mirror of
https://github.com/torvalds/linux.git
synced 2024-12-06 19:11:31 +00:00
30c8eb52cc
Currently driver wouldn't work properly if user asked for simplex transfer. The patch separates DMA rx and tx callbacks and finishes transfer correctly in any case. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Mark Brown <broonie@kernel.org>
284 lines
6.7 KiB
C
284 lines
6.7 KiB
C
/*
|
|
* Special handling for DW core on Intel MID platform
|
|
*
|
|
* Copyright (c) 2009, 2014 Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/types.h>
|
|
|
|
#include "spi-dw.h"
|
|
|
|
#ifdef CONFIG_SPI_DW_MID_DMA
|
|
#include <linux/intel_mid_dma.h>
|
|
#include <linux/pci.h>
|
|
|
|
#define RX_BUSY 0
|
|
#define TX_BUSY 1
|
|
|
|
struct mid_dma {
|
|
struct intel_mid_dma_slave dmas_tx;
|
|
struct intel_mid_dma_slave dmas_rx;
|
|
};
|
|
|
|
static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
|
|
{
|
|
struct dw_spi *dws = param;
|
|
|
|
return dws->dma_dev == chan->device->dev;
|
|
}
|
|
|
|
static int mid_spi_dma_init(struct dw_spi *dws)
|
|
{
|
|
struct mid_dma *dw_dma = dws->dma_priv;
|
|
struct pci_dev *dma_dev;
|
|
struct intel_mid_dma_slave *rxs, *txs;
|
|
dma_cap_mask_t mask;
|
|
|
|
/*
|
|
* Get pci device for DMA controller, currently it could only
|
|
* be the DMA controller of Medfield
|
|
*/
|
|
dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
|
|
if (!dma_dev)
|
|
return -ENODEV;
|
|
|
|
dws->dma_dev = &dma_dev->dev;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
/* 1. Init rx channel */
|
|
dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
|
|
if (!dws->rxchan)
|
|
goto err_exit;
|
|
rxs = &dw_dma->dmas_rx;
|
|
rxs->hs_mode = LNW_DMA_HW_HS;
|
|
rxs->cfg_mode = LNW_DMA_PER_TO_MEM;
|
|
dws->rxchan->private = rxs;
|
|
|
|
/* 2. Init tx channel */
|
|
dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
|
|
if (!dws->txchan)
|
|
goto free_rxchan;
|
|
txs = &dw_dma->dmas_tx;
|
|
txs->hs_mode = LNW_DMA_HW_HS;
|
|
txs->cfg_mode = LNW_DMA_MEM_TO_PER;
|
|
dws->txchan->private = txs;
|
|
|
|
dws->dma_inited = 1;
|
|
return 0;
|
|
|
|
free_rxchan:
|
|
dma_release_channel(dws->rxchan);
|
|
err_exit:
|
|
return -EBUSY;
|
|
}
|
|
|
|
static void mid_spi_dma_exit(struct dw_spi *dws)
|
|
{
|
|
if (!dws->dma_inited)
|
|
return;
|
|
|
|
dmaengine_terminate_all(dws->txchan);
|
|
dma_release_channel(dws->txchan);
|
|
|
|
dmaengine_terminate_all(dws->rxchan);
|
|
dma_release_channel(dws->rxchan);
|
|
}
|
|
|
|
/*
|
|
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
|
|
* channel will clear a corresponding bit.
|
|
*/
|
|
static void dw_spi_dma_tx_done(void *arg)
|
|
{
|
|
struct dw_spi *dws = arg;
|
|
|
|
if (test_and_clear_bit(TX_BUSY, &dws->dma_chan_busy) & BIT(RX_BUSY))
|
|
return;
|
|
dw_spi_xfer_done(dws);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws)
|
|
{
|
|
struct dma_slave_config txconf;
|
|
struct dma_async_tx_descriptor *txdesc;
|
|
|
|
if (!dws->tx_dma)
|
|
return NULL;
|
|
|
|
txconf.direction = DMA_MEM_TO_DEV;
|
|
txconf.dst_addr = dws->dma_addr;
|
|
txconf.dst_maxburst = LNW_DMA_MSIZE_16;
|
|
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
txconf.dst_addr_width = dws->dma_width;
|
|
txconf.device_fc = false;
|
|
|
|
dmaengine_slave_config(dws->txchan, &txconf);
|
|
|
|
memset(&dws->tx_sgl, 0, sizeof(dws->tx_sgl));
|
|
dws->tx_sgl.dma_address = dws->tx_dma;
|
|
dws->tx_sgl.length = dws->len;
|
|
|
|
txdesc = dmaengine_prep_slave_sg(dws->txchan,
|
|
&dws->tx_sgl,
|
|
1,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
txdesc->callback = dw_spi_dma_tx_done;
|
|
txdesc->callback_param = dws;
|
|
|
|
return txdesc;
|
|
}
|
|
|
|
/*
|
|
* dws->dma_chan_busy is set before the dma transfer starts, callback for rx
|
|
* channel will clear a corresponding bit.
