linux/drivers/bus/fsl-mc/fsl-mc-bus.c
Uwe Kleine-König 59272ad8d9 bus: fsl-mc: Make remove function return void
The value returned by an fsl-mc driver's remove function is mostly
ignored.  (Only an error message is printed if the value is non-zero
and then device removal continues unconditionally.)

So change the prototype of the remove function to return no value. This
way driver authors are not tempted to assume that passing an error to
the upper layer is a good idea. All drivers are adapted accordingly.
There is no intended change of behaviour, all callbacks were prepared to
return 0 before.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Reviewed-by: Ioana Ciornei <ioana.ciornei@nxp.com>
Tested-by: Ioana Ciornei <ioana.ciornei@nxp.com> # sanity checks
Reviewed-by: Laurentiu Tudor <laurentiu.tudor@nxp.com>
Tested-by: Laurentiu Tudor <laurentiu.tudor@nxp.com>
Signed-off-by: Li Yang <leoyang.li@nxp.com>
2023-05-30 18:58:43 -05:00

1367 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Freescale Management Complex (MC) bus driver
*
* Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
* Copyright 2019-2020 NXP
* Author: German Rivera <German.Rivera@freescale.com>
*
*/
#define pr_fmt(fmt) "fsl-mc: " fmt
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/limits.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/acpi.h>
#include <linux/iommu.h>
#include <linux/dma-map-ops.h>
#include "fsl-mc-private.h"
/*
* Default DMA mask for devices on a fsl-mc bus
*/
#define FSL_MC_DEFAULT_DMA_MASK (~0ULL)
static struct fsl_mc_version mc_version;
/**
* struct fsl_mc - Private data of a "fsl,qoriq-mc" platform device
* @root_mc_bus_dev: fsl-mc device representing the root DPRC
* @num_translation_ranges: number of entries in addr_translation_ranges
* @translation_ranges: array of bus to system address translation ranges
* @fsl_mc_regs: base address of register bank
*/
struct fsl_mc {
struct fsl_mc_device *root_mc_bus_dev;
u8 num_translation_ranges;
struct fsl_mc_addr_translation_range *translation_ranges;
void __iomem *fsl_mc_regs;
};
/**
* struct fsl_mc_addr_translation_range - bus to system address translation
* range
* @mc_region_type: Type of MC region for the range being translated
* @start_mc_offset: Start MC offset of the range being translated
* @end_mc_offset: MC offset of the first byte after the range (last MC
* offset of the range is end_mc_offset - 1)
* @start_phys_addr: system physical address corresponding to start_mc_addr
*/
struct fsl_mc_addr_translation_range {
enum dprc_region_type mc_region_type;
u64 start_mc_offset;
u64 end_mc_offset;
phys_addr_t start_phys_addr;
};
#define FSL_MC_GCR1 0x0
#define GCR1_P1_STOP BIT(31)
#define GCR1_P2_STOP BIT(30)
#define FSL_MC_FAPR 0x28
#define MC_FAPR_PL BIT(18)
#define MC_FAPR_BMT BIT(17)
static phys_addr_t mc_portal_base_phys_addr;
/**
* fsl_mc_bus_match - device to driver matching callback
* @dev: the fsl-mc device to match against
* @drv: the device driver to search for matching fsl-mc object type
* structures
*
* Returns 1 on success, 0 otherwise.
*/
static int fsl_mc_bus_match(struct device *dev, struct device_driver *drv)
{
const struct fsl_mc_device_id *id;
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(drv);
bool found = false;
/* When driver_override is set, only bind to the matching driver */
if (mc_dev->driver_override) {
found = !strcmp(mc_dev->driver_override, mc_drv->driver.name);
goto out;
}
if (!mc_drv->match_id_table)
goto out;
/*
* If the object is not 'plugged' don't match.
* Only exception is the root DPRC, which is a special case.
*/
if ((mc_dev->obj_desc.state & FSL_MC_OBJ_STATE_PLUGGED) == 0 &&
!fsl_mc_is_root_dprc(&mc_dev->dev))
goto out;
/*
* Traverse the match_id table of the given driver, trying to find
* a matching for the given device.
