mirror of
https://github.com/torvalds/linux.git
synced 2024-11-26 22:21:42 +00:00
24bcc30767
Instead of relying on RTNL, fq_dump() can use READ_ONCE() annotations, paired with WRITE_ONCE() in fq_change() v2: Addressed Simon feedback in V1: https://lore.kernel.org/netdev/20240416181915.GT2320920@kernel.org/ Signed-off-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Simon Horman <horms@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
1326 lines
33 KiB
C
1326 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
|
|
*
|
|
* Copyright (C) 2013-2023 Eric Dumazet <edumazet@google.com>
|
|
*
|
|
* Meant to be mostly used for locally generated traffic :
|
|
* Fast classification depends on skb->sk being set before reaching us.
|
|
* If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
|
|
* All packets belonging to a socket are considered as a 'flow'.
|
|
*
|
|
* Flows are dynamically allocated and stored in a hash table of RB trees
|
|
* They are also part of one Round Robin 'queues' (new or old flows)
|
|
*
|
|
* Burst avoidance (aka pacing) capability :
|
|
*
|
|
* Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
|
|
* bunch of packets, and this packet scheduler adds delay between
|
|
* packets to respect rate limitation.
|
|
*
|
|
* enqueue() :
|
|
* - lookup one RB tree (out of 1024 or more) to find the flow.
|
|
* If non existent flow, create it, add it to the tree.
|
|
* Add skb to the per flow list of skb (fifo).
|
|
* - Use a special fifo for high prio packets
|
|
*
|
|
* dequeue() : serves flows in Round Robin
|
|
* Note : When a flow becomes empty, we do not immediately remove it from
|
|
* rb trees, for performance reasons (its expected to send additional packets,
|
|
* or SLAB cache will reuse socket for another flow)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/string.h>
|
|
#include <linux/in.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <net/netlink.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/sock.h>
|
|
#include <net/tcp_states.h>
|
|
#include <net/tcp.h>
|
|
|
|
struct fq_skb_cb {
|
|
u64 time_to_send;
|
|
u8 band;
|
|
};
|
|
|
|
static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
|
|
{
|
|
qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
|
|
return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
|
|
}
|
|
|
|
/*
|
|
* Per flow structure, dynamically allocated.
|
|
* If packets have monotically increasing time_to_send, they are placed in O(1)
|
|
* in linear list (head,tail), otherwise are placed in a rbtree (t_root).
|
|
*/
|
|
struct fq_flow {
|
|
/* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
|
|
struct rb_root t_root;
|
|
struct sk_buff *head; /* list of skbs for this flow : first skb */
|
|
union {
|
|
struct sk_buff *tail; /* last skb in the list */
|
|
unsigned long age; /* (jiffies | 1UL) when flow was emptied, for gc */
|
|
};
|
|
union {
|
|
struct rb_node fq_node; /* anchor in fq_root[] trees */
|
|
/* Following field is only used for q->internal,
|
|
* because q->internal is not hashed in fq_root[]
|
|
*/
|
|
u64 stat_fastpath_packets;
|
|
};
|
|
struct sock *sk;
|
|
u32 socket_hash; /* sk_hash */
|
|
int qlen; /* number of packets in flow queue */
|
|
|
|
/* Second cache line */
|
|
int credit;
|
|
int band;
|
|
struct fq_flow *next; /* next pointer in RR lists */
|
|
|
|
struct rb_node rate_node; /* anchor in q->delayed tree */
|
|
u64 time_next_packet;
|
|
};
|
|
|
|
struct fq_flow_head {
|
|
struct fq_flow *first;
|
|
struct fq_flow *last;
|
|
};
|
|
|
|
struct fq_perband_flows {
|
|
struct fq_flow_head new_flows;
|
|
struct fq_flow_head old_flows;
|
|
int credit;
|
|
int quantum; /* based on band nr : 576KB, 192KB, 64KB */
|
|
};
|
|
|
|
#define FQ_PRIO2BAND_CRUMB_SIZE ((TC_PRIO_MAX + 1) >> 2)
|
|
|
|
struct fq_sched_data {
|
|
/* Read mostly cache line */
|
|
|
|
u32 quantum;
|
|
u32 initial_quantum;
|
|
u32 flow_refill_delay;
|
|
u32 flow_plimit; /* max packets per flow */
|
|
unsigned long flow_max_rate; /* optional max rate per flow */
|
|
u64 ce_threshold;
|
|
u64 horizon; /* horizon in ns */
|
|
u32 orphan_mask; /* mask for orphaned skb */
|
|
u32 low_rate_threshold;
|
|
struct rb_root *fq_root;
|
|
u8 rate_enable;
|
|
u8 fq_trees_log;
|
|
u8 horizon_drop;
|
|
u8 prio2band[FQ_PRIO2BAND_CRUMB_SIZE];
|
|
u32 timer_slack; /* hrtimer slack in ns */
|
|
|
|
/* Read/Write fields. */
|
|
|
|
unsigned int band_nr; /* band being serviced in fq_dequeue() */
|
|
|
|
struct fq_perband_flows band_flows[FQ_BANDS];
|
|
|
|
struct fq_flow internal; /* fastpath queue. */
|
|
struct rb_root delayed; /* for rate limited flows */
|
|
u64 time_next_delayed_flow;
|
|
unsigned long unthrottle_latency_ns;
|
|
|
|
u32 band_pkt_count[FQ_BANDS];
|
|
u32 flows;
|
|
u32 inactive_flows; /* Flows with no packet to send. */
|
|
u32 throttled_flows;
|
|
|
|
u64 stat_throttled;
|
|
struct qdisc_watchdog watchdog;
|
|
u64 stat_gc_flows;
|
|
|
|
/* Seldom used fields. */
|
|
|
|
u64 stat_band_drops[FQ_BANDS];
|
|
u64 stat_ce_mark;
|
|
u64 stat_horizon_drops;
|
|
u64 stat_horizon_caps;
|
|
u64 stat_flows_plimit;
|
|
u64 stat_pkts_too_long;
|
|
u64 stat_allocation_errors;
|
|
};
|
|
|
|
/* return the i-th 2-bit value ("crumb") */
|
|
static u8 fq_prio2band(const u8 *prio2band, unsigned int prio)
|
|
{
|
|
return (READ_ONCE(prio2band[prio / 4]) >> (2 * (prio & 0x3))) & 0x3;
|
|
}
|
|
|
|
/*
|
|
* f->tail and f->age share the same location.