|
|
*/
|
|
static void dw_spi_dma_rx_done(void *arg)
|
|
{
|
|
struct dw_spi *dws = arg;
|
|
|
|
if (test_and_clear_bit(RX_BUSY, &dws->dma_chan_busy) & BIT(TX_BUSY))
|
|
return;
|
|
dw_spi_xfer_done(dws);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws)
|
|
{
|
|
struct dma_slave_config rxconf;
|
|
struct dma_async_tx_descriptor *rxdesc;
|
|
|
|
if (!dws->rx_dma)
|
|
return NULL;
|
|
|
|
rxconf.direction = DMA_DEV_TO_MEM;
|
|
rxconf.src_addr = dws->dma_addr;
|
|
rxconf.src_maxburst = LNW_DMA_MSIZE_16;
|
|
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
rxconf.src_addr_width = dws->dma_width;
|
|
rxconf.device_fc = false;
|
|
|
|
dmaengine_slave_config(dws->rxchan, &rxconf);
|
|
|
|
memset(&dws->rx_sgl, 0, sizeof(dws->rx_sgl));
|
|
dws->rx_sgl.dma_address = dws->rx_dma;
|
|
dws->rx_sgl.length = dws->len;
|
|
|
|
rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
|
|
&dws->rx_sgl,
|
|
1,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
rxdesc->callback = dw_spi_dma_rx_done;
|
|
rxdesc->callback_param = dws;
|
|
|
|
return rxdesc;
|
|
}
|
|
|
|
static void dw_spi_dma_setup(struct dw_spi *dws)
|
|
{
|
|
u16 dma_ctrl = 0;
|
|
|
|
spi_enable_chip(dws, 0);
|
|
|
|
dw_writew(dws, DW_SPI_DMARDLR, 0xf);
|
|
dw_writew(dws, DW_SPI_DMATDLR, 0x10);
|
|
|
|
if (dws->tx_dma)
|
|
dma_ctrl |= SPI_DMA_TDMAE;
|
|
if (dws->rx_dma)
|
|
dma_ctrl |= SPI_DMA_RDMAE;
|
|
dw_writew(dws, DW_SPI_DMACR, dma_ctrl);
|
|
|
|
spi_enable_chip(dws, 1);
|
|
}
|
|
|
|
static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
|
|
{
|
|
struct dma_async_tx_descriptor *txdesc, *rxdesc;
|
|
|
|
/* 1. setup DMA related registers */
|
|
if (cs_change)
|
|
dw_spi_dma_setup(dws);
|
|
|
|
/* 2. Prepare the TX dma transfer */
|
|
txdesc = dw_spi_dma_prepare_tx(dws);
|
|
|
|
/* 3. Prepare the RX dma transfer */
|
|
rxdesc = dw_spi_dma_prepare_rx(dws);
|
|
|
|
/* rx must be started before tx due to spi instinct */
|
|
if (rxdesc) {
|
|
set_bit(RX_BUSY, &dws->dma_chan_busy);
|
|
dmaengine_submit(rxdesc);
|
|
dma_async_issue_pending(dws->rxchan);
|
|
}
|
|
|
|
if (txdesc) {
|
|
set_bit(TX_BUSY, &dws->dma_chan_busy);
|
|
dmaengine_submit(txdesc);
|
|
dma_async_issue_pending(dws->txchan);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dw_spi_dma_ops mid_dma_ops = {
|
|
.dma_init = mid_spi_dma_init,
|
|
.dma_exit = mid_spi_dma_exit,
|
|
.dma_transfer = mid_spi_dma_transfer,
|
|
};
|
|
#endif
|
|
|
|
/* Some specific info for SPI0 controller on Intel MID */
|
|
|
|
/* HW info for MRST CLk Control Unit, one 32b reg */
|
|
#define MRST_SPI_CLK_BASE 100000000 /* 100m */
|
|
#define MRST_CLK_SPI0_REG 0xff11d86c
|
|
#define CLK_SPI_BDIV_OFFSET 0
|
|
#define CLK_SPI_BDIV_MASK 0x00000007
|
|
#define CLK_SPI_CDIV_OFFSET 9
|
|
#define CLK_SPI_CDIV_MASK 0x00000e00
|
|
#define CLK_SPI_DISABLE_OFFSET 8
|
|
|
|
int dw_spi_mid_init(struct dw_spi *dws)
|
|
{
|
|
void __iomem *clk_reg;
|
|
u32 clk_cdiv;
|
|
|
|
clk_reg = ioremap_nocache(MRST_CLK_SPI0_REG, 16);
|
|
if (!clk_reg)
|
|
return -ENOMEM;
|
|
|
|
/* get SPI controller operating freq info */
|
|
clk_cdiv = (readl(clk_reg) & CLK_SPI_CDIV_MASK) >> CLK_SPI_CDIV_OFFSET;
|
|
dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
|
|
iounmap(clk_reg);
|
|
|
|
dws->num_cs = 16;
|
|
dws->fifo_len = 40; /* FIFO has 40 words buffer */
|
|
|
|
#ifdef CONFIG_SPI_DW_MID_DMA
|
|
dws->dma_priv = kzalloc(sizeof(struct mid_dma), GFP_KERNEL);
|
|
if (!dws->dma_priv)
|
|
return -ENOMEM;
|
|
dws->dma_ops = &mid_dma_ops;
|
|
#endif
|
|
return 0;
|
|
}
|