*/
for (id = mc_drv->match_id_table; id->vendor != 0x0; id++) {
if (id->vendor == mc_dev->obj_desc.vendor &&
strcmp(id->obj_type, mc_dev->obj_desc.type) == 0) {
found = true;
break;
}
}
out:
dev_dbg(dev, "%smatched\n", found ? "" : "not ");
return found;
}
/*
* fsl_mc_bus_uevent - callback invoked when a device is added
*/
static int fsl_mc_bus_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
const struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
if (add_uevent_var(env, "MODALIAS=fsl-mc:v%08Xd%s",
mc_dev->obj_desc.vendor,
mc_dev->obj_desc.type))
return -ENOMEM;
return 0;
}
static int fsl_mc_dma_configure(struct device *dev)
{
struct device *dma_dev = dev;
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
u32 input_id = mc_dev->icid;
int ret;
while (dev_is_fsl_mc(dma_dev))
dma_dev = dma_dev->parent;
if (dev_of_node(dma_dev))
ret = of_dma_configure_id(dev, dma_dev->of_node, 0, &input_id);
else
ret = acpi_dma_configure_id(dev, DEV_DMA_COHERENT, &input_id);
if (!ret && !mc_drv->driver_managed_dma) {
ret = iommu_device_use_default_domain(dev);
if (ret)
arch_teardown_dma_ops(dev);
}
return ret;
}
static void fsl_mc_dma_cleanup(struct device *dev)
{
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
if (!mc_drv->driver_managed_dma)
iommu_device_unuse_default_domain(dev);
}
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
return sprintf(buf, "fsl-mc:v%08Xd%s\n", mc_dev->obj_desc.vendor,
mc_dev->obj_desc.type);
}
static DEVICE_ATTR_RO(modalias);
static ssize_t driver_override_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
int ret;
if (WARN_ON(dev->bus != &fsl_mc_bus_type))
return -EINVAL;
ret = driver_set_override(dev, &mc_dev->driver_override, buf, count);
if (ret)
return ret;
return count;
}
static ssize_t driver_override_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
return snprintf(buf, PAGE_SIZE, "%s\n", mc_dev->driver_override);
}
static DEVICE_ATTR_RW(driver_override);
static struct attribute *fsl_mc_dev_attrs[] = {
&dev_attr_modalias.attr,
&dev_attr_driver_override.attr,
NULL,
};
ATTRIBUTE_GROUPS(fsl_mc_dev);
static int scan_fsl_mc_bus(struct device *dev, void *data)
{
struct fsl_mc_device *root_mc_dev;
struct fsl_mc_bus *root_mc_bus;
if (!fsl_mc_is_root_dprc(dev))
goto exit;
root_mc_dev = to_fsl_mc_device(dev);
root_mc_bus = to_fsl_mc_bus(root_mc_dev);
mutex_lock(&root_mc_bus->scan_mutex);
dprc_scan_objects(root_mc_dev, false);
mutex_unlock(&root_mc_bus->scan_mutex);
exit:
return 0;
}
static ssize_t rescan_store(const struct bus_type *bus,
const char *buf, size_t count)
{
unsigned long val;
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val)
bus_for_each_dev(bus, NULL, NULL, scan_fsl_mc_bus);
return count;
}
static BUS_ATTR_WO(rescan);
static int fsl_mc_bus_set_autorescan(struct device *dev, void *data)
{
struct fsl_mc_device *root_mc_dev;
unsigned long val;
char *buf = data;
if (!fsl_mc_is_root_dprc(dev))
goto exit;
root_mc_dev = to_fsl_mc_device(dev);
if (kstrtoul(buf, 0, &val) < 0)
return -EINVAL;
if (val)
enable_dprc_irq(root_mc_dev);
else
disable_dprc_irq(root_mc_dev);
exit:
return 0;
}
static int fsl_mc_bus_get_autorescan(struct device *dev, void *data)
{
struct fsl_mc_device *root_mc_dev;
char *buf = data;
if (!fsl_mc_is_root_dprc(dev))
goto exit;
root_mc_dev = to_fsl_mc_device(dev);
sprintf(buf, "%d\n", get_dprc_irq_state(root_mc_dev));
exit:
return 0;
}
static ssize_t autorescan_store(const struct bus_type *bus,
const char *buf, size_t count)
{
bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_set_autorescan);
return count;
}
static ssize_t autorescan_show(const struct bus_type *bus, char *buf)
{
bus_for_each_dev(bus, NULL, (void *)buf, fsl_mc_bus_get_autorescan);
return strlen(buf);
}
static BUS_ATTR_RW(autorescan);
static struct attribute *fsl_mc_bus_attrs[] = {
&bus_attr_rescan.attr,
&bus_attr_autorescan.attr,
NULL,
};
ATTRIBUTE_GROUPS(fsl_mc_bus);
struct bus_type fsl_mc_bus_type = {
.name = "fsl-mc",
.match = fsl_mc_bus_match,
.uevent = fsl_mc_bus_uevent,
.dma_configure = fsl_mc_dma_configure,
.dma_cleanup = fsl_mc_dma_cleanup,
.dev_groups = fsl_mc_dev_groups,
.bus_groups = fsl_mc_bus_groups,
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_type);
struct device_type fsl_mc_bus_dprc_type = {
.name = "fsl_mc_bus_dprc"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dprc_type);
struct device_type fsl_mc_bus_dpni_type = {
.name = "fsl_mc_bus_dpni"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpni_type);
struct device_type fsl_mc_bus_dpio_type = {
.name = "fsl_mc_bus_dpio"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpio_type);
struct device_type fsl_mc_bus_dpsw_type = {
