linux/drivers/crypto/chelsio/chcr_algo.c
Harsh Jain adf1ca6182 crypto: chcr - Adjust Dest. buffer size
Destination buffer size passed to hardware should not be greater
than crypto operation output.

Signed-off-by: Harsh Jain <harsh@chelsio.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-11-30 20:01:48 +08:00

1561 lines
44 KiB
C

/*
* This file is part of the Chelsio T6 Crypto driver for Linux.
*
* Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Written and Maintained by:
* Manoj Malviya (manojmalviya@chelsio.com)
* Atul Gupta (atul.gupta@chelsio.com)
* Jitendra Lulla (jlulla@chelsio.com)
* Yeshaswi M R Gowda (yeshaswi@chelsio.com)
* Harsh Jain (harsh@chelsio.com)
*/
#define pr_fmt(fmt) "chcr:" fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/crypto.h>
#include <linux/cryptohash.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/highmem.h>
#include <linux/scatterlist.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <crypto/internal/hash.h>
#include "t4fw_api.h"
#include "t4_msg.h"
#include "chcr_core.h"
#include "chcr_algo.h"
#include "chcr_crypto.h"
static inline struct ablk_ctx *ABLK_CTX(struct chcr_context *ctx)
{
return ctx->crypto_ctx->ablkctx;
}
static inline struct hmac_ctx *HMAC_CTX(struct chcr_context *ctx)
{
return ctx->crypto_ctx->hmacctx;
}
static inline struct uld_ctx *ULD_CTX(struct chcr_context *ctx)
{
return ctx->dev->u_ctx;
}
static inline int is_ofld_imm(const struct sk_buff *skb)
{
return (skb->len <= CRYPTO_MAX_IMM_TX_PKT_LEN);
}
/*
* sgl_len - calculates the size of an SGL of the given capacity
* @n: the number of SGL entries
* Calculates the number of flits needed for a scatter/gather list that
* can hold the given number of entries.
*/
static inline unsigned int sgl_len(unsigned int n)
{
n--;
return (3 * n) / 2 + (n & 1) + 2;
}
/*
* chcr_handle_resp - Unmap the DMA buffers associated with the request
* @req: crypto request
*/
int chcr_handle_resp(struct crypto_async_request *req, unsigned char *input,
int error_status)
{
struct crypto_tfm *tfm = req->tfm;
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct chcr_req_ctx ctx_req;
struct cpl_fw6_pld *fw6_pld;
unsigned int digestsize, updated_digestsize;
switch (tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_BLKCIPHER:
ctx_req.req.ablk_req = (struct ablkcipher_request *)req;
ctx_req.ctx.ablk_ctx =
ablkcipher_request_ctx(ctx_req.req.ablk_req);
if (!error_status) {
fw6_pld = (struct cpl_fw6_pld *)input;
memcpy(ctx_req.req.ablk_req->info, &fw6_pld->data[2],
AES_BLOCK_SIZE);
}
dma_unmap_sg(&u_ctx->lldi.pdev->dev, ctx_req.req.ablk_req->dst,
ABLK_CTX(ctx)->dst_nents, DMA_FROM_DEVICE);
if (ctx_req.ctx.ablk_ctx->skb) {
kfree_skb(ctx_req.ctx.ablk_ctx->skb);
ctx_req.ctx.ablk_ctx->skb = NULL;
}
break;
case CRYPTO_ALG_TYPE_AHASH:
ctx_req.req.ahash_req = (struct ahash_request *)req;
ctx_req.ctx.ahash_ctx =
ahash_request_ctx(ctx_req.req.ahash_req);
digestsize =
crypto_ahash_digestsize(crypto_ahash_reqtfm(
ctx_req.req.ahash_req));
updated_digestsize = digestsize;
if (digestsize == SHA224_DIGEST_SIZE)
updated_digestsize = SHA256_DIGEST_SIZE;
else if (digestsize == SHA384_DIGEST_SIZE)
updated_digestsize = SHA512_DIGEST_SIZE;
if (ctx_req.ctx.ahash_ctx->skb)
ctx_req.ctx.ahash_ctx->skb = NULL;
if (ctx_req.ctx.ahash_ctx->result == 1) {
ctx_req.ctx.ahash_ctx->result = 0;
memcpy(ctx_req.req.ahash_req->result, input +
sizeof(struct cpl_fw6_pld),
digestsize);
} else {
memcpy(ctx_req.ctx.ahash_ctx->partial_hash, input +
sizeof(struct cpl_fw6_pld),
updated_digestsize);
}
break;
}
return 0;
}
/*
* calc_tx_flits_ofld - calculate # of flits for an offload packet
* @skb: the packet
* Returns the number of flits needed for the given offload packet.
* These packets are already fully constructed and no additional headers
* will be added.