|
|
* We can use the low order bit to differentiate if this location points
|
|
* to a sk_buff or contains a jiffies value, if we force this value to be odd.
|
|
* This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
|
|
*/
|
|
static void fq_flow_set_detached(struct fq_flow *f)
|
|
{
|
|
f->age = jiffies | 1UL;
|
|
}
|
|
|
|
static bool fq_flow_is_detached(const struct fq_flow *f)
|
|
{
|
|
return !!(f->age & 1UL);
|
|
}
|
|
|
|
/* special value to mark a throttled flow (not on old/new list) */
|
|
static struct fq_flow throttled;
|
|
|
|
static bool fq_flow_is_throttled(const struct fq_flow *f)
|
|
{
|
|
return f->next == &throttled;
|
|
}
|
|
|
|
enum new_flow {
|
|
NEW_FLOW,
|
|
OLD_FLOW
|
|
};
|
|
|
|
static void fq_flow_add_tail(struct fq_sched_data *q, struct fq_flow *flow,
|
|
enum new_flow list_sel)
|
|
{
|
|
struct fq_perband_flows *pband = &q->band_flows[flow->band];
|
|
struct fq_flow_head *head = (list_sel == NEW_FLOW) ?
|
|
&pband->new_flows :
|
|
&pband->old_flows;
|
|
|
|
if (head->first)
|
|
head->last->next = flow;
|
|
else
|
|
head->first = flow;
|
|
head->last = flow;
|
|
flow->next = NULL;
|
|
}
|
|
|
|
static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
|
|
{
|
|
rb_erase(&f->rate_node, &q->delayed);
|
|
q->throttled_flows--;
|
|
fq_flow_add_tail(q, f, OLD_FLOW);
|
|
}
|
|
|
|
static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
|
|
{
|
|
struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
|
|
|
|
while (*p) {
|
|
struct fq_flow *aux;
|
|
|
|
parent = *p;
|
|
aux = rb_entry(parent, struct fq_flow, rate_node);
|
|
if (f->time_next_packet >= aux->time_next_packet)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
rb_link_node(&f->rate_node, parent, p);
|
|
rb_insert_color(&f->rate_node, &q->delayed);
|
|
q->throttled_flows++;
|
|
q->stat_throttled++;
|
|
|
|
f->next = &throttled;
|
|
if (q->time_next_delayed_flow > f->time_next_packet)
|
|
q->time_next_delayed_flow = f->time_next_packet;
|
|
}
|
|
|
|
|
|
static struct kmem_cache *fq_flow_cachep __read_mostly;
|
|
|
|
|
|
/* limit number of collected flows per round */
|
|
#define FQ_GC_MAX 8
|
|
#define FQ_GC_AGE (3*HZ)
|
|
|
|
static bool fq_gc_candidate(const struct fq_flow *f)
|
|
{
|
|
return fq_flow_is_detached(f) &&
|
|
time_after(jiffies, f->age + FQ_GC_AGE);
|
|
}
|
|
|
|
static void fq_gc(struct fq_sched_data *q,
|
|
struct rb_root *root,
|
|
struct sock *sk)
|
|
{
|
|
struct rb_node **p, *parent;
|
|
void *tofree[FQ_GC_MAX];
|
|
struct fq_flow *f;
|
|
int i, fcnt = 0;
|
|
|
|
p = &root->rb_node;
|
|
parent = NULL;
|
|
while (*p) {
|
|
parent = *p;
|
|
|
|
f = rb_entry(parent, struct fq_flow, fq_node);
|
|
if (f->sk == sk)
|
|
break;
|
|
|
|
if (fq_gc_candidate(f)) {
|
|
tofree[fcnt++] = f;
|
|
if (fcnt == FQ_GC_MAX)
|
|
break;
|
|
}
|
|
|
|
if (f->sk > sk)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
|
|
if (!fcnt)
|
|
return;
|
|
|
|
for (i = fcnt; i > 0; ) {
|
|
f = tofree[--i];
|
|
rb_erase(&f->fq_node, root);
|
|
}
|
|
q->flows -= fcnt;
|
|
q->inactive_flows -= fcnt;
|
|
q->stat_gc_flows += fcnt;
|
|
|
|
kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
|
|
}
|
|
|
|
/* Fast path can be used if :
|
|
* 1) Packet tstamp is in the past.
|
|
* 2) FQ qlen == 0 OR
|
|
* (no flow is currently eligible for transmit,
|
|
* AND fast path queue has less than 8 packets)
|
|
* 3) No SO_MAX_PACING_RATE on the socket (if any).
|
|
* 4) No @maxrate attribute on this qdisc,
|
|
*
|
|
* FQ can not use generic TCQ_F_CAN_BYPASS infrastructure.
|
|
*/
|
|
static bool fq_fastpath_check(const struct Qdisc *sch, struct sk_buff *skb,
|
|
u64 now)
|
|
{
|
|
const struct fq_sched_data *q = qdisc_priv(sch);
|
|
const struct sock *sk;
|
|
|
|
if (fq_skb_cb(skb)->time_to_send > now)
|
|
return false;
|
|
|
|
if (sch->q.qlen != 0) {
|
|
/* Even if some packets are stored in this qdisc,
|
|
* we can still enable fast path if all of them are
|
|
* scheduled in the future (ie no flows are eligible)
|
|
* or in the fast path queue.
|
|
*/
|
|
if (q->flows != q->inactive_flows + q->throttled_flows)
|
|
return false;
|
|
|
|
/* Do not allow fast path queue to explode, we want Fair Queue mode
|
|
* under pressure.