.name = "fsl_mc_bus_dpsw"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpsw_type);
struct device_type fsl_mc_bus_dpbp_type = {
.name = "fsl_mc_bus_dpbp"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpbp_type);
struct device_type fsl_mc_bus_dpcon_type = {
.name = "fsl_mc_bus_dpcon"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpcon_type);
struct device_type fsl_mc_bus_dpmcp_type = {
.name = "fsl_mc_bus_dpmcp"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmcp_type);
struct device_type fsl_mc_bus_dpmac_type = {
.name = "fsl_mc_bus_dpmac"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpmac_type);
struct device_type fsl_mc_bus_dprtc_type = {
.name = "fsl_mc_bus_dprtc"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dprtc_type);
struct device_type fsl_mc_bus_dpseci_type = {
.name = "fsl_mc_bus_dpseci"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpseci_type);
struct device_type fsl_mc_bus_dpdmux_type = {
.name = "fsl_mc_bus_dpdmux"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmux_type);
struct device_type fsl_mc_bus_dpdcei_type = {
.name = "fsl_mc_bus_dpdcei"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdcei_type);
struct device_type fsl_mc_bus_dpaiop_type = {
.name = "fsl_mc_bus_dpaiop"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpaiop_type);
struct device_type fsl_mc_bus_dpci_type = {
.name = "fsl_mc_bus_dpci"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpci_type);
struct device_type fsl_mc_bus_dpdmai_type = {
.name = "fsl_mc_bus_dpdmai"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdmai_type);
struct device_type fsl_mc_bus_dpdbg_type = {
.name = "fsl_mc_bus_dpdbg"
};
EXPORT_SYMBOL_GPL(fsl_mc_bus_dpdbg_type);
static struct device_type *fsl_mc_get_device_type(const char *type)
{
static const struct {
struct device_type *dev_type;
const char *type;
} dev_types[] = {
{ &fsl_mc_bus_dprc_type, "dprc" },
{ &fsl_mc_bus_dpni_type, "dpni" },
{ &fsl_mc_bus_dpio_type, "dpio" },
{ &fsl_mc_bus_dpsw_type, "dpsw" },
{ &fsl_mc_bus_dpbp_type, "dpbp" },
{ &fsl_mc_bus_dpcon_type, "dpcon" },
{ &fsl_mc_bus_dpmcp_type, "dpmcp" },
{ &fsl_mc_bus_dpmac_type, "dpmac" },
{ &fsl_mc_bus_dprtc_type, "dprtc" },
{ &fsl_mc_bus_dpseci_type, "dpseci" },
{ &fsl_mc_bus_dpdmux_type, "dpdmux" },
{ &fsl_mc_bus_dpdcei_type, "dpdcei" },
{ &fsl_mc_bus_dpaiop_type, "dpaiop" },
{ &fsl_mc_bus_dpci_type, "dpci" },
{ &fsl_mc_bus_dpdmai_type, "dpdmai" },
{ &fsl_mc_bus_dpdbg_type, "dpdbg" },
{ NULL, NULL }
};
int i;
for (i = 0; dev_types[i].dev_type; i++)
if (!strcmp(dev_types[i].type, type))
return dev_types[i].dev_type;
return NULL;
}
static int fsl_mc_driver_probe(struct device *dev)
{
struct fsl_mc_driver *mc_drv;
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
int error;
mc_drv = to_fsl_mc_driver(dev->driver);
error = mc_drv->probe(mc_dev);
if (error < 0) {
if (error != -EPROBE_DEFER)
dev_err(dev, "%s failed: %d\n", __func__, error);
return error;
}
return 0;
}
static int fsl_mc_driver_remove(struct device *dev)
{
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
mc_drv->remove(mc_dev);
return 0;
}
static void fsl_mc_driver_shutdown(struct device *dev)
{
struct fsl_mc_driver *mc_drv = to_fsl_mc_driver(dev->driver);
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
mc_drv->shutdown(mc_dev);
}
/*
* __fsl_mc_driver_register - registers a child device driver with the
* MC bus
*
* This function is implicitly invoked from the registration function of
* fsl_mc device drivers, which is generated by the
* module_fsl_mc_driver() macro.
*/
int __fsl_mc_driver_register(struct fsl_mc_driver *mc_driver,
struct module *owner)
{
int error;
mc_driver->driver.owner = owner;
mc_driver->driver.bus = &fsl_mc_bus_type;
if (mc_driver->probe)
mc_driver->driver.probe = fsl_mc_driver_probe;
if (mc_driver->remove)
mc_driver->driver.remove = fsl_mc_driver_remove;
if (mc_driver->shutdown)
mc_driver->driver.shutdown = fsl_mc_driver_shutdown;
error = driver_register(&mc_driver->driver);
if (error < 0) {
pr_err("driver_register() failed for %s: %d\n",
mc_driver->driver.name, error);
return error;
}
return 0;
}
EXPORT_SYMBOL_GPL(__fsl_mc_driver_register);
/*
* fsl_mc_driver_unregister - unregisters a device driver from the
* MC bus
*/
void fsl_mc_driver_unregister(struct fsl_mc_driver *mc_driver)
{
driver_unregister(&mc_driver->driver);
}
EXPORT_SYMBOL_GPL(fsl_mc_driver_unregister);
/**
* mc_get_version() - Retrieves the Management Complex firmware
* version information
* @mc_io: Pointer to opaque I/O object
* @cmd_flags: Command flags; one or more of 'MC_CMD_FLAG_'
* @mc_ver_info: Returned version information structure
*
* Return: '0' on Success; Error code otherwise.