*/
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
{
unsigned int flits, cnt;
if (is_ofld_imm(skb))
return DIV_ROUND_UP(skb->len, 8);
flits = skb_transport_offset(skb) / 8; /* headers */
cnt = skb_shinfo(skb)->nr_frags;
if (skb_tail_pointer(skb) != skb_transport_header(skb))
cnt++;
return flits + sgl_len(cnt);
}
static inline void get_aes_decrypt_key(unsigned char *dec_key,
const unsigned char *key,
unsigned int keylength)
{
u32 temp;
u32 w_ring[MAX_NK];
int i, j, k;
u8 nr, nk;
switch (keylength) {
case AES_KEYLENGTH_128BIT:
nk = KEYLENGTH_4BYTES;
nr = NUMBER_OF_ROUNDS_10;
break;
case AES_KEYLENGTH_192BIT:
nk = KEYLENGTH_6BYTES;
nr = NUMBER_OF_ROUNDS_12;
break;
case AES_KEYLENGTH_256BIT:
nk = KEYLENGTH_8BYTES;
nr = NUMBER_OF_ROUNDS_14;
break;
default:
return;
}
for (i = 0; i < nk; i++)
w_ring[i] = be32_to_cpu(*(u32 *)&key[4 * i]);
i = 0;
temp = w_ring[nk - 1];
while (i + nk < (nr + 1) * 4) {
if (!(i % nk)) {
/* RotWord(temp) */
temp = (temp << 8) | (temp >> 24);
temp = aes_ks_subword(temp);
temp ^= round_constant[i / nk];
} else if (nk == 8 && (i % 4 == 0)) {
temp = aes_ks_subword(temp);
}
w_ring[i % nk] ^= temp;
temp = w_ring[i % nk];
i++;
}
i--;
for (k = 0, j = i % nk; k < nk; k++) {
*((u32 *)dec_key + k) = htonl(w_ring[j]);
j--;
if (j < 0)
j += nk;
}
}
static struct shash_desc *chcr_alloc_shash(unsigned int ds)
{
struct crypto_shash *base_hash = NULL;
struct shash_desc *desc;
switch (ds) {
case SHA1_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha1-generic", 0, 0);
break;
case SHA224_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha224-generic", 0, 0);
break;
case SHA256_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha256-generic", 0, 0);
break;
case SHA384_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha384-generic", 0, 0);
break;
case SHA512_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha512-generic", 0, 0);
break;
}
if (IS_ERR(base_hash)) {
pr_err("Can not allocate sha-generic algo.\n");
return (void *)base_hash;
}
desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(base_hash),
GFP_KERNEL);
if (!desc)
return ERR_PTR(-ENOMEM);
desc->tfm = base_hash;
desc->flags = crypto_shash_get_flags(base_hash);
return desc;
}
static int chcr_compute_partial_hash(struct shash_desc *desc,
char *iopad, char *result_hash,
int digest_size)
{
struct sha1_state sha1_st;
struct sha256_state sha256_st;
struct sha512_state sha512_st;
int error;
if (digest_size == SHA1_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA1_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha1_st);
memcpy(result_hash, sha1_st.state, SHA1_DIGEST_SIZE);
} else if (digest_size == SHA224_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha256_st);
memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE);
} else if (digest_size == SHA256_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha256_st);
memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE);
} else if (digest_size == SHA384_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha512_st);
memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE);
} else if (digest_size == SHA512_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha512_st);
memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE);
} else {
error = -EINVAL;
pr_err("Unknown digest size %d\n", digest_size);
}
return error;
}
static void chcr_change_order(char *buf, int ds)
{
int i;
if (ds == SHA512_DIGEST_SIZE) {
for (i = 0; i < (ds / sizeof(u64)); i++)
*((__be64 *)buf + i) =
cpu_to_be64(*((u64 *)buf + i));
} else {
for (i = 0; i < (ds / sizeof(u32)); i++)
*((__be32 *)buf + i) =
cpu_to_be32(*((u32 *)buf + i));
}
}
static inline int is_hmac(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct chcr_alg_template *chcr_crypto_alg =
container_of(__crypto_ahash_alg(alg), struct chcr_alg_template,
alg.hash);
if ((chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK) ==
CRYPTO_ALG_SUB_TYPE_HASH_HMAC)
return 1;
return 0;
}
static void write_phys_cpl(struct cpl_rx_phys_dsgl *phys_cpl,
struct scatterlist *sg,
struct phys_sge_parm *sg_param)
{
struct phys_sge_pairs *to;
int out_buf_size = sg_param->obsize;
unsigned int nents = sg_param->nents, i, j = 0;
phys_cpl->op_to_tid = htonl(CPL_RX_PHYS_DSGL_OPCODE_V(CPL_RX_PHYS_DSGL)
| CPL_RX_PHYS_DSGL_ISRDMA_V(0));
