linux/kernel/dma/direct.c
Linus Torvalds 5a764898af Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from David Miller:

 1) Restore previous behavior of CAP_SYS_ADMIN wrt loading networking
    BPF programs, from Maciej Żenczykowski.

 2) Fix dropped broadcasts in mac80211 code, from Seevalamuthu
    Mariappan.

 3) Slay memory leak in nl80211 bss color attribute parsing code, from
    Luca Coelho.

 4) Get route from skb properly in ip_route_use_hint(), from Miaohe Lin.

 5) Don't allow anything other than ARPHRD_ETHER in llc code, from Eric
    Dumazet.

 6) xsk code dips too deeply into DMA mapping implementation internals.
    Add dma_need_sync and use it. From Christoph Hellwig

 7) Enforce power-of-2 for BPF ringbuf sizes. From Andrii Nakryiko.

 8) Check for disallowed attributes when loading flow dissector BPF
    programs. From Lorenz Bauer.

 9) Correct packet injection to L3 tunnel devices via AF_PACKET, from
    Jason A. Donenfeld.

10) Don't advertise checksum offload on ipa devices that don't support
    it. From Alex Elder.

11) Resolve several issues in TCP MD5 signature support. Missing memory
    barriers, bogus options emitted when using syncookies, and failure
    to allow md5 key changes in established states. All from Eric
    Dumazet.

12) Fix interface leak in hsr code, from Taehee Yoo.

13) VF reset fixes in hns3 driver, from Huazhong Tan.

14) Make loopback work again with ipv6 anycast, from David Ahern.

15) Fix TX starvation under high load in fec driver, from Tobias
    Waldekranz.

16) MLD2 payload lengths not checked properly in bridge multicast code,
    from Linus Lüssing.

17) Packet scheduler code that wants to find the inner protocol
    currently only works for one level of VLAN encapsulation. Allow
    Q-in-Q situations to work properly here, from Toke
    Høiland-Jørgensen.

18) Fix route leak in l2tp, from Xin Long.

19) Resolve conflict between the sk->sk_user_data usage of bpf reuseport
    support and various protocols. From Martin KaFai Lau.

20) Fix socket cgroup v2 reference counting in some situations, from
    Cong Wang.

21) Cure memory leak in mlx5 connection tracking offload support, from
    Eli Britstein.

* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (146 commits)
  mlxsw: pci: Fix use-after-free in case of failed devlink reload
  mlxsw: spectrum_router: Remove inappropriate usage of WARN_ON()
  net: macb: fix call to pm_runtime in the suspend/resume functions
  net: macb: fix macb_suspend() by removing call to netif_carrier_off()
  net: macb: fix macb_get/set_wol() when moving to phylink
  net: macb: mark device wake capable when "magic-packet" property present
  net: macb: fix wakeup test in runtime suspend/resume routines
  bnxt_en: fix NULL dereference in case SR-IOV configuration fails
  libbpf: Fix libbpf hashmap on (I)LP32 architectures
  net/mlx5e: CT: Fix memory leak in cleanup
  net/mlx5e: Fix port buffers cell size value
  net/mlx5e: Fix 50G per lane indication
  net/mlx5e: Fix CPU mapping after function reload to avoid aRFS RX crash
  net/mlx5e: Fix VXLAN configuration restore after function reload
  net/mlx5e: Fix usage of rcu-protected pointer
  net/mxl5e: Verify that rpriv is not NULL
  net/mlx5: E-Switch, Fix vlan or qos setting in legacy mode
  net/mlx5: Fix eeprom support for SFP module
  cgroup: Fix sock_cgroup_data on big-endian.
  selftests: bpf: Fix detach from sockmap tests
  ...
2020-07-10 18:16:22 -07:00