*/
static int mc_get_version(struct fsl_mc_io *mc_io,
u32 cmd_flags,
struct fsl_mc_version *mc_ver_info)
{
struct fsl_mc_command cmd = { 0 };
struct dpmng_rsp_get_version *rsp_params;
int err;
/* prepare command */
cmd.header = mc_encode_cmd_header(DPMNG_CMDID_GET_VERSION,
cmd_flags,
0);
/* send command to mc*/
err = mc_send_command(mc_io, &cmd);
if (err)
return err;
/* retrieve response parameters */
rsp_params = (struct dpmng_rsp_get_version *)cmd.params;
mc_ver_info->revision = le32_to_cpu(rsp_params->revision);
mc_ver_info->major = le32_to_cpu(rsp_params->version_major);
mc_ver_info->minor = le32_to_cpu(rsp_params->version_minor);
return 0;
}
/**
* fsl_mc_get_version - function to retrieve the MC f/w version information
*
* Return: mc version when called after fsl-mc-bus probe; NULL otherwise.
*/
struct fsl_mc_version *fsl_mc_get_version(void)
{
if (mc_version.major)
return &mc_version;
return NULL;
}
EXPORT_SYMBOL_GPL(fsl_mc_get_version);
/*
* fsl_mc_get_root_dprc - function to traverse to the root dprc
*/
void fsl_mc_get_root_dprc(struct device *dev,
struct device **root_dprc_dev)
{
if (!dev) {
*root_dprc_dev = NULL;
} else if (!dev_is_fsl_mc(dev)) {
*root_dprc_dev = NULL;
} else {
*root_dprc_dev = dev;
while (dev_is_fsl_mc((*root_dprc_dev)->parent))
*root_dprc_dev = (*root_dprc_dev)->parent;
}
}
static int get_dprc_attr(struct fsl_mc_io *mc_io,
int container_id, struct dprc_attributes *attr)
{
u16 dprc_handle;
int error;
error = dprc_open(mc_io, 0, container_id, &dprc_handle);
if (error < 0) {
dev_err(mc_io->dev, "dprc_open() failed: %d\n", error);
return error;
}
memset(attr, 0, sizeof(struct dprc_attributes));
error = dprc_get_attributes(mc_io, 0, dprc_handle, attr);
if (error < 0) {
dev_err(mc_io->dev, "dprc_get_attributes() failed: %d\n",
error);
goto common_cleanup;
}
error = 0;
common_cleanup:
(void)dprc_close(mc_io, 0, dprc_handle);
return error;
}
static int get_dprc_icid(struct fsl_mc_io *mc_io,
int container_id, u32 *icid)
{
struct dprc_attributes attr;
int error;
error = get_dprc_attr(mc_io, container_id, &attr);
if (error == 0)
*icid = attr.icid;
return error;
}
static int translate_mc_addr(struct fsl_mc_device *mc_dev,
enum dprc_region_type mc_region_type,
u64 mc_offset, phys_addr_t *phys_addr)
{
int i;
struct device *root_dprc_dev;
struct fsl_mc *mc;
fsl_mc_get_root_dprc(&mc_dev->dev, &root_dprc_dev);
mc = dev_get_drvdata(root_dprc_dev->parent);
if (mc->num_translation_ranges == 0) {
/*
* Do identity mapping:
*/
*phys_addr = mc_offset;
return 0;
}
for (i = 0; i < mc->num_translation_ranges; i++) {
struct fsl_mc_addr_translation_range *range =
&mc->translation_ranges[i];
if (mc_region_type == range->mc_region_type &&
mc_offset >= range->start_mc_offset &&
mc_offset < range->end_mc_offset) {
*phys_addr = range->start_phys_addr +
(mc_offset - range->start_mc_offset);
return 0;
}
}
return -EFAULT;
}
static int fsl_mc_device_get_mmio_regions(struct fsl_mc_device *mc_dev,
struct fsl_mc_device *mc_bus_dev)
{
int i;
int error;
struct resource *regions;
struct fsl_mc_obj_desc *obj_desc = &mc_dev->obj_desc;
struct device *parent_dev = mc_dev->dev.parent;
enum dprc_region_type mc_region_type;
if (is_fsl_mc_bus_dprc(mc_dev) ||
is_fsl_mc_bus_dpmcp(mc_dev)) {
mc_region_type = DPRC_REGION_TYPE_MC_PORTAL;
} else if (is_fsl_mc_bus_dpio(mc_dev)) {
mc_region_type = DPRC_REGION_TYPE_QBMAN_PORTAL;
} else {
/*
* This function should not have been called for this MC object
* type, as this object type is not supposed to have MMIO
* regions
*/
return -EINVAL;
}
regions = kmalloc_array(obj_desc->region_count,
sizeof(regions[0]), GFP_KERNEL);
if (!regions)
return -ENOMEM;
for (i = 0; i < obj_desc->region_count; i++) {
struct dprc_region_desc region_desc;
error = dprc_get_obj_region(mc_bus_dev->mc_io,
0,
mc_bus_dev->mc_handle,
obj_desc->type,
obj_desc->id, i, &region_desc);
if (error < 0) {
dev_err(parent_dev,
"dprc_get_obj_region() failed: %d\n", error);
goto error_cleanup_regions;
}
/*
* Older MC only returned region offset and no base address
* If base address is in the region_desc use it otherwise
* revert to old mechanism
*/
if (region_desc.base_address) {
regions[i].start = region_desc.base_address +
region_desc.base_offset;
} else {
error = translate_mc_addr(mc_dev, mc_region_type,
region_desc.base_offset,
&regions[i].start);
/*
* Some versions of the MC firmware wrongly report
* 0 for register base address of the DPMCP associated
* with child DPRC objects thus rendering them unusable.