phys_cpl->pcirlxorder_to_noofsgentr =
htonl(CPL_RX_PHYS_DSGL_PCIRLXORDER_V(0) |
CPL_RX_PHYS_DSGL_PCINOSNOOP_V(0) |
CPL_RX_PHYS_DSGL_PCITPHNTENB_V(0) |
CPL_RX_PHYS_DSGL_PCITPHNT_V(0) |
CPL_RX_PHYS_DSGL_DCAID_V(0) |
CPL_RX_PHYS_DSGL_NOOFSGENTR_V(nents));
phys_cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR;
phys_cpl->rss_hdr_int.qid = htons(sg_param->qid);
phys_cpl->rss_hdr_int.hash_val = 0;
to = (struct phys_sge_pairs *)((unsigned char *)phys_cpl +
sizeof(struct cpl_rx_phys_dsgl));
for (i = 0; nents; to++) {
for (j = 0; j < 8 && nents; j++, nents--) {
out_buf_size -= sg_dma_len(sg);
to->len[j] = htons(sg_dma_len(sg));
to->addr[j] = cpu_to_be64(sg_dma_address(sg));
sg = sg_next(sg);
}
}
if (out_buf_size) {
j--;
to--;
to->len[j] = htons(ntohs(to->len[j]) + (out_buf_size));
}
}
static inline int map_writesg_phys_cpl(struct device *dev,
struct cpl_rx_phys_dsgl *phys_cpl,
struct scatterlist *sg,
struct phys_sge_parm *sg_param)
{
if (!sg || !sg_param->nents)
return 0;
sg_param->nents = dma_map_sg(dev, sg, sg_param->nents, DMA_FROM_DEVICE);
if (sg_param->nents == 0) {
pr_err("CHCR : DMA mapping failed\n");
return -EINVAL;
}
write_phys_cpl(phys_cpl, sg, sg_param);
return 0;
}
static inline int get_cryptoalg_subtype(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct chcr_alg_template *chcr_crypto_alg =
container_of(alg, struct chcr_alg_template, alg.crypto);
return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK;
}
static inline void write_buffer_to_skb(struct sk_buff *skb,
unsigned int *frags,
char *bfr,
u8 bfr_len)
{
skb->len += bfr_len;
skb->data_len += bfr_len;
skb->truesize += bfr_len;
get_page(virt_to_page(bfr));
skb_fill_page_desc(skb, *frags, virt_to_page(bfr),
offset_in_page(bfr), bfr_len);
(*frags)++;
}
static inline void
write_sg_to_skb(struct sk_buff *skb, unsigned int *frags,
struct scatterlist *sg, unsigned int count)
{
struct page *spage;
unsigned int page_len;
skb->len += count;
skb->data_len += count;
skb->truesize += count;
while (count > 0) {
if (!sg || (!(sg->length)))
break;
spage = sg_page(sg);
get_page(spage);
page_len = min(sg->length, count);
skb_fill_page_desc(skb, *frags, spage, sg->offset, page_len);
(*frags)++;
count -= page_len;
sg = sg_next(sg);
}
}
static int generate_copy_rrkey(struct ablk_ctx *ablkctx,
struct _key_ctx *key_ctx)
{
if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) {
memcpy(key_ctx->key, ablkctx->rrkey, ablkctx->enckey_len);
} else {
memcpy(key_ctx->key,
ablkctx->key + (ablkctx->enckey_len >> 1),
ablkctx->enckey_len >> 1);
memcpy(key_ctx->key + (ablkctx->enckey_len >> 1),
ablkctx->rrkey, ablkctx->enckey_len >> 1);
}
return 0;
}
static inline void create_wreq(struct chcr_context *ctx,
struct chcr_wr *chcr_req,
void *req, struct sk_buff *skb,
int kctx_len, int hash_sz,
unsigned int phys_dsgl)
{
struct uld_ctx *u_ctx = ULD_CTX(ctx);
int iv_loc = IV_DSGL;
int qid = u_ctx->lldi.rxq_ids[ctx->tx_channel_id];
unsigned int immdatalen = 0, nr_frags = 0;
if (is_ofld_imm(skb)) {
immdatalen = skb->data_len;
iv_loc = IV_IMMEDIATE;
} else {
nr_frags = skb_shinfo(skb)->nr_frags;
}
chcr_req->wreq.op_to_cctx_size = FILL_WR_OP_CCTX_SIZE(immdatalen,
((sizeof(chcr_req->key_ctx) + kctx_len) >> 4));
chcr_req->wreq.pld_size_hash_size =
htonl(FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE_V(sgl_lengths[nr_frags]) |
FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE_V(hash_sz));
chcr_req->wreq.len16_pkd =
htonl(FW_CRYPTO_LOOKASIDE_WR_LEN16_V(DIV_ROUND_UP(
(calc_tx_flits_ofld(skb) * 8), 16)));
chcr_req->wreq.cookie = cpu_to_be64((uintptr_t)req);
chcr_req->wreq.rx_chid_to_rx_q_id =
FILL_WR_RX_Q_ID(ctx->dev->tx_channel_id, qid,
(hash_sz) ? IV_NOP : iv_loc);
chcr_req->ulptx.cmd_dest = FILL_ULPTX_CMD_DEST(ctx->dev->tx_channel_id);
chcr_req->ulptx.len = htonl((DIV_ROUND_UP((calc_tx_flits_ofld(skb) * 8),
16) - ((sizeof(chcr_req->wreq)) >> 4)));
chcr_req->sc_imm.cmd_more = FILL_CMD_MORE(immdatalen);
chcr_req->sc_imm.len = cpu_to_be32(sizeof(struct cpl_tx_sec_pdu) +
sizeof(chcr_req->key_ctx) +
kctx_len +
((hash_sz) ? DUMMY_BYTES :
(sizeof(struct cpl_rx_phys_dsgl) +
phys_dsgl)) + immdatalen);
}
/**
* create_cipher_wr - form the WR for cipher operations
* @req: cipher req.
* @ctx: crypto driver context of the request.
* @qid: ingress qid where response of this WR should be received.