548 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Christoph Hellwig.
*
* DMA operations that map physical memory directly without using an IOMMU.
*/
#include <linux/memblock.h> /* for max_pfn */
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/dma-direct.h>
#include <linux/scatterlist.h>
#include <linux/dma-contiguous.h>
#include <linux/dma-noncoherent.h>
#include <linux/pfn.h>
#include <linux/vmalloc.h>
#include <linux/set_memory.h>
#include <linux/swiotlb.h>
/*
* Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
* it for entirely different regions. In that case the arch code needs to
* override the variable below for dma-direct to work properly.
*/
unsigned int zone_dma_bits __ro_after_init = 24;
static inline dma_addr_t phys_to_dma_direct(struct device *dev,
phys_addr_t phys)
{
if (force_dma_unencrypted(dev))
return __phys_to_dma(dev, phys);
return phys_to_dma(dev, phys);
}
static inline struct page *dma_direct_to_page(struct device *dev,
dma_addr_t dma_addr)
{
return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
}
u64 dma_direct_get_required_mask(struct device *dev)
{
phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
u64 max_dma = phys_to_dma_direct(dev, phys);
return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
}
gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
u64 *phys_limit)
{
u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
if (force_dma_unencrypted(dev))
*phys_limit = __dma_to_phys(dev, dma_limit);
else
*phys_limit = dma_to_phys(dev, dma_limit);
/*
* Optimistically try the zone that the physical address mask falls
* into first. If that returns memory that isn't actually addressable
* we will fallback to the next lower zone and try again.
*
* Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
* zones.
*/
if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
return GFP_DMA;
if (*phys_limit <= DMA_BIT_MASK(32))
return GFP_DMA32;
return 0;
}
static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
{
return phys_to_dma_direct(dev, phys) + size - 1 <=
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
}
/*
* Decrypting memory is allowed to block, so if this device requires
* unencrypted memory it must come from atomic pools.
*/
static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
unsigned long attrs)
{
if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
return false;
if (gfpflags_allow_blocking(gfp))
return false;
if (force_dma_unencrypted(dev))
return true;
if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
return false;
if (dma_alloc_need_uncached(dev, attrs))
return true;
return false;
}
static inline bool dma_should_free_from_pool(struct device *dev,
unsigned long attrs)
{
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
return true;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev))
return false;
if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
return true;
return false;
}
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
gfp_t gfp, unsigned long attrs)
{
int node = dev_to_node(dev);
struct page *page = NULL;
u64 phys_limit;
WARN_ON_ONCE(!PAGE_ALIGNED(size));
if (attrs & DMA_ATTR_NO_WARN)
gfp |= __GFP_NOWARN;
/* we always manually zero the memory once we are done: */
gfp &= ~__GFP_ZERO;
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_limit);
page = dma_alloc_contiguous(dev, size, gfp);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_free_contiguous(dev, page, size);
page = NULL;
}
again:
if (!page)
page = alloc_pages_node(node, gfp, get_order(size));
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_free_contiguous(dev, page, size);
page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
phys_limit < DMA_BIT_MASK(64) &&
!(gfp & (GFP_DMA32 | GFP_DMA))) {
gfp |= GFP_DMA32;
goto again;
}
if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
goto again;
}
}
return page;
}
void *dma_direct_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
struct page *page;
void *ret;
int err;
size = PAGE_ALIGN(size);
if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
ret = dma_alloc_from_pool(dev, size, &page, gfp);
if (!ret)
return NULL;
goto done;
}
page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
if (!page)
return NULL;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev)) {
/* remove any dirty cache lines on the kernel alias */
if (!PageHighMem(page))
arch_dma_prep_coherent(page, size);
/* return the page pointer as the opaque cookie */
ret = page;
goto done;
}
if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
dma_alloc_need_uncached(dev, attrs)) ||
(IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
/* remove any dirty cache lines on the kernel alias */
arch_dma_prep_coherent(page, size);
/* create a coherent mapping */
ret = dma_common_contiguous_remap(page, size,
dma_pgprot(dev, PAGE_KERNEL, attrs),
__builtin_return_address(0));
if (!ret)
goto out_free_pages;
if (force_dma_unencrypted(dev)) {
err = set_memory_decrypted((unsigned long)ret,
1 << get_order(size));
if (err)
goto out_free_pages;
}
memset(ret, 0, size);
goto done;
}
if (PageHighMem(page)) {
/*
* Depending on the cma= arguments and per-arch setup
* dma_alloc_contiguous could return highmem pages.
* Without remapping there is no way to return them here,
* so log an error and fail.
*/
dev_info(dev, "Rejecting highmem page from CMA.\n");
goto out_free_pages;
}
ret = page_address(page);
if (force_dma_unencrypted(dev)) {
err = set_memory_decrypted((unsigned long)ret,
1 << get_order(size));
if (err)
goto out_free_pages;
}
memset(ret, 0, size);
if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
dma_alloc_need_uncached(dev, attrs)) {
arch_dma_prep_coherent(page, size);
ret = arch_dma_set_uncached(ret, size);
if (IS_ERR(ret))
goto out_encrypt_pages;
}
done:
if (force_dma_unencrypted(dev))
*dma_handle = __phys_to_dma(dev, page_to_phys(page));
else
*dma_handle = phys_to_dma(dev, page_to_phys(page));
return ret;
out_encrypt_pages:
if (force_dma_unencrypted(dev)) {
err = set_memory_encrypted((unsigned long)page_address(page),
1 << get_order(size));
/* If memory cannot be re-encrypted, it must be leaked */
if (err)
return NULL;
}
out_free_pages:
dma_free_contiguous(dev, page, size);
return NULL;
}
void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_addr, unsigned long attrs)