* This is particularly troublesome in ACPI boot
* scenarios where the legacy way of extracting this
* base address from the device tree does not apply.
* Given that DPMCPs share the same base address,
* workaround this by using the base address extracted
* from the root DPRC container.
*/
if (is_fsl_mc_bus_dprc(mc_dev) &&
regions[i].start == region_desc.base_offset)
regions[i].start += mc_portal_base_phys_addr;
}
if (error < 0) {
dev_err(parent_dev,
"Invalid MC offset: %#x (for %s.%d\'s region %d)\n",
region_desc.base_offset,
obj_desc->type, obj_desc->id, i);
goto error_cleanup_regions;
}
regions[i].end = regions[i].start + region_desc.size - 1;
regions[i].name = "fsl-mc object MMIO region";
regions[i].flags = region_desc.flags & IORESOURCE_BITS;
regions[i].flags |= IORESOURCE_MEM;
}
mc_dev->regions = regions;
return 0;
error_cleanup_regions:
kfree(regions);
return error;
}
/*
* fsl_mc_is_root_dprc - function to check if a given device is a root dprc
*/
bool fsl_mc_is_root_dprc(struct device *dev)
{
struct device *root_dprc_dev;
fsl_mc_get_root_dprc(dev, &root_dprc_dev);
if (!root_dprc_dev)
return false;
return dev == root_dprc_dev;
}
static void fsl_mc_device_release(struct device *dev)
{
struct fsl_mc_device *mc_dev = to_fsl_mc_device(dev);
kfree(mc_dev->regions);
if (is_fsl_mc_bus_dprc(mc_dev))
kfree(to_fsl_mc_bus(mc_dev));
else
kfree(mc_dev);
}
/*
* Add a newly discovered fsl-mc device to be visible in Linux
*/
int fsl_mc_device_add(struct fsl_mc_obj_desc *obj_desc,
struct fsl_mc_io *mc_io,
struct device *parent_dev,
struct fsl_mc_device **new_mc_dev)
{
int error;
struct fsl_mc_device *mc_dev = NULL;
struct fsl_mc_bus *mc_bus = NULL;
struct fsl_mc_device *parent_mc_dev;
if (dev_is_fsl_mc(parent_dev))
parent_mc_dev = to_fsl_mc_device(parent_dev);
else
parent_mc_dev = NULL;
if (strcmp(obj_desc->type, "dprc") == 0) {
/*
* Allocate an MC bus device object:
*/
mc_bus = kzalloc(sizeof(*mc_bus), GFP_KERNEL);
if (!mc_bus)
return -ENOMEM;
mutex_init(&mc_bus->scan_mutex);
mc_dev = &mc_bus->mc_dev;
} else {
/*
* Allocate a regular fsl_mc_device object:
*/
mc_dev = kzalloc(sizeof(*mc_dev), GFP_KERNEL);
if (!mc_dev)
return -ENOMEM;
}
mc_dev->obj_desc = *obj_desc;
mc_dev->mc_io = mc_io;
device_initialize(&mc_dev->dev);
mc_dev->dev.parent = parent_dev;
mc_dev->dev.bus = &fsl_mc_bus_type;
mc_dev->dev.release = fsl_mc_device_release;
mc_dev->dev.type = fsl_mc_get_device_type(obj_desc->type);
if (!mc_dev->dev.type) {
error = -ENODEV;
dev_err(parent_dev, "unknown device type %s\n", obj_desc->type);
goto error_cleanup_dev;
}
dev_set_name(&mc_dev->dev, "%s.%d", obj_desc->type, obj_desc->id);
if (strcmp(obj_desc->type, "dprc") == 0) {
struct fsl_mc_io *mc_io2;
mc_dev->flags |= FSL_MC_IS_DPRC;
/*
* To get the DPRC's ICID, we need to open the DPRC
* in get_dprc_icid(). For child DPRCs, we do so using the
* parent DPRC's MC portal instead of the child DPRC's MC
* portal, in case the child DPRC is already opened with
* its own portal (e.g., the DPRC used by AIOP).
*
* NOTE: There cannot be more than one active open for a
* given MC object, using the same MC portal.
