mirror of
https://github.com/torvalds/linux.git
synced 2024-12-14 07:02:23 +00:00
782182e53a
It is better to define readahead(2) in mm/readahead.c than in mm/filemap.c. Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
605 lines
16 KiB
C
605 lines
16 KiB
C
/*
|
|
* mm/readahead.c - address_space-level file readahead.
|
|
*
|
|
* Copyright (C) 2002, Linus Torvalds
|
|
*
|
|
* 09Apr2002 Andrew Morton
|
|
* Initial version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/file.h>
|
|
|
|
/*
|
|
* Initialise a struct file's readahead state. Assumes that the caller has
|
|
* memset *ra to zero.
|
|
*/
|
|
void
|
|
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
|
|
{
|
|
ra->ra_pages = mapping->backing_dev_info->ra_pages;
|
|
ra->prev_pos = -1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(file_ra_state_init);
|
|
|
|
#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
|
|
|
|
/*
|
|
* see if a page needs releasing upon read_cache_pages() failure
|
|
* - the caller of read_cache_pages() may have set PG_private or PG_fscache
|
|
* before calling, such as the NFS fs marking pages that are cached locally
|
|
* on disk, thus we need to give the fs a chance to clean up in the event of
|
|
* an error
|
|
*/
|
|
static void read_cache_pages_invalidate_page(struct address_space *mapping,
|
|
struct page *page)
|
|
{
|
|
if (page_has_private(page)) {
|
|
if (!trylock_page(page))
|
|
BUG();
|
|
page->mapping = mapping;
|
|
do_invalidatepage(page, 0);
|
|
page->mapping = NULL;
|
|
unlock_page(page);
|
|
}
|
|
page_cache_release(page);
|
|
}
|
|
|
|
/*
|
|
* release a list of pages, invalidating them first if need be
|
|
*/
|
|
static void read_cache_pages_invalidate_pages(struct address_space *mapping,
|
|
struct list_head *pages)
|
|
{
|
|
struct page *victim;
|
|
|
|
while (!list_empty(pages)) {
|
|
victim = list_to_page(pages);
|
|
list_del(&victim->lru);
|
|
read_cache_pages_invalidate_page(mapping, victim);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* read_cache_pages - populate an address space with some pages & start reads against them
|
|
* @mapping: the address_space
|
|
* @pages: The address of a list_head which contains the target pages. These
|
|
* pages have their ->index populated and are otherwise uninitialised.
|
|
* @filler: callback routine for filling a single page.
|
|
* @data: private data for the callback routine.
|
|
*
|
|
* Hides the details of the LRU cache etc from the filesystems.
|
|
*/
|
|
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
|
|
int (*filler)(void *, struct page *), void *data)
|
|
{
|
|
struct page *page;
|
|
int ret = 0;
|
|
|
|
while (!list_empty(pages)) {
|
|
page = list_to_page(pages);
|
|
list_del(&page->lru);
|
|
if (add_to_page_cache_lru(page, mapping,
|
|
page->index, GFP_KERNEL)) {
|
|
read_cache_pages_invalidate_page(mapping, page);
|
|
continue;
|
|
}
|
|
page_cache_release(page);
|
|
|
|
ret = filler(data, page);
|
|
if (unlikely(ret)) {
|
|
read_cache_pages_invalidate_pages(mapping, pages);
|
|
break;
|
|
}
|
|
task_io_account_read(PAGE_CACHE_SIZE);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(read_cache_pages);
|
|
|
|
static int read_pages(struct address_space *mapping, struct file *filp,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
struct blk_plug plug;
|
|
unsigned page_idx;
|
|
int ret;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
if (mapping->a_ops->readpages) {
|
|
ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
|
|
/* Clean up the remaining pages */
|
|
put_pages_list(pages);
|
|
goto out;
|
|
}
|
|
|
|
for (page_idx = 0; page_idx < nr_pages; page_idx++) {
|
|
struct page *page = list_to_page(pages);
|
|
list_del(&page->lru);
|
|
if (!add_to_page_cache_lru(page, mapping,
|
|
page->index, GFP_KERNEL)) {
|
|
mapping->a_ops->readpage(filp, page);
|
|
}
|
|
page_cache_release(page);
|
|
}
|
|
ret = 0;
|
|
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
|
|
* the pages first, then submits them all for I/O. This avoids the very bad
|
|
* behaviour which would occur if page allocations are causing VM writeback.
|
|
* We really don't want to intermingle reads and writes like that.
|
|
*
|
|
* Returns the number of pages requested, or the maximum amount of I/O allowed.
