mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 00:21:32 +00:00
9f318d470e
This change allows us to pass DMA_ATTR_SKIP_CPU_SYNC which allows us to avoid invoking cache line invalidation if the driver will just handle it via a sync_for_cpu or sync_for_device call. Link: http://lkml.kernel.org/r/20161110113513.76501.32321.stgit@ahduyck-blue-test.jf.intel.com Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Keguang Zhang <keguang.zhang@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
448 lines
12 KiB
C
448 lines
12 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
|
|
* Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
|
|
* swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/string.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/dma-contiguous.h>
|
|
|
|
#include <asm/cache.h>
|
|
#include <asm/cpu-type.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <dma-coherence.h>
|
|
|
|
#if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
|
|
/* User defined DMA coherency from command line. */
|
|
enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
|
|
EXPORT_SYMBOL_GPL(coherentio);
|
|
int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
|
|
|
|
static int __init setcoherentio(char *str)
|
|
{
|
|
coherentio = IO_COHERENCE_ENABLED;
|
|
pr_info("Hardware DMA cache coherency (command line)\n");
|
|
return 0;
|
|
}
|
|
early_param("coherentio", setcoherentio);
|
|
|
|
static int __init setnocoherentio(char *str)
|
|
{
|
|
coherentio = IO_COHERENCE_DISABLED;
|
|
pr_info("Software DMA cache coherency (command line)\n");
|
|
return 0;
|
|
}
|
|
early_param("nocoherentio", setnocoherentio);
|
|
#endif
|
|
|
|
static inline struct page *dma_addr_to_page(struct device *dev,
|
|
dma_addr_t dma_addr)
|
|
{
|
|
return pfn_to_page(
|
|
plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* The affected CPUs below in 'cpu_needs_post_dma_flush()' can
|
|
* speculatively fill random cachelines with stale data at any time,
|
|
* requiring an extra flush post-DMA.
|
|
*
|
|
* Warning on the terminology - Linux calls an uncached area coherent;
|
|
* MIPS terminology calls memory areas with hardware maintained coherency
|
|
* coherent.
|
|
*
|
|
* Note that the R14000 and R16000 should also be checked for in this
|
|
* condition. However this function is only called on non-I/O-coherent
|
|
* systems and only the R10000 and R12000 are used in such systems, the
|
|
* SGI IP28 Indigo² rsp. SGI IP32 aka O2.
|
|
*/
|
|
static inline int cpu_needs_post_dma_flush(struct device *dev)
|
|
{
|
|
return !plat_device_is_coherent(dev) &&
|
|
(boot_cpu_type() == CPU_R10000 ||
|
|
boot_cpu_type() == CPU_R12000 ||
|
|
boot_cpu_type() == CPU_BMIPS5000);
|
|
}
|
|
|
|
static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
|
|
{
|
|
gfp_t dma_flag;
|
|
|
|
/* ignore region specifiers */
|
|
gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
|
|
|
|
#ifdef CONFIG_ISA
|
|
if (dev == NULL)
|
|
dma_flag = __GFP_DMA;
|
|
else
|
|
#endif
|
|
#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
|
|
if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
|
|
dma_flag = __GFP_DMA;
|
|
else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
|
|
dma_flag = __GFP_DMA32;
|
|
else
|
|
#endif
|
|
#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
|
|
if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
|
|
dma_flag = __GFP_DMA32;
|
|
else
|
|
#endif
|
|
#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
|
|
if (dev == NULL ||
|
|
dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
|
|
dma_flag = __GFP_DMA;
|
|
else
|
|
#endif
|
|
dma_flag = 0;
|
|
|
|
/* Don't invoke OOM killer */
|
|
gfp |= __GFP_NORETRY;
|
|
|
|
return gfp | dma_flag;
|
|
}
|
|
|
|
static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
|
|
dma_addr_t * dma_handle, gfp_t gfp)
|
|
{
|
|
void *ret;
|
|
|
|
gfp = massage_gfp_flags(dev, gfp);
|
|
|
|
ret = (void *) __get_free_pages(gfp, get_order(size));
|
|
|
|
if (ret != NULL) {
|
|
memset(ret, 0, size);
|
|
*dma_handle = plat_map_dma_mem(dev, ret, size);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
void *ret;
|
|
struct page *page = NULL;
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* XXX: seems like the coherent and non-coherent implementations could
|
|
* be consolidated.