|
|
*/
|
|
if (q->internal.qlen >= 8)
|
|
return false;
|
|
}
|
|
|
|
sk = skb->sk;
|
|
if (sk && sk_fullsock(sk) && !sk_is_tcp(sk) &&
|
|
sk->sk_max_pacing_rate != ~0UL)
|
|
return false;
|
|
|
|
if (q->flow_max_rate != ~0UL)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct fq_flow *fq_classify(struct Qdisc *sch, struct sk_buff *skb,
|
|
u64 now)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct rb_node **p, *parent;
|
|
struct sock *sk = skb->sk;
|
|
struct rb_root *root;
|
|
struct fq_flow *f;
|
|
|
|
/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
|
|
* or a listener (SYNCOOKIE mode)
|
|
* 1) request sockets are not full blown,
|
|
* they do not contain sk_pacing_rate
|
|
* 2) They are not part of a 'flow' yet
|
|
* 3) We do not want to rate limit them (eg SYNFLOOD attack),
|
|
* especially if the listener set SO_MAX_PACING_RATE
|
|
* 4) We pretend they are orphaned
|
|
*/
|
|
if (!sk || sk_listener(sk)) {
|
|
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
|
|
|
|
/* By forcing low order bit to 1, we make sure to not
|
|
* collide with a local flow (socket pointers are word aligned)
|
|
*/
|
|
sk = (struct sock *)((hash << 1) | 1UL);
|
|
skb_orphan(skb);
|
|
} else if (sk->sk_state == TCP_CLOSE) {
|
|
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
|
|
/*
|
|
* Sockets in TCP_CLOSE are non connected.
|
|
* Typical use case is UDP sockets, they can send packets
|
|
* with sendto() to many different destinations.
|
|
* We probably could use a generic bit advertising
|
|
* non connected sockets, instead of sk_state == TCP_CLOSE,
|
|
* if we care enough.
|
|
*/
|
|
sk = (struct sock *)((hash << 1) | 1UL);
|
|
}
|
|
|
|
if (fq_fastpath_check(sch, skb, now)) {
|
|
q->internal.stat_fastpath_packets++;
|
|
if (skb->sk == sk && q->rate_enable &&
|
|
READ_ONCE(sk->sk_pacing_status) != SK_PACING_FQ)
|
|
smp_store_release(&sk->sk_pacing_status,
|
|
SK_PACING_FQ);
|
|
return &q->internal;
|
|
}
|
|
|
|
root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
|
|
|
|
fq_gc(q, root, sk);
|
|
|
|
p = &root->rb_node;
|
|
parent = NULL;
|
|
while (*p) {
|
|
parent = *p;
|
|
|
|
f = rb_entry(parent, struct fq_flow, fq_node);
|
|
if (f->sk == sk) {
|
|
/* socket might have been reallocated, so check
|
|
* if its sk_hash is the same.
|
|
* It not, we need to refill credit with
|
|
* initial quantum
|
|
*/
|
|
if (unlikely(skb->sk == sk &&
|
|
f->socket_hash != sk->sk_hash)) {
|
|
f->credit = q->initial_quantum;
|
|
f->socket_hash = sk->sk_hash;
|
|
if (q->rate_enable)
|
|
smp_store_release(&sk->sk_pacing_status,
|
|
SK_PACING_FQ);
|
|
if (fq_flow_is_throttled(f))
|
|
fq_flow_unset_throttled(q, f);
|
|
f->time_next_packet = 0ULL;
|
|
}
|
|
return f;
|
|
}
|
|
if (f->sk > sk)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
|
|
f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
|
|
if (unlikely(!f)) {
|
|
q->stat_allocation_errors++;
|
|
return &q->internal;
|
|
}
|
|
/* f->t_root is already zeroed after kmem_cache_zalloc() */
|
|
|
|
fq_flow_set_detached(f);
|
|
f->sk = sk;
|
|
if (skb->sk == sk) {
|
|
f->socket_hash = sk->sk_hash;
|
|
if (q->rate_enable)
|
|
smp_store_release(&sk->sk_pacing_status,
|
|
SK_PACING_FQ);
|
|
}
|
|
f->credit = q->initial_quantum;
|
|
|
|
rb_link_node(&f->fq_node, parent, p);
|
|
rb_insert_color(&f->fq_node, root);
|
|
|
|
q->flows++;
|
|
q->inactive_flows++;
|
|
return f;
|
|
}
|
|
|
|
static struct sk_buff *fq_peek(struct fq_flow *flow)
|
|
{
|
|
struct sk_buff *skb = skb_rb_first(&flow->t_root);
|
|
struct sk_buff *head = flow->head;
|
|
|
|
if (!skb)
|
|
return head;
|
|
|
|
if (!head)
|
|
return skb;
|
|
|
|
if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
|
|
return skb;
|
|
return head;
|
|
}
|
|
|
|
static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (skb == flow->head) {
|
|
flow->head = skb->next;
|
|
} else {
|
|
rb_erase(&skb->rbnode, &flow->t_root);
|
|
skb->dev = qdisc_dev(sch);
|
|
}
|
|
}
|
|
|
|
/* Remove one skb from flow queue.
|
|
* This skb must be the return value of prior fq_peek().
