missing sync events for some reason, so
* we'll call it an error rather than risk giving a bogus
* timestamp.
*/
netif_vdbg(efx, drv, efx->net_dev,
"packet timestamp %x too far from sync event %x:%x\n",
pkt_timestamp_minor, channel->sync_timestamp_major,
channel->sync_timestamp_minor);
return;
}
/* attach the timestamps to the skb */
timestamps = skb_hwtstamps(skb);
timestamps->hwtstamp =
efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
}
static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->efx;
MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
s64 adjustment_ns;
int rc;
if (delta > MAX_PPB)
delta = MAX_PPB;
else if (delta < -MAX_PPB)
delta = -MAX_PPB;
/* Convert ppb to fixed point ns. */
adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
(PPB_EXTRA_BITS + MAX_PPB_BITS));
MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
NULL, 0, NULL);
if (rc != 0)
return rc;
ptp_data->current_adjfreq = adjustment_ns;
return 0;
}
static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
u32 nic_major, nic_minor;
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->efx;
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
struct efx_nic *efx = ptp_data->efx;
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
int rc;
ktime_t kt;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc != 0)
return rc;
kt = ptp_data->nic_to_kernel_time(
MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
*ts = ktime_to_timespec64(kt);
return 0;
}
static int efx_phc_settime(struct ptp_clock_info *ptp,
const struct timespec64 *e_ts)
{
/* Get the current NIC time, efx_phc_gettime.
* Subtract from the desired time to get the offset
* call efx_phc_adjtime with the offset
*/
int rc;
struct timespec64 time_now;
struct timespec64 delta;
rc = efx_phc_gettime(ptp, &time_now);
if (rc != 0)
return rc;
delta = timespec64_sub(*e_ts, time_now);
rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
if (rc != 0)
return rc;
return 0;
}
static int efx_phc_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *request,
int enable)
{
struct efx_ptp_data *ptp_data = container_of(ptp,
struct efx_ptp_data,
phc_clock_info);
if (request->type != PTP_CLK_REQ_PPS)
return -EOPNOTSUPP;
ptp_data->nic_ts_enabled = !!enable;
return 0;
}
static const struct efx_channel_type efx_ptp_channel_type = {
.handle_no_channel = efx_ptp_handle_no_channel,
.pre_probe = efx_ptp_probe_channel,
.post_remove = efx_ptp_remove_channel,
.get_name = efx_ptp_get_channel_name,
/* no copy operation; there is no need to reallocate this channel */
.receive_skb = efx_ptp_rx,
.keep_eventq = false,
};
void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
{
/* Check whether PTP is implemented on this NIC. The DISABLE
* operation will succeed if and only if it is implemented.
*/
if (efx_ptp_disable(efx) == 0)
efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
&efx_ptp_channel_type;
}
void efx_ptp_start_datapath(struct efx_nic *efx)
{
if (efx_ptp_restart(efx))
netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
/* re-enable timestamping if it was previously enabled */
if (efx->type->ptp_set_ts_sync_events)
efx->type->ptp_set_ts_sync_events(efx, true, true);
}
void efx_ptp_stop_datapath(struct efx_nic *efx)
{
/* temporarily disable timestamping */
if (efx->type->ptp_set_ts_sync_events)
efx->type->ptp_set_ts_sync_events(efx, false, true);
efx_ptp_stop(efx);
}