* @op_type: encryption or decryption
*/
static struct sk_buff
*create_cipher_wr(struct ablkcipher_request *req,
unsigned short qid,
unsigned short op_type)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct chcr_blkcipher_req_ctx *req_ctx = ablkcipher_request_ctx(req);
struct phys_sge_parm sg_param;
unsigned int frags = 0, transhdr_len, phys_dsgl;
unsigned int ivsize = crypto_ablkcipher_ivsize(tfm), kctx_len;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
if (!req->info)
return ERR_PTR(-EINVAL);
ablkctx->dst_nents = sg_nents_for_len(req->dst, req->nbytes);
if (ablkctx->dst_nents <= 0) {
pr_err("AES:Invalid Destination sg lists\n");
return ERR_PTR(-EINVAL);
}
ablkctx->enc = op_type;
if ((ablkctx->enckey_len == 0) || (ivsize > AES_BLOCK_SIZE) ||
(req->nbytes <= 0) || (req->nbytes % AES_BLOCK_SIZE)) {
pr_err("AES: Invalid value of Key Len %d nbytes %d IV Len %d\n",
ablkctx->enckey_len, req->nbytes, ivsize);
return ERR_PTR(-EINVAL);
}
phys_dsgl = get_space_for_phys_dsgl(ablkctx->dst_nents);
kctx_len = (DIV_ROUND_UP(ablkctx->enckey_len, 16) * 16);
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, phys_dsgl);
skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
if (!skb)
return ERR_PTR(-ENOMEM);
skb_reserve(skb, sizeof(struct sge_opaque_hdr));
chcr_req = (struct chcr_wr *)__skb_put(skb, transhdr_len);
memset(chcr_req, 0, transhdr_len);
chcr_req->sec_cpl.op_ivinsrtofst =
FILL_SEC_CPL_OP_IVINSR(ctx->dev->tx_channel_id, 2, 1);
chcr_req->sec_cpl.pldlen = htonl(ivsize + req->nbytes);
chcr_req->sec_cpl.aadstart_cipherstop_hi =
FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, ivsize + 1, 0);
chcr_req->sec_cpl.cipherstop_lo_authinsert =
FILL_SEC_CPL_AUTHINSERT(0, 0, 0, 0);
chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(op_type, 0,
ablkctx->ciph_mode,
0, 0, ivsize >> 1);
chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 0,
0, 1, phys_dsgl);
chcr_req->key_ctx.ctx_hdr = ablkctx->key_ctx_hdr;
if (op_type == CHCR_DECRYPT_OP) {
generate_copy_rrkey(ablkctx, &chcr_req->key_ctx);
} else {
if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) {
memcpy(chcr_req->key_ctx.key, ablkctx->key,
ablkctx->enckey_len);
} else {
memcpy(chcr_req->key_ctx.key, ablkctx->key +
(ablkctx->enckey_len >> 1),
ablkctx->enckey_len >> 1);
memcpy(chcr_req->key_ctx.key +
(ablkctx->enckey_len >> 1),
ablkctx->key,
ablkctx->enckey_len >> 1);
}
}
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
sg_param.nents = ablkctx->dst_nents;
sg_param.obsize = req->nbytes;
sg_param.qid = qid;
sg_param.align = 1;
if (map_writesg_phys_cpl(&u_ctx->lldi.pdev->dev, phys_cpl, req->dst,
&sg_param))
goto map_fail1;
skb_set_transport_header(skb, transhdr_len);
memcpy(ablkctx->iv, req->info, ivsize);
write_buffer_to_skb(skb, &frags, ablkctx->iv, ivsize);
write_sg_to_skb(skb, &frags, req->src, req->nbytes);
create_wreq(ctx, chcr_req, req, skb, kctx_len, 0, phys_dsgl);
req_ctx->skb = skb;
skb_get(skb);
return skb;
map_fail1:
kfree_skb(skb);
return ERR_PTR(-ENOMEM);
}
static int chcr_aes_cbc_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
unsigned int ck_size, context_size;
u16 alignment = 0;
if (keylen == AES_KEYSIZE_128) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
} else if (keylen == AES_KEYSIZE_192) {
alignment = 8;
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
} else if (keylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
} else {
goto badkey_err;
}
memcpy(ablkctx->key, key, keylen);
ablkctx->enckey_len = keylen;
get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, keylen << 3);
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD +
keylen + alignment) >> 4;
ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY,
0, 0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC;
return 0;
badkey_err:
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
ablkctx->enckey_len = 0;
return -EINVAL;
}
static int cxgb4_is_crypto_q_full(struct net_device *dev, unsigned int idx)
{
int ret = 0;
struct sge_ofld_txq *q;
struct adapter *adap = netdev2adap(dev);
local_bh_disable();
q = &adap->sge.ofldtxq[idx];
spin_lock(&q->sendq.lock);
if (q->full)
ret = -1;
spin_unlock(&q->sendq.lock);
local_bh_enable();
return ret;
}
static int chcr_aes_encrypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct sk_buff *skb;
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_channel_id))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
skb = create_cipher_wr(req, u_ctx->lldi.rxq_ids[ctx->tx_channel_id],
CHCR_ENCRYPT_OP);
if (IS_ERR(skb)) {
pr_err("chcr : %s : Failed to form WR. No memory\n", __func__);
return PTR_ERR(skb);
}
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_aes_decrypt(struct ablkcipher_request *req)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct sk_buff *skb;