|
|
*/
|
|
static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
|
|
struct sk_buff *skb)
|
|
{
|
|
fq_erase_head(sch, flow, skb);
|
|
skb_mark_not_on_list(skb);
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
sch->q.qlen--;
|
|
}
|
|
|
|
static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
|
|
{
|
|
struct rb_node **p, *parent;
|
|
struct sk_buff *head, *aux;
|
|
|
|
head = flow->head;
|
|
if (!head ||
|
|
fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
|
|
if (!head)
|
|
flow->head = skb;
|
|
else
|
|
flow->tail->next = skb;
|
|
flow->tail = skb;
|
|
skb->next = NULL;
|
|
return;
|
|
}
|
|
|
|
p = &flow->t_root.rb_node;
|
|
parent = NULL;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
aux = rb_to_skb(parent);
|
|
if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
rb_link_node(&skb->rbnode, parent, p);
|
|
rb_insert_color(&skb->rbnode, &flow->t_root);
|
|
}
|
|
|
|
static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
|
|
const struct fq_sched_data *q, u64 now)
|
|
{
|
|
return unlikely((s64)skb->tstamp > (s64)(now + q->horizon));
|
|
}
|
|
|
|
static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct sk_buff **to_free)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct fq_flow *f;
|
|
u64 now;
|
|
u8 band;
|
|
|
|
band = fq_prio2band(q->prio2band, skb->priority & TC_PRIO_MAX);
|
|
if (unlikely(q->band_pkt_count[band] >= sch->limit)) {
|
|
q->stat_band_drops[band]++;
|
|
return qdisc_drop(skb, sch, to_free);
|
|
}
|
|
|
|
now = ktime_get_ns();
|
|
if (!skb->tstamp) {
|
|
fq_skb_cb(skb)->time_to_send = now;
|
|
} else {
|
|
/* Check if packet timestamp is too far in the future. */
|
|
if (fq_packet_beyond_horizon(skb, q, now)) {
|
|
if (q->horizon_drop) {
|
|
q->stat_horizon_drops++;
|
|
return qdisc_drop(skb, sch, to_free);
|
|
}
|
|
q->stat_horizon_caps++;
|
|
skb->tstamp = now + q->horizon;
|
|
}
|
|
fq_skb_cb(skb)->time_to_send = skb->tstamp;
|
|
}
|
|
|
|
f = fq_classify(sch, skb, now);
|
|
|
|
if (f != &q->internal) {
|
|
if (unlikely(f->qlen >= q->flow_plimit)) {
|
|
q->stat_flows_plimit++;
|
|
return qdisc_drop(skb, sch, to_free);
|
|
}
|
|
|
|
if (fq_flow_is_detached(f)) {
|
|
fq_flow_add_tail(q, f, NEW_FLOW);
|
|
if (time_after(jiffies, f->age + q->flow_refill_delay))
|
|
f->credit = max_t(u32, f->credit, q->quantum);
|
|
}
|
|
|
|
f->band = band;
|
|
q->band_pkt_count[band]++;
|
|
fq_skb_cb(skb)->band = band;
|
|
if (f->qlen == 0)
|
|
q->inactive_flows--;
|
|
}
|
|
|
|
f->qlen++;
|
|
/* Note: this overwrites f->age */
|
|
flow_queue_add(f, skb);
|
|
|
|
qdisc_qstats_backlog_inc(sch, skb);
|
|
sch->q.qlen++;
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
static void fq_check_throttled(struct fq_sched_data *q, u64 now)
|
|
{
|
|
unsigned long sample;
|
|
struct rb_node *p;
|
|
|
|
if (q->time_next_delayed_flow > now)
|
|
return;
|
|
|
|
/* Update unthrottle latency EWMA.
|
|
* This is cheap and can help diagnosing timer/latency problems.
|
|
*/
|
|
sample = (unsigned long)(now - q->time_next_delayed_flow);
|
|
q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
|
|
q->unthrottle_latency_ns += sample >> 3;
|
|
|
|
q->time_next_delayed_flow = ~0ULL;
|
|
while ((p = rb_first(&q->delayed)) != NULL) {
|
|
struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
|
|
|
|
if (f->time_next_packet > now) {
|
|
q->time_next_delayed_flow = f->time_next_packet;
|
|
break;
|
|
}
|
|
fq_flow_unset_throttled(q, f);
|
|
}
|
|
}
|
|
|
|
static struct fq_flow_head *fq_pband_head_select(struct fq_perband_flows *pband)
|
|
{
|
|
if (pband->credit <= 0)
|
|
return NULL;
|
|
|
|
if (pband->new_flows.first)
|
|
return &pband->new_flows;
|
|
|
|
return pband->old_flows.first ? &pband->old_flows : NULL;
|
|
}
|
|
|
|
static struct sk_buff *fq_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct fq_perband_flows *pband;
|
|
struct fq_flow_head *head;
|
|
struct sk_buff *skb;
|
|
struct fq_flow *f;
|
|
unsigned long rate;
|
|
int retry;
|
|
u32 plen;
|
|
u64 now;
|
|
|
|
if (!sch->q.qlen)
|
|
return NULL;
|
|
|
|
skb = fq_peek(&q->internal);
|
|
if (unlikely(skb)) {
|
|
q->internal.qlen--;
|
|
fq_dequeue_skb(sch, &q->internal, skb);
|
|
goto out;
|
|
}
|
|
|
|
now = ktime_get_ns();
|
|
fq_check_throttled(q, now);
|
|
retry = 0;
|
|
pband = &q->band_flows[q->band_nr];
|
|
begin:
|
|
head = fq_pband_head_select(pband);
|
|
if (!head) {
|
|
while (++retry <= FQ_BANDS) {
|
|
if (++q->band_nr == FQ_BANDS)
|
|
q->band_nr = 0;
|
|
pband = &q->band_flows[q->band_nr];
|
|
pband->credit = min(pband->credit + pband->quantum,
|
|
pband->quantum);
|
|
goto begin;
|
|
}
|
|
if (q->time_next_delayed_flow != ~0ULL)
|
|
qdisc_watchdog_schedule_range_ns(&q->watchdog,
|
|
q->time_next_delayed_flow,
|
|
q->timer_slack);
|
|
return NULL;
|
|
}
|
|
f = head->first;
|
|
retry = 0;
|
|
if (f->credit <= 0) {
|
|
f->credit += q->quantum;
|
|
head->first = f->next;
|
|
fq_flow_add_tail(q, f, OLD_FLOW);
|
|
goto begin;
|
|
}
|
|
|
|
skb = fq_peek(f);
|
|
if (skb) {
|
|
u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
|
|
f->time_next_packet);
|
|
|
|
if (now < time_next_packet) {
|
|
head->first = f->next;
|
|
f->time_next_packet = time_next_packet;
|
|
fq_flow_set_throttled(q, f);
|
|
goto begin;
|
|
}
|
|
prefetch(&skb->end);
|
|
if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
|
|
INET_ECN_set_ce(skb);
|
|
q->stat_ce_mark++;
|
|
}
|
|
if (--f->qlen == 0)
|
|
q->inactive_flows++;
|
|
q->band_pkt_count[fq_skb_cb(skb)->band]--;
|
|
fq_dequeue_skb(sch, f, skb);
|
|
} else {
|
|
head->first = f->next;
|
|
/* force a pass through old_flows to prevent starvation */
|
|
if (head == &pband->new_flows) {
|
|
fq_flow_add_tail(q, f, OLD_FLOW);
|
|
} else {
|
|
fq_flow_set_detached(f);
|
|
}
|
|
goto begin;
|
|
}
|
|
plen = qdisc_pkt_len(skb);
|
|
f->credit -= plen;
|
|
pband->credit -= plen;
|
|
|
|
if (!q->rate_enable)
|
|
goto out;
|
|
|
|
rate = q->flow_max_rate;
|
|
|
|
/* If EDT time was provided for this skb, we need to
|
|
* update f->time_next_packet only if this qdisc enforces
|
|
* a flow max rate.