*/
if (parent_mc_dev) {
/*
* device being added is a child DPRC device
*/
mc_io2 = parent_mc_dev->mc_io;
} else {
/*
* device being added is the root DPRC device
*/
if (!mc_io) {
error = -EINVAL;
goto error_cleanup_dev;
}
mc_io2 = mc_io;
}
error = get_dprc_icid(mc_io2, obj_desc->id, &mc_dev->icid);
if (error < 0)
goto error_cleanup_dev;
} else {
/*
* A non-DPRC object has to be a child of a DPRC, use the
* parent's ICID and interrupt domain.
*/
mc_dev->icid = parent_mc_dev->icid;
mc_dev->dma_mask = FSL_MC_DEFAULT_DMA_MASK;
mc_dev->dev.dma_mask = &mc_dev->dma_mask;
mc_dev->dev.coherent_dma_mask = mc_dev->dma_mask;
dev_set_msi_domain(&mc_dev->dev,
dev_get_msi_domain(&parent_mc_dev->dev));
}
/*
* Get MMIO regions for the device from the MC:
*
* NOTE: the root DPRC is a special case as its MMIO region is
* obtained from the device tree
*/
if (parent_mc_dev && obj_desc->region_count != 0) {
error = fsl_mc_device_get_mmio_regions(mc_dev,
parent_mc_dev);
if (error < 0)
goto error_cleanup_dev;
}
/*
* The device-specific probe callback will get invoked by device_add()
*/
error = device_add(&mc_dev->dev);
if (error < 0) {
dev_err(parent_dev,
"device_add() failed for device %s: %d\n",
dev_name(&mc_dev->dev), error);
goto error_cleanup_dev;
}
dev_dbg(parent_dev, "added %s\n", dev_name(&mc_dev->dev));
*new_mc_dev = mc_dev;
return 0;
error_cleanup_dev:
kfree(mc_dev->regions);
kfree(mc_bus);
kfree(mc_dev);
return error;
}
EXPORT_SYMBOL_GPL(fsl_mc_device_add);
static struct notifier_block fsl_mc_nb;
/**
* fsl_mc_device_remove - Remove an fsl-mc device from being visible to
* Linux
*
* @mc_dev: Pointer to an fsl-mc device
*/
void fsl_mc_device_remove(struct fsl_mc_device *mc_dev)
{
kfree(mc_dev->driver_override);
mc_dev->driver_override = NULL;
/*
* The device-specific remove callback will get invoked by device_del()
*/
device_del(&mc_dev->dev);
put_device(&mc_dev->dev);
}
EXPORT_SYMBOL_GPL(fsl_mc_device_remove);
struct fsl_mc_device *fsl_mc_get_endpoint(struct fsl_mc_device *mc_dev,
u16 if_id)
{
struct fsl_mc_device *mc_bus_dev, *endpoint;
struct fsl_mc_obj_desc endpoint_desc = {{ 0 }};
struct dprc_endpoint endpoint1 = {{ 0 }};
struct dprc_endpoint endpoint2 = {{ 0 }};
int state, err;
mc_bus_dev = to_fsl_mc_device(mc_dev->dev.parent);
strcpy(endpoint1.type, mc_dev->obj_desc.type);
endpoint1.id = mc_dev->obj_desc.id;
endpoint1.if_id = if_id;
err = dprc_get_connection(mc_bus_dev->mc_io, 0,
mc_bus_dev->mc_handle,
&endpoint1, &endpoint2,
&state);
if (err == -ENOTCONN || state == -1)
return ERR_PTR(-ENOTCONN);
if (err < 0) {
dev_err(&mc_bus_dev->dev, "dprc_get_connection() = %d\n", err);
return ERR_PTR(err);
}
strcpy(endpoint_desc.type, endpoint2.type);
endpoint_desc.id = endpoint2.id;
endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
/*
* We know that the device has an endpoint because we verified by
* interrogating the firmware. This is the case when the device was not
* yet discovered by the fsl-mc bus, thus the lookup returned NULL.
* Force a rescan of the devices in this container and retry the lookup.
*/
if (!endpoint) {
struct fsl_mc_bus *mc_bus = to_fsl_mc_bus(mc_bus_dev);
if (mutex_trylock(&mc_bus->scan_mutex)) {
err = dprc_scan_objects(mc_bus_dev, true);
mutex_unlock(&mc_bus->scan_mutex);
}
if (err < 0)
return ERR_PTR(err);
}
endpoint = fsl_mc_device_lookup(&endpoint_desc, mc_bus_dev);
/*
* This means that the endpoint might reside in a different isolation
* context (DPRC/container). Not much to do, so return a permssion
* error.
