mirror of
https://github.com/torvalds/linux.git
synced 2024-11-05 11:32:04 +00:00
aec5778775
Drivers are going to need to provide multiple functions for rdmavt to call in to. We already have one, so go ahead and push this into a data structure designated for driver supplied functions. Reviewed-by: Mike Marciniszyn <mike.marciniszyn@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com> Signed-off-by: Doug Ledford <dledford@redhat.com>
445 lines
14 KiB
C
445 lines
14 KiB
C
#ifndef DEF_RDMA_VT_H
|
|
#define DEF_RDMA_VT_H
|
|
|
|
/*
|
|
* Copyright(c) 2015 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Structure that low level drivers will populate in order to register with the
|
|
* rdmavt layer.
|
|
*/
|
|
|
|
#include "ib_verbs.h"
|
|
|
|
/*
|
|
* For Memory Regions. This stuff should probably be moved into rdmavt/mr.h once
|
|
* drivers no longer need access to the MR directly.
|
|
*/
|
|
|
|
/*
|
|
* A segment is a linear region of low physical memory.
|
|
* Used by the verbs layer.
|
|
*/
|
|
struct rvt_seg {
|
|
void *vaddr;
|
|
size_t length;
|
|
};
|
|
|
|
/* The number of rvt_segs that fit in a page. */
|
|
#define RVT_SEGSZ (PAGE_SIZE / sizeof(struct rvt_seg))
|
|
|
|
struct rvt_segarray {
|
|
struct rvt_seg segs[RVT_SEGSZ];
|
|
};
|
|
|
|
struct rvt_mregion {
|
|
struct ib_pd *pd; /* shares refcnt of ibmr.pd */
|
|
u64 user_base; /* User's address for this region */
|
|
u64 iova; /* IB start address of this region */
|
|
size_t length;
|
|
u32 lkey;
|
|
u32 offset; /* offset (bytes) to start of region */
|
|
int access_flags;
|
|
u32 max_segs; /* number of rvt_segs in all the arrays */
|
|
u32 mapsz; /* size of the map array */
|
|
u8 page_shift; /* 0 - non unform/non powerof2 sizes */
|
|
u8 lkey_published; /* in global table */
|
|
struct completion comp; /* complete when refcount goes to zero */
|
|
atomic_t refcount;
|
|
struct rvt_segarray *map[0]; /* the segments */
|
|
};
|
|
|
|
#define RVT_MAX_LKEY_TABLE_BITS 23
|
|
|
|
struct rvt_lkey_table {
|
|
spinlock_t lock; /* protect changes in this struct */
|
|
u32 next; /* next unused index (speeds search) */
|
|
u32 gen; /* generation count */
|
|
u32 max; /* size of the table */
|
|
struct rvt_mregion __rcu **table;
|
|
};
|
|
|
|
/* End Memmory Region */
|
|
|
|
/*
|
|
* Things needed for the Queue Pair definition. Like the MR stuff above the
|
|
* following should probably get moved to qp.h once drivers stop trying to make
|
|
* and manipulate thier own QPs. For the few instnaces where a driver may need
|
|
* to look into a queue pair there should be a pointer to a driver priavte data
|
|
* structure that they can look at.
|
|
*/
|
|
|
|
/*
|
|
* These keep track of the copy progress within a memory region.
|
|
* Used by the verbs layer.
|
|
*/
|
|
struct rvt_sge {
|
|
struct rvt_mregion *mr;
|
|
void *vaddr; /* kernel virtual address of segment */
|
|
u32 sge_length; /* length of the SGE */
|
|
u32 length; /* remaining length of the segment */
|
|
u16 m; /* current index: mr->map[m] */
|
|
u16 n; /* current index: mr->map[m]->segs[n] */
|
|
};
|
|
|
|
/*
|
|
* Send work request queue entry.
|
|
* The size of the sg_list is determined when the QP is created and stored
|
|
* in qp->s_max_sge.