|
|
*/
|
|
if (!skb->tstamp) {
|
|
if (skb->sk)
|
|
rate = min(READ_ONCE(skb->sk->sk_pacing_rate), rate);
|
|
|
|
if (rate <= q->low_rate_threshold) {
|
|
f->credit = 0;
|
|
} else {
|
|
plen = max(plen, q->quantum);
|
|
if (f->credit > 0)
|
|
goto out;
|
|
}
|
|
}
|
|
if (rate != ~0UL) {
|
|
u64 len = (u64)plen * NSEC_PER_SEC;
|
|
|
|
if (likely(rate))
|
|
len = div64_ul(len, rate);
|
|
/* Since socket rate can change later,
|
|
* clamp the delay to 1 second.
|
|
* Really, providers of too big packets should be fixed !
|
|
*/
|
|
if (unlikely(len > NSEC_PER_SEC)) {
|
|
len = NSEC_PER_SEC;
|
|
q->stat_pkts_too_long++;
|
|
}
|
|
/* Account for schedule/timers drifts.
|
|
* f->time_next_packet was set when prior packet was sent,
|
|
* and current time (@now) can be too late by tens of us.
|
|
*/
|
|
if (f->time_next_packet)
|
|
len -= min(len/2, now - f->time_next_packet);
|
|
f->time_next_packet = now + len;
|
|
}
|
|
out:
|
|
qdisc_bstats_update(sch, skb);
|
|
return skb;
|
|
}
|
|
|
|
static void fq_flow_purge(struct fq_flow *flow)
|
|
{
|
|
struct rb_node *p = rb_first(&flow->t_root);
|
|
|
|
while (p) {
|
|
struct sk_buff *skb = rb_to_skb(p);
|
|
|
|
p = rb_next(p);
|
|
rb_erase(&skb->rbnode, &flow->t_root);
|
|
rtnl_kfree_skbs(skb, skb);
|
|
}
|
|
rtnl_kfree_skbs(flow->head, flow->tail);
|
|
flow->head = NULL;
|
|
flow->qlen = 0;
|
|
}
|
|
|
|
static void fq_reset(struct Qdisc *sch)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct rb_root *root;
|
|
struct rb_node *p;
|
|
struct fq_flow *f;
|
|
unsigned int idx;
|
|
|
|
sch->q.qlen = 0;
|
|
sch->qstats.backlog = 0;
|
|
|
|
fq_flow_purge(&q->internal);
|
|
|
|
if (!q->fq_root)
|
|
return;
|
|
|
|
for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
|
|
root = &q->fq_root[idx];
|
|
while ((p = rb_first(root)) != NULL) {
|
|
f = rb_entry(p, struct fq_flow, fq_node);
|
|
rb_erase(p, root);
|
|
|
|
fq_flow_purge(f);
|
|
|
|
kmem_cache_free(fq_flow_cachep, f);
|
|
}
|
|
}
|
|
for (idx = 0; idx < FQ_BANDS; idx++) {
|
|
q->band_flows[idx].new_flows.first = NULL;
|
|
q->band_flows[idx].old_flows.first = NULL;
|
|
}
|
|
q->delayed = RB_ROOT;
|
|
q->flows = 0;
|
|
q->inactive_flows = 0;
|
|
q->throttled_flows = 0;
|
|
}
|
|
|
|
static void fq_rehash(struct fq_sched_data *q,
|
|
struct rb_root *old_array, u32 old_log,
|
|
struct rb_root *new_array, u32 new_log)
|
|
{
|
|
struct rb_node *op, **np, *parent;
|
|
struct rb_root *oroot, *nroot;
|
|
struct fq_flow *of, *nf;
|
|
int fcnt = 0;
|
|
u32 idx;
|
|
|
|
for (idx = 0; idx < (1U << old_log); idx++) {
|
|
oroot = &old_array[idx];
|
|
while ((op = rb_first(oroot)) != NULL) {
|
|
rb_erase(op, oroot);
|
|
of = rb_entry(op, struct fq_flow, fq_node);
|
|
if (fq_gc_candidate(of)) {
|
|
fcnt++;
|
|
kmem_cache_free(fq_flow_cachep, of);
|
|
continue;
|
|
}
|
|
nroot = &new_array[hash_ptr(of->sk, new_log)];
|
|
|
|
np = &nroot->rb_node;
|
|
parent = NULL;
|
|
while (*np) {
|
|
parent = *np;
|
|
|
|
nf = rb_entry(parent, struct fq_flow, fq_node);
|
|
BUG_ON(nf->sk == of->sk);
|
|
|
|
if (nf->sk > of->sk)
|
|
np = &parent->rb_right;
|
|
else
|
|
np = &parent->rb_left;
|
|
}
|
|
|
|
rb_link_node(&of->fq_node, parent, np);
|
|
rb_insert_color(&of->fq_node, nroot);
|
|
}
|
|
}
|
|
q->flows -= fcnt;
|
|
q->inactive_flows -= fcnt;
|
|
q->stat_gc_flows += fcnt;
|
|
}
|
|
|
|
static void fq_free(void *addr)
|
|
{
|
|
kvfree(addr);
|
|
}
|
|
|
|
static int fq_resize(struct Qdisc *sch, u32 log)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct rb_root *array;
|
|
void *old_fq_root;
|
|
u32 idx;
|
|
|
|
if (q->fq_root && log == q->fq_trees_log)
|
|
return 0;
|
|
|
|
/* If XPS was setup, we can allocate memory on right NUMA node */
|
|
array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
|
|
netdev_queue_numa_node_read(sch->dev_queue));
|
|
if (!array)
|
|
return -ENOMEM;
|
|
|
|
for (idx = 0; idx < (1U << log); idx++)
|
|
array[idx] = RB_ROOT;
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
old_fq_root = q->fq_root;
|
|
if (old_fq_root)
|
|
fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
|
|
|
|
q->fq_root = array;
|
|
WRITE_ONCE(q->fq_trees_log, log);
|
|
|
|
sch_tree_unlock(sch);
|
|
|
|