*/
if (!endpoint)
return ERR_PTR(-EPERM);
return endpoint;
}
EXPORT_SYMBOL_GPL(fsl_mc_get_endpoint);
static int parse_mc_ranges(struct device *dev,
int *paddr_cells,
int *mc_addr_cells,
int *mc_size_cells,
const __be32 **ranges_start)
{
const __be32 *prop;
int range_tuple_cell_count;
int ranges_len;
int tuple_len;
struct device_node *mc_node = dev->of_node;
*ranges_start = of_get_property(mc_node, "ranges", &ranges_len);
if (!(*ranges_start) || !ranges_len) {
dev_warn(dev,
"missing or empty ranges property for device tree node '%pOFn'\n",
mc_node);
return 0;
}
*paddr_cells = of_n_addr_cells(mc_node);
prop = of_get_property(mc_node, "#address-cells", NULL);
if (prop)
*mc_addr_cells = be32_to_cpup(prop);
else
*mc_addr_cells = *paddr_cells;
prop = of_get_property(mc_node, "#size-cells", NULL);
if (prop)
*mc_size_cells = be32_to_cpup(prop);
else
*mc_size_cells = of_n_size_cells(mc_node);
range_tuple_cell_count = *paddr_cells + *mc_addr_cells +
*mc_size_cells;
tuple_len = range_tuple_cell_count * sizeof(__be32);
if (ranges_len % tuple_len != 0) {
dev_err(dev, "malformed ranges property '%pOFn'\n", mc_node);
return -EINVAL;
}
return ranges_len / tuple_len;
}
static int get_mc_addr_translation_ranges(struct device *dev,
struct fsl_mc_addr_translation_range
**ranges,
u8 *num_ranges)
{
int ret;
int paddr_cells;
int mc_addr_cells;
int mc_size_cells;
int i;
const __be32 *ranges_start;
const __be32 *cell;
ret = parse_mc_ranges(dev,
&paddr_cells,
&mc_addr_cells,
&mc_size_cells,
&ranges_start);
if (ret < 0)
return ret;
*num_ranges = ret;
if (!ret) {
/*
* Missing or empty ranges property ("ranges;") for the
* 'fsl,qoriq-mc' node. In this case, identity mapping
* will be used.
*/
*ranges = NULL;
return 0;
}
*ranges = devm_kcalloc(dev, *num_ranges,
sizeof(struct fsl_mc_addr_translation_range),
GFP_KERNEL);
if (!(*ranges))
return -ENOMEM;
cell = ranges_start;
for (i = 0; i < *num_ranges; ++i) {
struct fsl_mc_addr_translation_range *range = &(*ranges)[i];
range->mc_region_type = of_read_number(cell, 1);
range->start_mc_offset = of_read_number(cell + 1,
mc_addr_cells - 1);
cell += mc_addr_cells;
range->start_phys_addr = of_read_number(cell, paddr_cells);
cell += paddr_cells;
range->end_mc_offset = range->start_mc_offset +
of_read_number(cell, mc_size_cells);
cell += mc_size_cells;
}
return 0;
}
/*
* fsl_mc_bus_probe - callback invoked when the root MC bus is being
* added
*/
static int fsl_mc_bus_probe(struct platform_device *pdev)
{
struct fsl_mc_obj_desc obj_desc;
int error;
struct fsl_mc *mc;
struct fsl_mc_device *mc_bus_dev = NULL;
struct fsl_mc_io *mc_io = NULL;
int container_id;
phys_addr_t mc_portal_phys_addr;
u32 mc_portal_size, mc_stream_id;
struct resource *plat_res;
mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
if (!mc)
return -ENOMEM;
platform_set_drvdata(pdev, mc);
plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (plat_res) {
mc->fsl_mc_regs = devm_ioremap_resource(&pdev->dev, plat_res);
if (IS_ERR(mc->fsl_mc_regs))
return PTR_ERR(mc->fsl_mc_regs);
}
if (mc->fsl_mc_regs) {
if (IS_ENABLED(CONFIG_ACPI) && !dev_of_node(&pdev->dev)) {
mc_stream_id = readl(mc->fsl_mc_regs + FSL_MC_FAPR);
/*
* HW ORs the PL and BMT bit, places the result in bit
* 14 of the StreamID and ORs in the ICID. Calculate it
* accordingly.
*/
mc_stream_id = (mc_stream_id & 0xffff) |
((mc_stream_id & (MC_FAPR_PL | MC_FAPR_BMT)) ?
BIT(14) : 0);
error = acpi_dma_configure_id(&pdev->dev,
DEV_DMA_COHERENT,
&mc_stream_id);
if (error == -EPROBE_DEFER)
return error;
if (error)
dev_warn(&pdev->dev,
"failed to configure dma: %d.\n",
error);
}
/*
* Some bootloaders pause the MC firmware before booting the
* kernel so that MC will not cause faults as soon as the
* SMMU probes due to the fact that there's no configuration
* in place for MC.
* At this point MC should have all its SMMU setup done so make
* sure it is resumed.