|
|
*/
|
|
struct rvt_swqe {
|
|
union {
|
|
struct ib_send_wr wr; /* don't use wr.sg_list */
|
|
struct ib_ud_wr ud_wr;
|
|
struct ib_reg_wr reg_wr;
|
|
struct ib_rdma_wr rdma_wr;
|
|
struct ib_atomic_wr atomic_wr;
|
|
};
|
|
u32 psn; /* first packet sequence number */
|
|
u32 lpsn; /* last packet sequence number */
|
|
u32 ssn; /* send sequence number */
|
|
u32 length; /* total length of data in sg_list */
|
|
struct rvt_sge sg_list[0];
|
|
};
|
|
|
|
/*
|
|
* Receive work request queue entry.
|
|
* The size of the sg_list is determined when the QP (or SRQ) is created
|
|
* and stored in qp->r_rq.max_sge (or srq->rq.max_sge).
|
|
*/
|
|
struct rvt_rwqe {
|
|
u64 wr_id;
|
|
u8 num_sge;
|
|
struct ib_sge sg_list[0];
|
|
};
|
|
|
|
/*
|
|
* This structure is used to contain the head pointer, tail pointer,
|
|
* and receive work queue entries as a single memory allocation so
|
|
* it can be mmap'ed into user space.
|
|
* Note that the wq array elements are variable size so you can't
|
|
* just index into the array to get the N'th element;
|
|
* use get_rwqe_ptr() instead.
|
|
*/
|
|
struct rvt_rwq {
|
|
u32 head; /* new work requests posted to the head */
|
|
u32 tail; /* receives pull requests from here. */
|
|
struct rvt_rwqe wq[0];
|
|
};
|
|
|
|
struct rvt_rq {
|
|
struct rvt_rwq *wq;
|
|
u32 size; /* size of RWQE array */
|
|
u8 max_sge;
|
|
/* protect changes in this struct */
|
|
spinlock_t lock ____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
/*
|
|
* This structure is used by rvt_mmap() to validate an offset
|
|
* when an mmap() request is made. The vm_area_struct then uses
|
|
* this as its vm_private_data.
|
|
*/
|
|
struct rvt_mmap_info {
|
|
struct list_head pending_mmaps;
|
|
struct ib_ucontext *context;
|
|
void *obj;
|
|
__u64 offset;
|
|
struct kref ref;
|
|
unsigned size;
|
|
};
|
|
|
|
#define RVT_MAX_RDMA_ATOMIC 16
|
|
|
|
/*
|
|
* This structure holds the information that the send tasklet needs
|
|
* to send a RDMA read response or atomic operation.
|
|
*/
|
|
struct rvt_ack_entry {
|
|
u8 opcode;
|
|
u8 sent;
|
|
u32 psn;
|
|
u32 lpsn;
|
|
union {
|
|
struct rvt_sge rdma_sge;
|
|
u64 atomic_data;
|
|
};
|
|
};
|
|
|
|
struct rvt_sge_state {
|
|
struct rvt_sge *sg_list; /* next SGE to be used if any */
|
|
struct rvt_sge sge; /* progress state for the current SGE */
|
|
u32 total_len;
|
|
u8 num_sge;
|
|
};
|
|
|
|
/*
|
|
* Variables prefixed with s_ are for the requester (sender).
|
|
* Variables prefixed with r_ are for the responder (receiver).
|
|
* Variables prefixed with ack_ are for responder replies.
|
|
*
|
|
* Common variables are protected by both r_rq.lock and s_lock in that order
|
|
* which only happens in modify_qp() or changing the QP 'state'.