fq_free(old_fq_root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct netlink_range_validation iq_range = {
|
|
.max = INT_MAX,
|
|
};
|
|
|
|
static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
|
|
[TCA_FQ_UNSPEC] = { .strict_start_type = TCA_FQ_TIMER_SLACK },
|
|
|
|
[TCA_FQ_PLIMIT] = { .type = NLA_U32 },
|
|
[TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
|
|
[TCA_FQ_QUANTUM] = { .type = NLA_U32 },
|
|
[TCA_FQ_INITIAL_QUANTUM] = NLA_POLICY_FULL_RANGE(NLA_U32, &iq_range),
|
|
[TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
|
|
[TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
|
|
[TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
|
|
[TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
|
|
[TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
|
|
[TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 },
|
|
[TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
|
|
[TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 },
|
|
[TCA_FQ_TIMER_SLACK] = { .type = NLA_U32 },
|
|
[TCA_FQ_HORIZON] = { .type = NLA_U32 },
|
|
[TCA_FQ_HORIZON_DROP] = { .type = NLA_U8 },
|
|
[TCA_FQ_PRIOMAP] = NLA_POLICY_EXACT_LEN(sizeof(struct tc_prio_qopt)),
|
|
[TCA_FQ_WEIGHTS] = NLA_POLICY_EXACT_LEN(FQ_BANDS * sizeof(s32)),
|
|
};
|
|
|
|
/* compress a u8 array with all elems <= 3 to an array of 2-bit fields */
|
|
static void fq_prio2band_compress_crumb(const u8 *in, u8 *out)
|
|
{
|
|
const int num_elems = TC_PRIO_MAX + 1;
|
|
u8 tmp[FQ_PRIO2BAND_CRUMB_SIZE];
|
|
int i;
|
|
|
|
memset(tmp, 0, sizeof(tmp));
|
|
for (i = 0; i < num_elems; i++)
|
|
tmp[i / 4] |= in[i] << (2 * (i & 0x3));
|
|
|
|
for (i = 0; i < FQ_PRIO2BAND_CRUMB_SIZE; i++)
|
|
WRITE_ONCE(out[i], tmp[i]);
|
|
}
|
|
|
|
static void fq_prio2band_decompress_crumb(const u8 *in, u8 *out)
|
|
{
|
|
const int num_elems = TC_PRIO_MAX + 1;
|
|
int i;
|
|
|
|
for (i = 0; i < num_elems; i++)
|
|
out[i] = fq_prio2band(in, i);
|
|
}
|
|
|
|
static int fq_load_weights(struct fq_sched_data *q,
|
|
const struct nlattr *attr,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
s32 *weights = nla_data(attr);
|
|
int i;
|
|
|
|
for (i = 0; i < FQ_BANDS; i++) {
|
|
if (weights[i] < FQ_MIN_WEIGHT) {
|
|
NL_SET_ERR_MSG_FMT_MOD(extack, "Weight %d less that minimum allowed %d",
|
|
weights[i], FQ_MIN_WEIGHT);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
for (i = 0; i < FQ_BANDS; i++)
|
|
WRITE_ONCE(q->band_flows[i].quantum, weights[i]);
|
|
return 0;
|
|
}
|
|
|
|
static int fq_load_priomap(struct fq_sched_data *q,
|
|
const struct nlattr *attr,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
const struct tc_prio_qopt *map = nla_data(attr);
|
|
int i;
|
|
|
|
if (map->bands != FQ_BANDS) {
|
|
NL_SET_ERR_MSG_MOD(extack, "FQ only supports 3 bands");
|
|
return -EINVAL;
|
|
}
|
|
for (i = 0; i < TC_PRIO_MAX + 1; i++) {
|
|
if (map->priomap[i] >= FQ_BANDS) {
|
|
NL_SET_ERR_MSG_FMT_MOD(extack, "FQ priomap field %d maps to a too high band %d",
|
|
i, map->priomap[i]);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
fq_prio2band_compress_crumb(map->priomap, q->prio2band);
|
|
return 0;
|
|
}
|
|
|
|
static int fq_change(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *tb[TCA_FQ_MAX + 1];
|
|
int err, drop_count = 0;
|
|
unsigned drop_len = 0;
|
|
u32 fq_log;
|
|
|
|
err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
|
|
NULL);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
fq_log = q->fq_trees_log;
|
|
|
|
if (tb[TCA_FQ_BUCKETS_LOG]) {
|
|
u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
|
|
|
|
if (nval >= 1 && nval <= ilog2(256*1024))
|
|
fq_log = nval;
|
|
else
|
|
err = -EINVAL;
|
|
}
|
|
if (tb[TCA_FQ_PLIMIT])
|
|
WRITE_ONCE(sch->limit,
|
|
nla_get_u32(tb[TCA_FQ_PLIMIT]));
|
|
|
|
if (tb[TCA_FQ_FLOW_PLIMIT])
|
|
WRITE_ONCE(q->flow_plimit,
|
|
nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]));
|
|
|
|
if (tb[TCA_FQ_QUANTUM]) {
|
|
u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
|
|
|
|
if (quantum > 0 && quantum <= (1 << 20)) {
|
|
WRITE_ONCE(q->quantum, quantum);
|
|
} else {
|
|
NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
|
|
err = -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (tb[TCA_FQ_INITIAL_QUANTUM])