|
|
*/
|
|
static int
|
|
__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
|
|
pgoff_t offset, unsigned long nr_to_read,
|
|
unsigned long lookahead_size)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct page *page;
|
|
unsigned long end_index; /* The last page we want to read */
|
|
LIST_HEAD(page_pool);
|
|
int page_idx;
|
|
int ret = 0;
|
|
loff_t isize = i_size_read(inode);
|
|
|
|
if (isize == 0)
|
|
goto out;
|
|
|
|
end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
|
|
|
|
/*
|
|
* Preallocate as many pages as we will need.
|
|
*/
|
|
for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
|
|
pgoff_t page_offset = offset + page_idx;
|
|
|
|
if (page_offset > end_index)
|
|
break;
|
|
|
|
rcu_read_lock();
|
|
page = radix_tree_lookup(&mapping->page_tree, page_offset);
|
|
rcu_read_unlock();
|
|
if (page)
|
|
continue;
|
|
|
|
page = page_cache_alloc_readahead(mapping);
|
|
if (!page)
|
|
break;
|
|
page->index = page_offset;
|
|
list_add(&page->lru, &page_pool);
|
|
if (page_idx == nr_to_read - lookahead_size)
|
|
SetPageReadahead(page);
|
|
ret++;
|
|
}
|
|
|
|
/*
|
|
* Now start the IO. We ignore I/O errors - if the page is not
|
|
* uptodate then the caller will launch readpage again, and
|
|
* will then handle the error.
|
|
*/
|
|
if (ret)
|
|
read_pages(mapping, filp, &page_pool, ret);
|
|
BUG_ON(!list_empty(&page_pool));
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Chunk the readahead into 2 megabyte units, so that we don't pin too much
|
|
* memory at once.
|
|
*/
|
|
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
|
|
pgoff_t offset, unsigned long nr_to_read)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
|
|
return -EINVAL;
|
|
|
|
nr_to_read = max_sane_readahead(nr_to_read);
|
|
while (nr_to_read) {
|
|
int err;
|
|
|
|
unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
|
|
|
|
if (this_chunk > nr_to_read)
|
|
this_chunk = nr_to_read;
|
|
err = __do_page_cache_readahead(mapping, filp,
|
|
offset, this_chunk, 0);
|
|
if (err < 0) {
|
|
ret = err;
|
|
break;
|
|
}
|
|
ret += err;
|
|
offset += this_chunk;
|
|
nr_to_read -= this_chunk;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
|
|
* sensible upper limit.
|
|
*/
|
|
unsigned long max_sane_readahead(unsigned long nr)
|
|
{
|
|
return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
|
|
+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
|
|
}
|
|
|
|
/*
|
|
* Submit IO for the read-ahead request in file_ra_state.
|
|
*/
|
|
unsigned long ra_submit(struct file_ra_state *ra,
|
|
struct address_space *mapping, struct file *filp)
|
|
{
|
|
int actual;
|
|
|
|
actual = __do_page_cache_readahead(mapping, filp,
|
|
ra->start, ra->size, ra->async_size);
|
|
|
|
return actual;
|
|
}
|
|
|
|
/*
|
|
* Set the initial window size, round to next power of 2 and square
|
|
* for small size, x 4 for medium, and x 2 for large
|
|
* for 128k (32 page) max ra
|
|
* 1-8 page = 32k initial, > 8 page = 128k initial
|
|
*/
|
|
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
|
|
{
|
|
unsigned long newsize = roundup_pow_of_two(size);
|
|
|
|
if (newsize <= max / 32)
|
|
newsize = newsize * 4;
|
|
else if (newsize <= max / 4)
|
|
newsize = newsize * 2;
|
|
else
|
|
newsize = max;
|
|
|
|
return newsize;
|
|
}
|
|
|
|
/*
|
|
* Get the previous window size, ramp it up, and
|
|
* return it as the new window size.
|
|
*/
|
|
static unsigned long get_next_ra_size(struct file_ra_state *ra,
|
|
unsigned long max)
|
|
{
|
|
unsigned long cur = ra->size;
|
|
unsigned long newsize;
|
|
|
|
if (cur < max / 16)
|
|
newsize = 4 * cur;
|
|
else
|
|
newsize = 2 * cur;
|
|
|
|
return min(newsize, max);
|
|
}
|
|
|
|
/*
|
|
* On-demand readahead design.
|
|
*
|
|
* The fields in struct file_ra_state represent the most-recently-executed
|
|
* readahead attempt:
|
|
*
|
|
* |<----- async_size ---------|
|
|
* |------------------- size -------------------->|
|
|
* |==================#===========================|
|
|
* ^start ^page marked with PG_readahead
|
|
*
|
|
* To overlap application thinking time and disk I/O time, we do
|
|
* `readahead pipelining': Do not wait until the application consumed all
|
|
* readahead pages and stalled on the missing page at readahead_index;
|
|
* Instead, submit an asynchronous readahead I/O as soon as there are
|
|
* only async_size pages left in the readahead window. Normally async_size
|
|
* will be equal to size, for maximum pipelining.