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_channel_id))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
skb = create_cipher_wr(req, u_ctx->lldi.rxq_ids[0],
CHCR_DECRYPT_OP);
if (IS_ERR(skb)) {
pr_err("chcr : %s : Failed to form WR. No memory\n", __func__);
return PTR_ERR(skb);
}
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_device_init(struct chcr_context *ctx)
{
struct uld_ctx *u_ctx;
unsigned int id;
int err = 0, rxq_perchan, rxq_idx;
id = smp_processor_id();
if (!ctx->dev) {
err = assign_chcr_device(&ctx->dev);
if (err) {
pr_err("chcr device assignment fails\n");
goto out;
}
u_ctx = ULD_CTX(ctx);
rxq_perchan = u_ctx->lldi.nrxq / u_ctx->lldi.nchan;
ctx->dev->tx_channel_id = 0;
rxq_idx = ctx->dev->tx_channel_id * rxq_perchan;
rxq_idx += id % rxq_perchan;
spin_lock(&ctx->dev->lock_chcr_dev);
ctx->tx_channel_id = rxq_idx;
spin_unlock(&ctx->dev->lock_chcr_dev);
}
out:
return err;
}
static int chcr_cra_init(struct crypto_tfm *tfm)
{
tfm->crt_ablkcipher.reqsize = sizeof(struct chcr_blkcipher_req_ctx);
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static int get_alg_config(struct algo_param *params,
unsigned int auth_size)
{
switch (auth_size) {
case SHA1_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA1;
params->result_size = SHA1_DIGEST_SIZE;
break;
case SHA224_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA224;
params->result_size = SHA256_DIGEST_SIZE;
break;
case SHA256_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA256;
params->result_size = SHA256_DIGEST_SIZE;
break;
case SHA384_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384;
params->result_size = SHA512_DIGEST_SIZE;
break;
case SHA512_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512;
params->result_size = SHA512_DIGEST_SIZE;
break;
default:
pr_err("chcr : ERROR, unsupported digest size\n");
return -EINVAL;
}
return 0;
}
/**
* create_hash_wr - Create hash work request
* @req - Cipher req base
*/
static struct sk_buff *create_hash_wr(struct ahash_request *req,
struct hash_wr_param *param)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
unsigned int frags = 0, transhdr_len, iopad_alignment = 0;
unsigned int digestsize = crypto_ahash_digestsize(tfm);
unsigned int kctx_len = 0;
u8 hash_size_in_response = 0;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
iopad_alignment = KEYCTX_ALIGN_PAD(digestsize);
kctx_len = param->alg_prm.result_size + iopad_alignment;
if (param->opad_needed)
kctx_len += param->alg_prm.result_size + iopad_alignment;
if (req_ctx->result)
hash_size_in_response = digestsize;
else
hash_size_in_response = param->alg_prm.result_size;
transhdr_len = HASH_TRANSHDR_SIZE(kctx_len);
skb = alloc_skb((transhdr_len + sizeof(struct sge_opaque_hdr)), flags);
if (!skb)
return skb;
skb_reserve(skb, sizeof(struct sge_opaque_hdr));
chcr_req = (struct chcr_wr *)__skb_put(skb, transhdr_len);
memset(chcr_req, 0, transhdr_len);
chcr_req->sec_cpl.op_ivinsrtofst =
FILL_SEC_CPL_OP_IVINSR(ctx->dev->tx_channel_id, 2, 0);
chcr_req->sec_cpl.pldlen = htonl(param->bfr_len + param->sg_len);
chcr_req->sec_cpl.aadstart_cipherstop_hi =
FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, 0, 0);
chcr_req->sec_cpl.cipherstop_lo_authinsert =
FILL_SEC_CPL_AUTHINSERT(0, 1, 0, 0);
chcr_req->sec_cpl.seqno_numivs =
FILL_SEC_CPL_SCMD0_SEQNO(0, 0, 0, param->alg_prm.auth_mode,
param->opad_needed, 0);
chcr_req->sec_cpl.ivgen_hdrlen =
FILL_SEC_CPL_IVGEN_HDRLEN(param->last, param->more, 0, 1, 0, 0);
memcpy(chcr_req->key_ctx.key, req_ctx->partial_hash,
param->alg_prm.result_size);
if (param->opad_needed)
memcpy(chcr_req->key_ctx.key +
((param->alg_prm.result_size <= 32) ? 32 :
CHCR_HASH_MAX_DIGEST_SIZE),
hmacctx->opad, param->alg_prm.result_size);
chcr_req->key_ctx.ctx_hdr = FILL_KEY_CTX_HDR(CHCR_KEYCTX_NO_KEY,
param->alg_prm.mk_size, 0,
param->opad_needed,
((kctx_len +
sizeof(chcr_req->key_ctx)) >> 4));
chcr_req->sec_cpl.scmd1 = cpu_to_be64((u64)param->scmd1);
skb_set_transport_header(skb, transhdr_len);
if (param->bfr_len != 0)
write_buffer_to_skb(skb, &frags, req_ctx->reqbfr,
param->bfr_len);
if (param->sg_len != 0)
write_sg_to_skb(skb, &frags, req->src, param->sg_len);
create_wreq(ctx, chcr_req, req, skb, kctx_len, hash_size_in_response,
0);
req_ctx->skb = skb;
skb_get(skb);
return skb;
}
static int chcr_ahash_update(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct uld_ctx *u_ctx = NULL;
struct sk_buff *skb;
u8 remainder = 0, bs;
unsigned int nbytes = req->nbytes;
struct hash_wr_param params;
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
u_ctx = ULD_CTX(ctx);
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_channel_id))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