|
|
*/
|
|
if (attrs & DMA_ATTR_NON_CONSISTENT)
|
|
return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
|
|
|
|
gfp = massage_gfp_flags(dev, gfp);
|
|
|
|
if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
|
|
page = dma_alloc_from_contiguous(dev,
|
|
count, get_order(size));
|
|
if (!page)
|
|
page = alloc_pages(gfp, get_order(size));
|
|
|
|
if (!page)
|
|
return NULL;
|
|
|
|
ret = page_address(page);
|
|
memset(ret, 0, size);
|
|
*dma_handle = plat_map_dma_mem(dev, ret, size);
|
|
if (!plat_device_is_coherent(dev)) {
|
|
dma_cache_wback_inv((unsigned long) ret, size);
|
|
ret = UNCAC_ADDR(ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void mips_dma_free_noncoherent(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle)
|
|
{
|
|
plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
|
|
free_pages((unsigned long) vaddr, get_order(size));
|
|
}
|
|
|
|
static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
|
|
dma_addr_t dma_handle, unsigned long attrs)
|
|
{
|
|
unsigned long addr = (unsigned long) vaddr;
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
struct page *page = NULL;
|
|
|
|
if (attrs & DMA_ATTR_NON_CONSISTENT) {
|
|
mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
|
|
return;
|
|
}
|
|
|
|
plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
|
|
|
|
if (!plat_device_is_coherent(dev))
|
|
addr = CAC_ADDR(addr);
|
|
|
|
page = virt_to_page((void *) addr);
|
|
|
|
if (!dma_release_from_contiguous(dev, page, count))
|
|
__free_pages(page, get_order(size));
|
|
}
|
|
|
|
static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long addr = (unsigned long)cpu_addr;
|
|
unsigned long off = vma->vm_pgoff;
|
|
unsigned long pfn;
|
|
int ret = -ENXIO;
|
|
|
|
if (!plat_device_is_coherent(dev))
|
|
addr = CAC_ADDR(addr);
|
|
|
|
pfn = page_to_pfn(virt_to_page((void *)addr));
|
|
|
|
if (attrs & DMA_ATTR_WRITE_COMBINE)
|
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
|
else
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
|
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
if (off < count && user_count <= (count - off)) {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
pfn + off,
|
|
user_count << PAGE_SHIFT,
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void __dma_sync_virtual(void *addr, size_t size,
|
|
enum dma_data_direction direction)
|
|
{
|
|
switch (direction) {
|
|
case DMA_TO_DEVICE:
|
|
dma_cache_wback((unsigned long)addr, size);
|
|
break;
|
|
|
|
case DMA_FROM_DEVICE:
|
|
dma_cache_inv((unsigned long)addr, size);
|
|
break;
|
|
|
|
case DMA_BIDIRECTIONAL:
|
|
dma_cache_wback_inv((unsigned long)addr, size);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A single sg entry may refer to multiple physically contiguous
|
|
* pages. But we still need to process highmem pages individually.
|
|
* If highmem is not configured then the bulk of this loop gets
|
|
* optimized out.