|
|
WRITE_ONCE(q->initial_quantum,
|
|
nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]));
|
|
|
|
if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
|
|
pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
|
|
nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
|
|
|
|
if (tb[TCA_FQ_FLOW_MAX_RATE]) {
|
|
u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
|
|
|
|
WRITE_ONCE(q->flow_max_rate,
|
|
(rate == ~0U) ? ~0UL : rate);
|
|
}
|
|
if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
|
|
WRITE_ONCE(q->low_rate_threshold,
|
|
nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]));
|
|
|
|
if (tb[TCA_FQ_RATE_ENABLE]) {
|
|
u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
|
|
|
|
if (enable <= 1)
|
|
WRITE_ONCE(q->rate_enable,
|
|
enable);
|
|
else
|
|
err = -EINVAL;
|
|
}
|
|
|
|
if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
|
|
u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
|
|
|
|
WRITE_ONCE(q->flow_refill_delay,
|
|
usecs_to_jiffies(usecs_delay));
|
|
}
|
|
|
|
if (!err && tb[TCA_FQ_PRIOMAP])
|
|
err = fq_load_priomap(q, tb[TCA_FQ_PRIOMAP], extack);
|
|
|
|
if (!err && tb[TCA_FQ_WEIGHTS])
|
|
err = fq_load_weights(q, tb[TCA_FQ_WEIGHTS], extack);
|
|
|
|
if (tb[TCA_FQ_ORPHAN_MASK])
|
|
WRITE_ONCE(q->orphan_mask,
|
|
nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]));
|
|
|
|
if (tb[TCA_FQ_CE_THRESHOLD])
|
|
WRITE_ONCE(q->ce_threshold,
|
|
(u64)NSEC_PER_USEC *
|
|
nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]));
|
|
|
|
if (tb[TCA_FQ_TIMER_SLACK])
|
|
WRITE_ONCE(q->timer_slack,
|
|
nla_get_u32(tb[TCA_FQ_TIMER_SLACK]));
|
|
|
|
if (tb[TCA_FQ_HORIZON])
|
|
WRITE_ONCE(q->horizon,
|
|
(u64)NSEC_PER_USEC *
|
|
nla_get_u32(tb[TCA_FQ_HORIZON]));
|
|
|
|
if (tb[TCA_FQ_HORIZON_DROP])
|
|
WRITE_ONCE(q->horizon_drop,
|
|
nla_get_u8(tb[TCA_FQ_HORIZON_DROP]));
|
|
|
|
if (!err) {
|
|
|
|
sch_tree_unlock(sch);
|
|
err = fq_resize(sch, fq_log);
|
|
sch_tree_lock(sch);
|
|
}
|
|
while (sch->q.qlen > sch->limit) {
|
|
struct sk_buff *skb = fq_dequeue(sch);
|
|
|
|
if (!skb)
|
|
break;
|
|
drop_len += qdisc_pkt_len(skb);
|
|
rtnl_kfree_skbs(skb, skb);
|
|
drop_count++;
|
|
}
|
|
qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
|
|
|
|
sch_tree_unlock(sch);
|
|
return err;
|
|
}
|
|
|
|
static void fq_destroy(struct Qdisc *sch)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
|
|
fq_reset(sch);
|
|
fq_free(q->fq_root);
|
|
qdisc_watchdog_cancel(&q->watchdog);
|
|
}
|
|
|
|
static int fq_init(struct Qdisc *sch, struct nlattr *opt,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
int i, err;
|
|
|
|
sch->limit = 10000;
|
|
q->flow_plimit = 100;
|
|
q->quantum = 2 * psched_mtu(qdisc_dev(sch));
|
|
q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
|
|
q->flow_refill_delay = msecs_to_jiffies(40);
|
|
q->flow_max_rate = ~0UL;
|
|
q->time_next_delayed_flow = ~0ULL;
|
|
q->rate_enable = 1;
|
|
for (i = 0; i < FQ_BANDS; i++) {
|
|
q->band_flows[i].new_flows.first = NULL;
|
|
q->band_flows[i].old_flows.first = NULL;
|
|
}
|
|
q->band_flows[0].quantum = 9 << 16;
|
|
q->band_flows[1].quantum = 3 << 16;
|
|
q->band_flows[2].quantum = 1 << 16;
|
|
q->delayed = RB_ROOT;
|
|
q->fq_root = NULL;
|
|
q->fq_trees_log = ilog2(1024);
|
|
q->orphan_mask = 1024 - 1;
|
|
q->low_rate_threshold = 550000 / 8;
|
|
|
|
q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
|
|
|
|
q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
|
|
q->horizon_drop = 1; /* by default, drop packets beyond horizon */
|
|
|
|
/* Default ce_threshold of 4294 seconds */
|
|
q->ce_threshold = (u64)NSEC_PER_USEC * ~0U;
|
|
|
|
fq_prio2band_compress_crumb(sch_default_prio2band, q->prio2band);
|
|
qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
|
|
|
|
if (opt)
|
|
err = fq_change(sch, opt, extack);
|
|
else
|
|
err = fq_resize(sch, q->fq_trees_log);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct tc_prio_qopt prio = {
|
|
.bands = FQ_BANDS,
|
|
};
|
|
struct nlattr *opts;
|
|
u64 ce_threshold;
|
|
s32 weights[3];
|
|
u64 horizon;
|
|
|
|
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
|
|
if (opts == NULL)
|
|
goto nla_put_failure;
|
|
|
|