|
|
*
|
|
* In interleaved sequential reads, concurrent streams on the same fd can
|
|
* be invalidating each other's readahead state. So we flag the new readahead
|
|
* page at (start+size-async_size) with PG_readahead, and use it as readahead
|
|
* indicator. The flag won't be set on already cached pages, to avoid the
|
|
* readahead-for-nothing fuss, saving pointless page cache lookups.
|
|
*
|
|
* prev_pos tracks the last visited byte in the _previous_ read request.
|
|
* It should be maintained by the caller, and will be used for detecting
|
|
* small random reads. Note that the readahead algorithm checks loosely
|
|
* for sequential patterns. Hence interleaved reads might be served as
|
|
* sequential ones.
|
|
*
|
|
* There is a special-case: if the first page which the application tries to
|
|
* read happens to be the first page of the file, it is assumed that a linear
|
|
* read is about to happen and the window is immediately set to the initial size
|
|
* based on I/O request size and the max_readahead.
|
|
*
|
|
* The code ramps up the readahead size aggressively at first, but slow down as
|
|
* it approaches max_readhead.
|
|
*/
|
|
|
|
/*
|
|
* Count contiguously cached pages from @offset-1 to @offset-@max,
|
|
* this count is a conservative estimation of
|
|
* - length of the sequential read sequence, or
|
|
* - thrashing threshold in memory tight systems
|
|
*/
|
|
static pgoff_t count_history_pages(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
pgoff_t offset, unsigned long max)
|
|
{
|
|
pgoff_t head;
|
|
|
|
rcu_read_lock();
|
|
head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
|
|
rcu_read_unlock();
|
|
|
|
return offset - 1 - head;
|
|
}
|
|
|
|
/*
|
|
* page cache context based read-ahead
|
|
*/
|
|
static int try_context_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
pgoff_t offset,
|
|
unsigned long req_size,
|
|
unsigned long max)
|
|
{
|
|
pgoff_t size;
|
|
|
|
size = count_history_pages(mapping, ra, offset, max);
|
|
|
|
/*
|
|
* no history pages:
|
|
* it could be a random read
|
|
*/
|
|
if (!size)
|
|
return 0;
|
|
|
|
/*
|
|
* starts from beginning of file:
|
|
* it is a strong indication of long-run stream (or whole-file-read)
|
|
*/
|
|
if (size >= offset)
|
|
size *= 2;
|
|
|
|
ra->start = offset;
|
|
ra->size = get_init_ra_size(size + req_size, max);
|
|
ra->async_size = ra->size;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* A minimal readahead algorithm for trivial sequential/random reads.
|
|
*/
|
|
static unsigned long
|
|
ondemand_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra, struct file *filp,
|
|
bool hit_readahead_marker, pgoff_t offset,
|
|
unsigned long req_size)
|
|
{
|
|
unsigned long max = max_sane_readahead(ra->ra_pages);
|
|
|
|
/*
|
|
* start of file
|
|
*/
|
|
if (!offset)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* It's the expected callback offset, assume sequential access.
|
|
* Ramp up sizes, and push forward the readahead window.
|
|
*/
|
|
if ((offset == (ra->start + ra->size - ra->async_size) ||
|
|
offset == (ra->start + ra->size))) {
|
|
ra->start += ra->size;
|
|
ra->size = get_next_ra_size(ra, max);
|
|
ra->async_size = ra->size;
|
|
goto readit;
|
|
}
|
|
|
|
/*
|
|
* Hit a marked page without valid readahead state.
|
|
* E.g. interleaved reads.
|
|
* Query the pagecache for async_size, which normally equals to
|
|
* readahead size. Ramp it up and use it as the new readahead size.
|
|
*/
|
|
if (hit_readahead_marker) {
|
|
pgoff_t start;
|
|
|
|
rcu_read_lock();
|
|
start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
|
|
rcu_read_unlock();
|
|
|
|
if (!start || start - offset > max)
|
|
return 0;
|
|
|
|
ra->start = start;
|
|
ra->size = start - offset; /* old async_size */
|
|
ra->size += req_size;
|
|
ra->size = get_next_ra_size(ra, max);
|
|
ra->async_size = ra->size;
|
|
goto readit;
|
|
}
|
|
|
|
/*
|
|
* oversize read
|
|
*/
|
|
if (req_size > max)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* sequential cache miss
|
|
*/
|
|
if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
|
|
goto initial_readahead;
|
|
|
|
/*
|
|
* Query the page cache and look for the traces(cached history pages)
|
|
* that a sequential stream would leave behind.
|
|
*/
|
|
if (try_context_readahead(mapping, ra, offset, req_size, max))
|
|
goto readit;
|
|
|
|
/*
|
|
* standalone, small random read
|
|
* Read as is, and do not pollute the readahead state.