{
unsigned int page_order = get_order(size);
/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
if (dma_should_free_from_pool(dev, attrs) &&
dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
return;
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
!force_dma_unencrypted(dev)) {
/* cpu_addr is a struct page cookie, not a kernel address */
dma_free_contiguous(dev, cpu_addr, size);
return;
}
if (force_dma_unencrypted(dev))
set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
vunmap(cpu_addr);
else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
arch_dma_clear_uncached(cpu_addr, size);
dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
}
void *dma_direct_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
dma_alloc_need_uncached(dev, attrs))
return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
}
void dma_direct_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
{
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
dma_alloc_need_uncached(dev, attrs))
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
else
dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
}
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_single_for_device(struct device *dev,
dma_addr_t addr, size_t size, enum dma_data_direction dir)
{
phys_addr_t paddr = dma_to_phys(dev, addr);
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, size, dir);
}
EXPORT_SYMBOL(dma_direct_sync_single_for_device);
void dma_direct_sync_sg_for_device(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, sg->length,
dir, SYNC_FOR_DEVICE);
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, sg->length,
dir);
}
}
EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
#endif
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
defined(CONFIG_SWIOTLB)
void dma_direct_sync_single_for_cpu(struct device *dev,
dma_addr_t addr, size_t size, enum dma_data_direction dir)
{
phys_addr_t paddr = dma_to_phys(dev, addr);
if (!dev_is_dma_coherent(dev)) {
arch_sync_dma_for_cpu(paddr, size, dir);
arch_sync_dma_for_cpu_all();
}
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
}
EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
void dma_direct_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sgl, int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i) {
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu(paddr, sg->length, dir);
if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
SYNC_FOR_CPU);
}
if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_cpu_all();
}
EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
phys_addr_t phys = dma_to_phys(dev, addr);
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
if (unlikely(is_swiotlb_buffer(phys)))
swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
}
EXPORT_SYMBOL(dma_direct_unmap_page);
void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir, unsigned long attrs)
{
struct scatterlist *sg;
int i;
for_each_sg(sgl, sg, nents, i)
dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
attrs);
}
EXPORT_SYMBOL(dma_direct_unmap_sg);
#endif
dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
phys_addr_t phys = page_to_phys(page) + offset;
dma_addr_t dma_addr = phys_to_dma(dev, phys);
if (unlikely(swiotlb_force == SWIOTLB_FORCE))
return swiotlb_map(dev, phys, size, dir, attrs);
if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
if (swiotlb_force != SWIOTLB_NO_FORCE)
return swiotlb_map(dev, phys, size, dir, attrs);
dev_WARN_ONCE(dev, 1,
"DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
return DMA_MAPPING_ERROR;
}
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
arch_sync_dma_for_device(phys, size, dir);
return dma_addr;
}
EXPORT_SYMBOL(dma_direct_map_page);
int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
enum dma_data_direction dir, unsigned long attrs)
{
int i;
struct scatterlist *sg;
for_each_sg(sgl, sg, nents, i) {
sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
sg->offset, sg->length, dir, attrs);
if (sg->dma_address == DMA_MAPPING_ERROR)
goto out_unmap;
sg_dma_len(sg) = sg->length;
}
return nents;
out_unmap:
dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
return 0;
}
EXPORT_SYMBOL(dma_direct_map_sg);
dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
dma_addr_t dma_addr = paddr;
if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
dev_err_once(dev,
"DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
WARN_ON_ONCE(1);
return DMA_MAPPING_ERROR;
}
return dma_addr;
}
EXPORT_SYMBOL(dma_direct_map_resource);
int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct page *page = dma_direct_to_page(dev, dma_addr);
int ret;
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
bool dma_direct_can_mmap(struct device *dev)
{
return dev_is_dma_coherent(dev) ||
IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
}
int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
unsigned long user_count = vma_pages(vma);
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
int ret = -ENXIO;
vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
return -ENXIO;
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
user_count << PAGE_SHIFT, vma->vm_page_prot);
}
int dma_direct_supported(struct device *dev, u64 mask)
{
u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
/*
* Because 32-bit DMA masks are so common we expect every architecture
* to be able to satisfy them - either by not supporting more physical
* memory, or by providing a ZONE_DMA32. If neither is the case, the
* architecture needs to use an IOMMU instead of the direct mapping.
*/
if (mask >= DMA_BIT_MASK(32))
return 1;
/*
* This check needs to be against the actual bit mask value, so
* use __phys_to_dma() here so that the SME encryption mask isn't
* part of the check.
*/
if (IS_ENABLED(CONFIG_ZONE_DMA))
min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
return mask >= __phys_to_dma(dev, min_mask);
}
size_t dma_direct_max_mapping_size(struct device *dev)
{
/* If SWIOTLB is active, use its maximum mapping size */
if (is_swiotlb_active() &&
(dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
return swiotlb_max_mapping_size(dev);
return SIZE_MAX;
}
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
{
return !dev_is_dma_coherent(dev) ||
is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
}