/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
|
|
|
|
ce_threshold = READ_ONCE(q->ce_threshold);
|
|
do_div(ce_threshold, NSEC_PER_USEC);
|
|
|
|
horizon = READ_ONCE(q->horizon);
|
|
do_div(horizon, NSEC_PER_USEC);
|
|
|
|
if (nla_put_u32(skb, TCA_FQ_PLIMIT,
|
|
READ_ONCE(sch->limit)) ||
|
|
nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT,
|
|
READ_ONCE(q->flow_plimit)) ||
|
|
nla_put_u32(skb, TCA_FQ_QUANTUM,
|
|
READ_ONCE(q->quantum)) ||
|
|
nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM,
|
|
READ_ONCE(q->initial_quantum)) ||
|
|
nla_put_u32(skb, TCA_FQ_RATE_ENABLE,
|
|
READ_ONCE(q->rate_enable)) ||
|
|
nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
|
|
min_t(unsigned long,
|
|
READ_ONCE(q->flow_max_rate), ~0U)) ||
|
|
nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
|
|
jiffies_to_usecs(READ_ONCE(q->flow_refill_delay))) ||
|
|
nla_put_u32(skb, TCA_FQ_ORPHAN_MASK,
|
|
READ_ONCE(q->orphan_mask)) ||
|
|
nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
|
|
READ_ONCE(q->low_rate_threshold)) ||
|
|
nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
|
|
nla_put_u32(skb, TCA_FQ_BUCKETS_LOG,
|
|
READ_ONCE(q->fq_trees_log)) ||
|
|
nla_put_u32(skb, TCA_FQ_TIMER_SLACK,
|
|
READ_ONCE(q->timer_slack)) ||
|
|
nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
|
|
nla_put_u8(skb, TCA_FQ_HORIZON_DROP,
|
|
READ_ONCE(q->horizon_drop)))
|
|
goto nla_put_failure;
|
|
|
|
fq_prio2band_decompress_crumb(q->prio2band, prio.priomap);
|
|
if (nla_put(skb, TCA_FQ_PRIOMAP, sizeof(prio), &prio))
|
|
goto nla_put_failure;
|
|
|
|
weights[0] = READ_ONCE(q->band_flows[0].quantum);
|
|
weights[1] = READ_ONCE(q->band_flows[1].quantum);
|
|
weights[2] = READ_ONCE(q->band_flows[2].quantum);
|
|
if (nla_put(skb, TCA_FQ_WEIGHTS, sizeof(weights), &weights))
|
|
goto nla_put_failure;
|
|
|
|
return nla_nest_end(skb, opts);
|
|
|
|
nla_put_failure:
|
|
return -1;
|
|
}
|
|
|
|
static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct tc_fq_qd_stats st;
|
|
int i;
|
|
|
|
st.pad = 0;
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
st.gc_flows = q->stat_gc_flows;
|
|
st.highprio_packets = 0;
|
|
st.fastpath_packets = q->internal.stat_fastpath_packets;
|
|
st.tcp_retrans = 0;
|
|
st.throttled = q->stat_throttled;
|
|
st.flows_plimit = q->stat_flows_plimit;
|
|
st.pkts_too_long = q->stat_pkts_too_long;
|
|
st.allocation_errors = q->stat_allocation_errors;
|
|
st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
|
|
ktime_get_ns();
|
|
st.flows = q->flows;
|
|
st.inactive_flows = q->inactive_flows;
|
|
st.throttled_flows = q->throttled_flows;
|
|
st.unthrottle_latency_ns = min_t(unsigned long,
|
|
q->unthrottle_latency_ns, ~0U);
|
|
st.ce_mark = q->stat_ce_mark;
|
|
st.horizon_drops = q->stat_horizon_drops;
|
|
st.horizon_caps = q->stat_horizon_caps;
|
|
for (i = 0; i < FQ_BANDS; i++) {
|
|
st.band_drops[i] = q->stat_band_drops[i];
|
|
st.band_pkt_count[i] = q->band_pkt_count[i];
|
|
}
|
|
sch_tree_unlock(sch);
|
|
|
|
return gnet_stats_copy_app(d, &st, sizeof(st));
|
|
}
|
|
|
|
static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
|
|
.id = "fq",
|
|
.priv_size = sizeof(struct fq_sched_data),
|
|
|
|
.enqueue = fq_enqueue,
|
|
.dequeue = fq_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.init = fq_init,
|
|
.reset = fq_reset,
|
|
.destroy = fq_destroy,
|
|
.change = fq_change,
|
|
.dump = fq_dump,
|
|
.dump_stats = fq_dump_stats,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
MODULE_ALIAS_NET_SCH("fq");
|
|
|
|
static int __init fq_module_init(void)
|
|
{
|
|
int ret;
|
|
|
|
fq_flow_cachep = kmem_cache_create("fq_flow_cache",
|
|
sizeof(struct fq_flow),
|
|
0, SLAB_HWCACHE_ALIGN, NULL);
|
|
if (!fq_flow_cachep)
|
|
return -ENOMEM;
|
|
|
|
ret = register_qdisc(&fq_qdisc_ops);
|
|
if (ret)
|
|
kmem_cache_destroy(fq_flow_cachep);
|
|
return ret;
|
|
}
|
|
|
|
static void __exit fq_module_exit(void)
|
|
{
|
|
unregister_qdisc(&fq_qdisc_ops);
|
|
kmem_cache_destroy(fq_flow_cachep);
|
|
}
|
|
|
|
module_init(fq_module_init)
|
|
module_exit(fq_module_exit)
|
|
MODULE_AUTHOR("Eric Dumazet");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Fair Queue Packet Scheduler");
|