if (nbytes + req_ctx->reqlen >= bs) {
remainder = (nbytes + req_ctx->reqlen) % bs;
nbytes = nbytes + req_ctx->reqlen - remainder;
} else {
sg_pcopy_to_buffer(req->src, sg_nents(req->src), req_ctx->reqbfr
+ req_ctx->reqlen, nbytes, 0);
req_ctx->reqlen += nbytes;
return 0;
}
params.opad_needed = 0;
params.more = 1;
params.last = 0;
params.sg_len = nbytes - req_ctx->reqlen;
params.bfr_len = req_ctx->reqlen;
params.scmd1 = 0;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
req_ctx->result = 0;
req_ctx->data_len += params.sg_len + params.bfr_len;
skb = create_hash_wr(req, &params);
if (IS_ERR(skb))
return PTR_ERR(skb);
if (remainder) {
u8 *temp;
/* Swap buffers */
temp = req_ctx->reqbfr;
req_ctx->reqbfr = req_ctx->skbfr;
req_ctx->skbfr = temp;
sg_pcopy_to_buffer(req->src, sg_nents(req->src),
req_ctx->reqbfr, remainder, req->nbytes -
remainder);
}
req_ctx->reqlen = remainder;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static void create_last_hash_block(char *bfr_ptr, unsigned int bs, u64 scmd1)
{
memset(bfr_ptr, 0, bs);
*bfr_ptr = 0x80;
if (bs == 64)
*(__be64 *)(bfr_ptr + 56) = cpu_to_be64(scmd1 << 3);
else
*(__be64 *)(bfr_ptr + 120) = cpu_to_be64(scmd1 << 3);
}
static int chcr_ahash_final(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct hash_wr_param params;
struct sk_buff *skb;
struct uld_ctx *u_ctx = NULL;
u8 bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
u_ctx = ULD_CTX(ctx);
if (is_hmac(crypto_ahash_tfm(rtfm)))
params.opad_needed = 1;
else
params.opad_needed = 0;
params.sg_len = 0;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
req_ctx->result = 1;
params.bfr_len = req_ctx->reqlen;
req_ctx->data_len += params.bfr_len + params.sg_len;
if (req_ctx->reqlen == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
params.last = 0;
params.more = 1;
params.scmd1 = 0;
params.bfr_len = bs;
} else {
params.scmd1 = req_ctx->data_len;
params.last = 1;
params.more = 0;
}
skb = create_hash_wr(req, &params);
if (IS_ERR(skb))
return PTR_ERR(skb);
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_ahash_finup(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct uld_ctx *u_ctx = NULL;
struct sk_buff *skb;
struct hash_wr_param params;
u8 bs;
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
u_ctx = ULD_CTX(ctx);
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_channel_id))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
if (is_hmac(crypto_ahash_tfm(rtfm)))
params.opad_needed = 1;
else
params.opad_needed = 0;
params.sg_len = req->nbytes;
params.bfr_len = req_ctx->reqlen;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
req_ctx->data_len += params.bfr_len + params.sg_len;
req_ctx->result = 1;
if ((req_ctx->reqlen + req->nbytes) == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
params.last = 0;
params.more = 1;
params.scmd1 = 0;
params.bfr_len = bs;
} else {
params.scmd1 = req_ctx->data_len;
params.last = 1;
params.more = 0;
}
skb = create_hash_wr(req, &params);
if (IS_ERR(skb))
return PTR_ERR(skb);
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_ahash_digest(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct uld_ctx *u_ctx = NULL;
struct sk_buff *skb;
struct hash_wr_param params;
u8 bs;
rtfm->init(req);
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
u_ctx = ULD_CTX(ctx);
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
ctx->tx_channel_id))) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
return -EBUSY;
}
if (is_hmac(crypto_ahash_tfm(rtfm)))
params.opad_needed = 1;
else
params.opad_needed = 0;
params.last = 0;
params.more = 0;
params.sg_len = req->nbytes;
params.bfr_len = 0;
params.scmd1 = 0;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
req_ctx->result = 1;
req_ctx->data_len += params.bfr_len + params.sg_len;
if (req->nbytes == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, 0);
params.more = 1;
params.bfr_len = bs;
}
skb = create_hash_wr(req, &params);
if (IS_ERR(skb))
return PTR_ERR(skb);
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, ctx->tx_channel_id);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_ahash_export(struct ahash_request *areq, void *out)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct chcr_ahash_req_ctx *state = out;
state->reqlen = req_ctx->reqlen;
state->data_len = req_ctx->data_len;
memcpy(state->bfr1, req_ctx->reqbfr, req_ctx->reqlen);
memcpy(state->partial_hash, req_ctx->partial_hash,
CHCR_HASH_MAX_DIGEST_SIZE);
return 0;
}
static int chcr_ahash_import(struct ahash_request *areq, const void *in)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct chcr_ahash_req_ctx *state = (struct chcr_ahash_req_ctx *)in;
req_ctx->reqlen = state->reqlen;
req_ctx->data_len = state->data_len;