|
|
*/
|
|
return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
|
|
|
|
initial_readahead:
|
|
ra->start = offset;
|
|
ra->size = get_init_ra_size(req_size, max);
|
|
ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
|
|
|
|
readit:
|
|
/*
|
|
* Will this read hit the readahead marker made by itself?
|
|
* If so, trigger the readahead marker hit now, and merge
|
|
* the resulted next readahead window into the current one.
|
|
*/
|
|
if (offset == ra->start && ra->size == ra->async_size) {
|
|
ra->async_size = get_next_ra_size(ra, max);
|
|
ra->size += ra->async_size;
|
|
}
|
|
|
|
return ra_submit(ra, mapping, filp);
|
|
}
|
|
|
|
/**
|
|
* page_cache_sync_readahead - generic file readahead
|
|
* @mapping: address_space which holds the pagecache and I/O vectors
|
|
* @ra: file_ra_state which holds the readahead state
|
|
* @filp: passed on to ->readpage() and ->readpages()
|
|
* @offset: start offset into @mapping, in pagecache page-sized units
|
|
* @req_size: hint: total size of the read which the caller is performing in
|
|
* pagecache pages
|
|
*
|
|
* page_cache_sync_readahead() should be called when a cache miss happened:
|
|
* it will submit the read. The readahead logic may decide to piggyback more
|
|
* pages onto the read request if access patterns suggest it will improve
|
|
* performance.
|
|
*/
|
|
void page_cache_sync_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra, struct file *filp,
|
|
pgoff_t offset, unsigned long req_size)
|
|
{
|
|
/* no read-ahead */
|
|
if (!ra->ra_pages)
|
|
return;
|
|
|
|
/* be dumb */
|
|
if (filp && (filp->f_mode & FMODE_RANDOM)) {
|
|
force_page_cache_readahead(mapping, filp, offset, req_size);
|
|
return;
|
|
}
|
|
|
|
/* do read-ahead */
|
|
ondemand_readahead(mapping, ra, filp, false, offset, req_size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
|
|
|
|
/**
|
|
* page_cache_async_readahead - file readahead for marked pages
|
|
* @mapping: address_space which holds the pagecache and I/O vectors
|
|
* @ra: file_ra_state which holds the readahead state
|
|
* @filp: passed on to ->readpage() and ->readpages()
|
|
* @page: the page at @offset which has the PG_readahead flag set
|
|
* @offset: start offset into @mapping, in pagecache page-sized units
|
|
* @req_size: hint: total size of the read which the caller is performing in
|
|
* pagecache pages
|
|
*
|
|
* page_cache_async_readahead() should be called when a page is used which
|
|
* has the PG_readahead flag; this is a marker to suggest that the application
|
|
* has used up enough of the readahead window that we should start pulling in
|
|
* more pages.
|
|
*/
|
|
void
|
|
page_cache_async_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra, struct file *filp,
|
|
struct page *page, pgoff_t offset,
|
|
unsigned long req_size)
|
|
{
|
|
/* no read-ahead */
|
|
if (!ra->ra_pages)
|
|
return;
|
|
|
|
/*
|
|
* Same bit is used for PG_readahead and PG_reclaim.
|
|
*/
|
|
if (PageWriteback(page))
|
|
return;
|
|
|
|
ClearPageReadahead(page);
|
|
|
|
/*
|
|
* Defer asynchronous read-ahead on IO congestion.
|
|
*/
|
|
if (bdi_read_congested(mapping->backing_dev_info))
|
|
return;
|
|
|
|
/* do read-ahead */
|
|
ondemand_readahead(mapping, ra, filp, true, offset, req_size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_cache_async_readahead);
|
|
|
|
static ssize_t
|
|
do_readahead(struct address_space *mapping, struct file *filp,
|
|
pgoff_t index, unsigned long nr)
|
|
{
|
|
if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
|
|
return -EINVAL;
|
|
|
|
force_page_cache_readahead(mapping, filp, index, nr);
|
|
return 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
struct file *file;
|
|
|
|
ret = -EBADF;
|
|
file = fget(fd);
|
|
if (file) {
|
|
if (file->f_mode & FMODE_READ) {
|
|
struct address_space *mapping = file->f_mapping;
|
|
pgoff_t start = offset >> PAGE_CACHE_SHIFT;
|
|
pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
|
|
unsigned long len = end - start + 1;
|
|
ret = do_readahead(mapping, file, start, len);
|
|
}
|
|
fput(file);
|
|
}
|
|
return ret;
|
|
}
|
|
#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
|
|
asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
|
|
{
|
|
return SYSC_readahead((int) fd, offset, (size_t) count);
|
|
}
|
|
SYSCALL_ALIAS(sys_readahead, SyS_readahead);
|
|
#endif
|