|
|
*/
|
|
struct rvt_qp {
|
|
struct ib_qp ibqp;
|
|
void *priv; /* Driver private data */
|
|
/* read mostly fields above and below */
|
|
struct ib_ah_attr remote_ah_attr;
|
|
struct ib_ah_attr alt_ah_attr;
|
|
struct rvt_qp __rcu *next; /* link list for QPN hash table */
|
|
struct rvt_swqe *s_wq; /* send work queue */
|
|
struct rvt_mmap_info *ip;
|
|
|
|
unsigned long timeout_jiffies; /* computed from timeout */
|
|
|
|
enum ib_mtu path_mtu;
|
|
int srate_mbps; /* s_srate (below) converted to Mbit/s */
|
|
u32 remote_qpn;
|
|
u32 pmtu; /* decoded from path_mtu */
|
|
u32 qkey; /* QKEY for this QP (for UD or RD) */
|
|
u32 s_size; /* send work queue size */
|
|
u32 s_rnr_timeout; /* number of milliseconds for RNR timeout */
|
|
u32 s_ahgpsn; /* set to the psn in the copy of the header */
|
|
|
|
u8 state; /* QP state */
|
|
u8 allowed_ops; /* high order bits of allowed opcodes */
|
|
u8 qp_access_flags;
|
|
u8 alt_timeout; /* Alternate path timeout for this QP */
|
|
u8 timeout; /* Timeout for this QP */
|
|
u8 s_srate;
|
|
u8 s_mig_state;
|
|
u8 port_num;
|
|
u8 s_pkey_index; /* PKEY index to use */
|
|
u8 s_alt_pkey_index; /* Alternate path PKEY index to use */
|
|
u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */
|
|
u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */
|
|
u8 s_retry_cnt; /* number of times to retry */
|
|
u8 s_rnr_retry_cnt;
|
|
u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */
|
|
u8 s_max_sge; /* size of s_wq->sg_list */
|
|
u8 s_draining;
|
|
|
|
/* start of read/write fields */
|
|
atomic_t refcount ____cacheline_aligned_in_smp;
|
|
wait_queue_head_t wait;
|
|
|
|
struct rvt_ack_entry s_ack_queue[RVT_MAX_RDMA_ATOMIC + 1]
|
|
____cacheline_aligned_in_smp;
|
|
struct rvt_sge_state s_rdma_read_sge;
|
|
|
|
spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */
|
|
unsigned long r_aflags;
|
|
u64 r_wr_id; /* ID for current receive WQE */
|
|
u32 r_ack_psn; /* PSN for next ACK or atomic ACK */
|
|
u32 r_len; /* total length of r_sge */
|
|
u32 r_rcv_len; /* receive data len processed */
|
|
u32 r_psn; /* expected rcv packet sequence number */
|
|
u32 r_msn; /* message sequence number */
|
|
|
|
u8 r_state; /* opcode of last packet received */
|
|
u8 r_flags;
|
|
u8 r_head_ack_queue; /* index into s_ack_queue[] */
|
|
|
|
struct list_head rspwait; /* link for waiting to respond */
|
|
|
|
struct rvt_sge_state r_sge; /* current receive data */
|
|
struct rvt_rq r_rq; /* receive work queue */
|
|
|
|
spinlock_t s_lock ____cacheline_aligned_in_smp;
|
|
struct rvt_sge_state *s_cur_sge;
|
|
u32 s_flags;
|
|
struct rvt_swqe *s_wqe;
|
|
struct rvt_sge_state s_sge; /* current send request data */
|
|
struct rvt_mregion *s_rdma_mr;
|
|
struct sdma_engine *s_sde; /* current sde */
|
|
u32 s_cur_size; /* size of send packet in bytes */
|
|
u32 s_len; /* total length of s_sge */
|
|
u32 s_rdma_read_len; /* total length of s_rdma_read_sge */
|
|
u32 s_next_psn; /* PSN for next request */
|
|
u32 s_last_psn; /* last response PSN processed */
|
|
u32 s_sending_psn; /* lowest PSN that is being sent */
|
|
u32 s_sending_hpsn; /* highest PSN that is being sent */
|
|
u32 s_psn; /* current packet sequence number */
|
|
u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */
|
|
u32 s_ack_psn; /* PSN for acking sends and RDMA writes */
|
|
u32 s_head; /* new entries added here */
|
|
u32 s_tail; /* next entry to process */
|
|
u32 s_cur; /* current work queue entry */
|
|
u32 s_acked; /* last un-ACK'ed entry */
|
|
u32 s_last; /* last completed entry */
|
|
u32 s_ssn; /* SSN of tail entry */
|
|
u32 s_lsn; /* limit sequence number (credit) */
|
|
u16 s_hdrwords; /* size of s_hdr in 32 bit words */
|
|
u16 s_rdma_ack_cnt;
|
|
s8 s_ahgidx;
|
|
u8 s_state; /* opcode of last packet sent */
|
|
u8 s_ack_state; /* opcode of packet to ACK */
|
|
u8 s_nak_state; /* non-zero if NAK is pending */
|
|
u8 r_nak_state; /* non-zero if NAK is pending */
|
|
u8 s_retry; /* requester retry counter */
|
|
u8 s_rnr_retry; /* requester RNR retry counter */
|
|
u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */
|
|
u8 s_tail_ack_queue; /* index into s_ack_queue[] */
|
|
|
|
struct rvt_sge_state s_ack_rdma_sge;
|
|
struct timer_list s_timer;
|
|
|
|
/*
|
|
* This sge list MUST be last. Do not add anything below here.