req_ctx->reqbfr = req_ctx->bfr1;
req_ctx->skbfr = req_ctx->bfr2;
memcpy(req_ctx->bfr1, state->bfr1, CHCR_HASH_MAX_BLOCK_SIZE_128);
memcpy(req_ctx->partial_hash, state->partial_hash,
CHCR_HASH_MAX_DIGEST_SIZE);
return 0;
}
static int chcr_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
unsigned int digestsize = crypto_ahash_digestsize(tfm);
unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
unsigned int i, err = 0, updated_digestsize;
/*
* use the key to calculate the ipad and opad. ipad will sent with the
* first request's data. opad will be sent with the final hash result
* ipad in hmacctx->ipad and opad in hmacctx->opad location
*/
if (!hmacctx->desc)
return -EINVAL;
if (keylen > bs) {
err = crypto_shash_digest(hmacctx->desc, key, keylen,
hmacctx->ipad);
if (err)
goto out;
keylen = digestsize;
} else {
memcpy(hmacctx->ipad, key, keylen);
}
memset(hmacctx->ipad + keylen, 0, bs - keylen);
memcpy(hmacctx->opad, hmacctx->ipad, bs);
for (i = 0; i < bs / sizeof(int); i++) {
*((unsigned int *)(&hmacctx->ipad) + i) ^= IPAD_DATA;
*((unsigned int *)(&hmacctx->opad) + i) ^= OPAD_DATA;
}
updated_digestsize = digestsize;
if (digestsize == SHA224_DIGEST_SIZE)
updated_digestsize = SHA256_DIGEST_SIZE;
else if (digestsize == SHA384_DIGEST_SIZE)
updated_digestsize = SHA512_DIGEST_SIZE;
err = chcr_compute_partial_hash(hmacctx->desc, hmacctx->ipad,
hmacctx->ipad, digestsize);
if (err)
goto out;
chcr_change_order(hmacctx->ipad, updated_digestsize);
err = chcr_compute_partial_hash(hmacctx->desc, hmacctx->opad,
hmacctx->opad, digestsize);
if (err)
goto out;
chcr_change_order(hmacctx->opad, updated_digestsize);
out:
return err;
}
static int chcr_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct chcr_context *ctx = crypto_ablkcipher_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
unsigned short context_size = 0;
if ((key_len != (AES_KEYSIZE_128 << 1)) &&
(key_len != (AES_KEYSIZE_256 << 1))) {
crypto_tfm_set_flags((struct crypto_tfm *)tfm,
CRYPTO_TFM_RES_BAD_KEY_LEN);
ablkctx->enckey_len = 0;
return -EINVAL;
}
memcpy(ablkctx->key, key, key_len);
ablkctx->enckey_len = key_len;
get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, key_len << 2);
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + key_len) >> 4;
ablkctx->key_ctx_hdr =
FILL_KEY_CTX_HDR((key_len == AES_KEYSIZE_256) ?
CHCR_KEYCTX_CIPHER_KEY_SIZE_128 :
CHCR_KEYCTX_CIPHER_KEY_SIZE_256,
CHCR_KEYCTX_NO_KEY, 1,
0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS;
return 0;
}
static int chcr_sha_init(struct ahash_request *areq)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
int digestsize = crypto_ahash_digestsize(tfm);
req_ctx->data_len = 0;
req_ctx->reqlen = 0;
req_ctx->reqbfr = req_ctx->bfr1;
req_ctx->skbfr = req_ctx->bfr2;
req_ctx->skb = NULL;
req_ctx->result = 0;
copy_hash_init_values(req_ctx->partial_hash, digestsize);
return 0;
}
static int chcr_sha_cra_init(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct chcr_ahash_req_ctx));
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static int chcr_hmac_init(struct ahash_request *areq)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(areq);
struct chcr_context *ctx = crypto_tfm_ctx(crypto_ahash_tfm(rtfm));
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
unsigned int digestsize = crypto_ahash_digestsize(rtfm);
unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
chcr_sha_init(areq);
req_ctx->data_len = bs;
if (is_hmac(crypto_ahash_tfm(rtfm))) {
if (digestsize == SHA224_DIGEST_SIZE)
memcpy(req_ctx->partial_hash, hmacctx->ipad,
SHA256_DIGEST_SIZE);
else if (digestsize == SHA384_DIGEST_SIZE)
memcpy(req_ctx->partial_hash, hmacctx->ipad,
SHA512_DIGEST_SIZE);
else
memcpy(req_ctx->partial_hash, hmacctx->ipad,
digestsize);
}
return 0;
}
static int chcr_hmac_cra_init(struct crypto_tfm *tfm)
{
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
unsigned int digestsize =
crypto_ahash_digestsize(__crypto_ahash_cast(tfm));
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct chcr_ahash_req_ctx));
hmacctx->desc = chcr_alloc_shash(digestsize);
if (IS_ERR(hmacctx->desc))
return PTR_ERR(hmacctx->desc);
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static void chcr_free_shash(struct shash_desc *desc)
{
crypto_free_shash(desc->tfm);
kfree(desc);
}
static void chcr_hmac_cra_exit(struct crypto_tfm *tfm)
{
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
if (hmacctx->desc) {
chcr_free_shash(hmacctx->desc);
hmacctx->desc = NULL;
}
}
static struct chcr_alg_template driver_algs[] = {
/* AES-CBC */
{
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.is_registered = 0,
.alg.crypto = {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc(aes-chcr)",
.cra_priority = CHCR_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct chcr_context)