|
|
*/
|
|
static inline void __dma_sync(struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction direction)
|
|
{
|
|
size_t left = size;
|
|
|
|
do {
|
|
size_t len = left;
|
|
|
|
if (PageHighMem(page)) {
|
|
void *addr;
|
|
|
|
if (offset + len > PAGE_SIZE) {
|
|
if (offset >= PAGE_SIZE) {
|
|
page += offset >> PAGE_SHIFT;
|
|
offset &= ~PAGE_MASK;
|
|
}
|
|
len = PAGE_SIZE - offset;
|
|
}
|
|
|
|
addr = kmap_atomic(page);
|
|
__dma_sync_virtual(addr + offset, len, direction);
|
|
kunmap_atomic(addr);
|
|
} else
|
|
__dma_sync_virtual(page_address(page) + offset,
|
|
size, direction);
|
|
offset = 0;
|
|
page++;
|
|
left -= len;
|
|
} while (left);
|
|
}
|
|
|
|
static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
|
|
size_t size, enum dma_data_direction direction, unsigned long attrs)
|
|
{
|
|
if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
__dma_sync(dma_addr_to_page(dev, dma_addr),
|
|
dma_addr & ~PAGE_MASK, size, direction);
|
|
plat_post_dma_flush(dev);
|
|
plat_unmap_dma_mem(dev, dma_addr, size, direction);
|
|
}
|
|
|
|
static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nents, enum dma_data_direction direction, unsigned long attrs)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sglist, sg, nents, i) {
|
|
if (!plat_device_is_coherent(dev) &&
|
|
!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
__dma_sync(sg_page(sg), sg->offset, sg->length,
|
|
direction);
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
sg->dma_length = sg->length;
|
|
#endif
|
|
sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
|
|
sg->offset;
|
|
}
|
|
|
|
return nents;
|
|
}
|
|
|
|
static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction direction,
|
|
unsigned long attrs)
|
|
{
|
|
if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
__dma_sync(page, offset, size, direction);
|
|
|
|
return plat_map_dma_mem_page(dev, page) + offset;
|
|
}
|
|
|
|
static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nhwentries, enum dma_data_direction direction,
|
|
unsigned long attrs)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
for_each_sg(sglist, sg, nhwentries, i) {
|
|
if (!plat_device_is_coherent(dev) &&
|
|
!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
|
direction != DMA_TO_DEVICE)
|
|
__dma_sync(sg_page(sg), sg->offset, sg->length,
|
|
direction);
|
|
plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
|
|
}
|
|
}
|
|
|
|
static void mips_dma_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
|
|
{
|
|
if (cpu_needs_post_dma_flush(dev))
|
|
__dma_sync(dma_addr_to_page(dev, dma_handle),
|
|
dma_handle & ~PAGE_MASK, size, direction);
|
|
plat_post_dma_flush(dev);
|
|
}
|
|
|
|
static void mips_dma_sync_single_for_device(struct device *dev,
|
|
dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
|
|
{
|
|
if (!plat_device_is_coherent(dev))
|
|
__dma_sync(dma_addr_to_page(dev, dma_handle),
|
|
dma_handle & ~PAGE_MASK, size, direction);
|
|
}
|
|
|
|
static void mips_dma_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sglist, int nelems,
|
|
enum dma_data_direction direction)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
if (cpu_needs_post_dma_flush(dev)) {
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
__dma_sync(sg_page(sg), sg->offset, sg->length,
|
|
direction);
|
|
}
|
|
}
|
|
plat_post_dma_flush(dev);
|
|
}
|
|
|
|
static void mips_dma_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sglist, int nelems,
|
|
enum dma_data_direction direction)
|
|
{
|
|
int i;
|
|
struct scatterlist *sg;
|
|
|
|
if (!plat_device_is_coherent(dev)) {
|
|
for_each_sg(sglist, sg, nelems, i) {
|
|
__dma_sync(sg_page(sg), sg->offset, sg->length,
|
|
direction);
|
|
}
|
|
}
|
|
}
|
|
|
|
int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int mips_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
return plat_dma_supported(dev, mask);
|
|
}
|
|
|
|
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
|
|
enum dma_data_direction direction)
|
|
{
|
|
BUG_ON(direction == DMA_NONE);
|
|
|
|
if (!plat_device_is_coherent(dev))
|
|
__dma_sync_virtual(vaddr, size, direction);
|
|
}
|
|
|
|
EXPORT_SYMBOL(dma_cache_sync);
|
|
|
|
static struct dma_map_ops mips_default_dma_map_ops = {
|
|
.alloc = mips_dma_alloc_coherent,
|
|
.free = mips_dma_free_coherent,
|
|
.mmap = mips_dma_mmap,
|
|
.map_page = mips_dma_map_page,
|
|
.unmap_page = mips_dma_unmap_page,
|
|
.map_sg = mips_dma_map_sg,
|
|
.unmap_sg = mips_dma_unmap_sg,
|
|
.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
|
|
.sync_single_for_device = mips_dma_sync_single_for_device,
|
|
.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
|
|
.sync_sg_for_device = mips_dma_sync_sg_for_device,
|
|
.mapping_error = mips_dma_mapping_error,
|
|
.dma_supported = mips_dma_supported
|
|
};
|
|
|
|
struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
|
|
EXPORT_SYMBOL(mips_dma_map_ops);
|
|
|
|
#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
|
|
|
|
static int __init mips_dma_init(void)
|
|
{
|
|
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
|
|
|
|
return 0;
|
|
}
|
|
fs_initcall(mips_dma_init);
|