|
|
*/
|
|
struct rvt_sge r_sg_list[0] /* verified SGEs */
|
|
____cacheline_aligned_in_smp;
|
|
};
|
|
|
|
/* End QP section */
|
|
|
|
/*
|
|
* Things that are driver specific, module parameters in hfi1 and qib
|
|
*/
|
|
struct rvt_driver_params {
|
|
/*
|
|
* driver required fields:
|
|
* node_guid
|
|
* phys_port_cnt
|
|
* dma_device
|
|
* owner
|
|
* driver optional fields (rvt will provide generic value if blank):
|
|
* name
|
|
* node_desc
|
|
* rvt fields, driver value ignored:
|
|
* uverbs_abi_ver
|
|
* node_type
|
|
* num_comp_vectors
|
|
* uverbs_cmd_mask
|
|
*/
|
|
struct ib_device_attr props;
|
|
|
|
/*
|
|
* Drivers will need to support a number of notifications to rvt in
|
|
* accordance with certain events. This structure should contain a mask
|
|
* of the supported events. Such events that the rvt may need to know
|
|
* about include:
|
|
* port errors
|
|
* port active
|
|
* lid change
|
|
* sm change
|
|
* client reregister
|
|
* pkey change
|
|
*
|
|
* There may also be other events that the rvt layers needs to know
|
|
* about this is not an exhaustive list. Some events though rvt does not
|
|
* need to rely on the driver for such as completion queue error.
|
|
*/
|
|
int rvt_signal_supported;
|
|
|
|
/*
|
|
* Anything driver specific that is not covered by props
|
|
* For instance special module parameters. Goes here.
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* Functions that drivers are required to support
|
|
*/
|
|
struct rvt_driver_provided {
|
|
/*
|
|
* The work to create port files in /sys/class Infiniband is different
|
|
* depending on the driver. This should not be extracted away and
|
|
* instead drivers are responsible for setting the correct callback for
|
|
* this.
|
|
*/
|
|
int (*port_callback)(struct ib_device *, u8, struct kobject *);
|
|
};
|
|
|
|
/* Protection domain */
|
|
struct rvt_pd {
|
|
struct ib_pd ibpd;
|
|
int user; /* non-zero if created from user space */
|
|
};
|
|
|
|
struct rvt_dev_info {
|
|
/*
|
|
* Prior to calling for registration the driver will be responsible for
|
|
* allocating space for this structure.
|
|
*
|
|
* The driver will also be responsible for filling in certain members of
|
|
* dparms.props
|
|
*/
|
|
struct ib_device ibdev;
|
|
|
|
/* Driver specific properties */
|
|
struct rvt_driver_params dparms;
|
|
|
|
struct rvt_mregion __rcu *dma_mr;
|
|
struct rvt_lkey_table lkey_table;
|
|
|
|
/* PKey Table goes here */
|
|
|
|
/* Driver specific helper functions */
|
|
struct rvt_driver_provided driver_f;
|
|
|
|
/* Internal use */
|
|
int n_pds_allocated;
|
|
spinlock_t n_pds_lock; /* Protect pd allocated count */
|
|
};
|
|
|
|
static inline struct rvt_pd *ibpd_to_rvtpd(struct ib_pd *ibpd)
|
|
{
|
|
return container_of(ibpd, struct rvt_pd, ibpd);
|
|
}
|
|
|
|
static inline struct rvt_dev_info *ib_to_rvt(struct ib_device *ibdev)
|
|
{
|
|
return container_of(ibdev, struct rvt_dev_info, ibdev);
|
|
}
|
|
|
|
int rvt_register_device(struct rvt_dev_info *rvd);
|
|
void rvt_unregister_device(struct rvt_dev_info *rvd);
|
|
|
|
#endif /* DEF_RDMA_VT_H */
|