+ sizeof(struct ablk_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = chcr_cra_init,
.cra_exit = NULL,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = chcr_aes_cbc_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
}
},
{
.type = CRYPTO_ALG_TYPE_ABLKCIPHER,
.is_registered = 0,
.alg.crypto = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts(aes-chcr)",
.cra_priority = CHCR_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct ablk_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = chcr_cra_init,
.cra_exit = NULL,
.cra_u = {
.ablkcipher = {
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = chcr_aes_xts_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
}
}
},
/* SHA */
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-chcr",
.cra_blocksize = SHA1_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-chcr",
.cra_blocksize = SHA256_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-chcr",
.cra_blocksize = SHA224_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha384",
.cra_driver_name = "sha384-chcr",
.cra_blocksize = SHA384_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-chcr",
.cra_blocksize = SHA512_BLOCK_SIZE,
}
}
},
/* HMAC */
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "hmac(sha1-chcr)",
.cra_blocksize = SHA1_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "hmac(sha224-chcr)",
.cra_blocksize = SHA224_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "hmac(sha256-chcr)",
.cra_blocksize = SHA256_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "hmac(sha384-chcr)",
.cra_blocksize = SHA384_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "hmac(sha512-chcr)",
.cra_blocksize = SHA512_BLOCK_SIZE,
}
}
},
};
/*
* chcr_unregister_alg - Deregister crypto algorithms with
* kernel framework.
*/
static int chcr_unregister_alg(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
if (driver_algs[i].is_registered)
crypto_unregister_alg(
&driver_algs[i].alg.crypto);
break;
case CRYPTO_ALG_TYPE_AHASH:
if (driver_algs[i].is_registered)
crypto_unregister_ahash(
&driver_algs[i].alg.hash);
break;
}
driver_algs[i].is_registered = 0;
}
return 0;
}
#define SZ_AHASH_CTX sizeof(struct chcr_context)
#define SZ_AHASH_H_CTX (sizeof(struct chcr_context) + sizeof(struct hmac_ctx))
#define SZ_AHASH_REQ_CTX sizeof(struct chcr_ahash_req_ctx)
#define AHASH_CRA_FLAGS (CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC)
/*
* chcr_register_alg - Register crypto algorithms with kernel framework.
*/
static int chcr_register_alg(void)
{
struct crypto_alg ai;
struct ahash_alg *a_hash;
int err = 0, i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
if (driver_algs[i].is_registered)
continue;
switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_ABLKCIPHER:
err = crypto_register_alg(&driver_algs[i].alg.crypto);
name = driver_algs[i].alg.crypto.cra_driver_name;
break;
case CRYPTO_ALG_TYPE_AHASH:
a_hash = &driver_algs[i].alg.hash;
a_hash->update = chcr_ahash_update;
a_hash->final = chcr_ahash_final;
a_hash->finup = chcr_ahash_finup;
a_hash->digest = chcr_ahash_digest;
a_hash->export = chcr_ahash_export;
a_hash->import = chcr_ahash_import;
a_hash->halg.statesize = SZ_AHASH_REQ_CTX;
a_hash->halg.base.cra_priority = CHCR_CRA_PRIORITY;
a_hash->halg.base.cra_module = THIS_MODULE;
a_hash->halg.base.cra_flags = AHASH_CRA_FLAGS;
a_hash->halg.base.cra_alignmask = 0;
a_hash->halg.base.cra_exit = NULL;
a_hash->halg.base.cra_type = &crypto_ahash_type;
if (driver_algs[i].type == CRYPTO_ALG_TYPE_HMAC) {
a_hash->halg.base.cra_init = chcr_hmac_cra_init;
a_hash->halg.base.cra_exit = chcr_hmac_cra_exit;
a_hash->init = chcr_hmac_init;
a_hash->setkey = chcr_ahash_setkey;
a_hash->halg.base.cra_ctxsize = SZ_AHASH_H_CTX;
} else {
a_hash->init = chcr_sha_init;
a_hash->halg.base.cra_ctxsize = SZ_AHASH_CTX;
a_hash->halg.base.cra_init = chcr_sha_cra_init;
}
err = crypto_register_ahash(&driver_algs[i].alg.hash);
ai = driver_algs[i].alg.hash.halg.base;
name = ai.cra_driver_name;
break;
}
if (err) {
pr_err("chcr : %s : Algorithm registration failed\n",
name);
goto register_err;
} else {
driver_algs[i].is_registered = 1;
}
}
return 0;
register_err:
chcr_unregister_alg();
return err;
}
/*
* start_crypto - Register the crypto algorithms.
* This should called once when the first device comesup. After this
* kernel will start calling driver APIs for crypto operations.
*/
int start_crypto(void)
{
return chcr_register_alg();
}
/*
* stop_crypto - Deregister all the crypto algorithms with kernel.
* This should be called once when the last device goes down. After this
* kernel will not call the driver API for crypto operations.
*/
int stop_crypto(void)
{
chcr_unregister_alg();
return 0;
}