*/
writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) &
(~(GCR1_P1_STOP | GCR1_P2_STOP)),
mc->fsl_mc_regs + FSL_MC_GCR1);
}
/*
* Get physical address of MC portal for the root DPRC:
*/
plat_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mc_portal_phys_addr = plat_res->start;
mc_portal_size = resource_size(plat_res);
mc_portal_base_phys_addr = mc_portal_phys_addr & ~0x3ffffff;
error = fsl_create_mc_io(&pdev->dev, mc_portal_phys_addr,
mc_portal_size, NULL,
FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &mc_io);
if (error < 0)
return error;
error = mc_get_version(mc_io, 0, &mc_version);
if (error != 0) {
dev_err(&pdev->dev,
"mc_get_version() failed with error %d\n", error);
goto error_cleanup_mc_io;
}
dev_info(&pdev->dev, "MC firmware version: %u.%u.%u\n",
mc_version.major, mc_version.minor, mc_version.revision);
if (dev_of_node(&pdev->dev)) {
error = get_mc_addr_translation_ranges(&pdev->dev,
&mc->translation_ranges,
&mc->num_translation_ranges);
if (error < 0)
goto error_cleanup_mc_io;
}
error = dprc_get_container_id(mc_io, 0, &container_id);
if (error < 0) {
dev_err(&pdev->dev,
"dprc_get_container_id() failed: %d\n", error);
goto error_cleanup_mc_io;
}
memset(&obj_desc, 0, sizeof(struct fsl_mc_obj_desc));
error = dprc_get_api_version(mc_io, 0,
&obj_desc.ver_major,
&obj_desc.ver_minor);
if (error < 0)
goto error_cleanup_mc_io;
obj_desc.vendor = FSL_MC_VENDOR_FREESCALE;
strcpy(obj_desc.type, "dprc");
obj_desc.id = container_id;
obj_desc.irq_count = 1;
obj_desc.region_count = 0;
error = fsl_mc_device_add(&obj_desc, mc_io, &pdev->dev, &mc_bus_dev);
if (error < 0)
goto error_cleanup_mc_io;
mc->root_mc_bus_dev = mc_bus_dev;
mc_bus_dev->dev.fwnode = pdev->dev.fwnode;
return 0;
error_cleanup_mc_io:
fsl_destroy_mc_io(mc_io);
return error;
}
/*
* fsl_mc_bus_remove - callback invoked when the root MC bus is being
* removed
*/
static int fsl_mc_bus_remove(struct platform_device *pdev)
{
struct fsl_mc *mc = platform_get_drvdata(pdev);
struct fsl_mc_io *mc_io;
if (!fsl_mc_is_root_dprc(&mc->root_mc_bus_dev->dev))
return -EINVAL;
mc_io = mc->root_mc_bus_dev->mc_io;
fsl_mc_device_remove(mc->root_mc_bus_dev);
fsl_destroy_mc_io(mc_io);
bus_unregister_notifier(&fsl_mc_bus_type, &fsl_mc_nb);
if (mc->fsl_mc_regs) {
/*
* Pause the MC firmware so that it doesn't crash in certain
* scenarios, such as kexec.
*/
writel(readl(mc->fsl_mc_regs + FSL_MC_GCR1) |
(GCR1_P1_STOP | GCR1_P2_STOP),
mc->fsl_mc_regs + FSL_MC_GCR1);
}
return 0;
}
static void fsl_mc_bus_shutdown(struct platform_device *pdev)
{
fsl_mc_bus_remove(pdev);
}
static const struct of_device_id fsl_mc_bus_match_table[] = {
{.compatible = "fsl,qoriq-mc",},
{},
};
MODULE_DEVICE_TABLE(of, fsl_mc_bus_match_table);
static const struct acpi_device_id fsl_mc_bus_acpi_match_table[] = {
{"NXP0008", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, fsl_mc_bus_acpi_match_table);
static struct platform_driver fsl_mc_bus_driver = {
.driver = {
.name = "fsl_mc_bus",
.pm = NULL,
.of_match_table = fsl_mc_bus_match_table,
.acpi_match_table = fsl_mc_bus_acpi_match_table,
},
.probe = fsl_mc_bus_probe,
.remove = fsl_mc_bus_remove,
.shutdown = fsl_mc_bus_shutdown,
};
static int fsl_mc_bus_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev = data;
struct resource *res;
void __iomem *fsl_mc_regs;
if (action != BUS_NOTIFY_ADD_DEVICE)
return 0;
if (!of_match_device(fsl_mc_bus_match_table, dev) &&
!acpi_match_device(fsl_mc_bus_acpi_match_table, dev))
return 0;
res = platform_get_resource(to_platform_device(dev), IORESOURCE_MEM, 1);
if (!res)
return 0;
fsl_mc_regs = ioremap(res->start, resource_size(res));
if (!fsl_mc_regs)
return 0;
/*
* Make sure that the MC firmware is paused before the IOMMU setup for
* it is done or otherwise the firmware will crash right after the SMMU
* gets probed and enabled.
*/
writel(readl(fsl_mc_regs + FSL_MC_GCR1) | (GCR1_P1_STOP | GCR1_P2_STOP),
fsl_mc_regs + FSL_MC_GCR1);
iounmap(fsl_mc_regs);
return 0;
}
static struct notifier_block fsl_mc_nb = {
.notifier_call = fsl_mc_bus_notifier,
};
static int __init fsl_mc_bus_driver_init(void)
{
int error;
error = bus_register(&fsl_mc_bus_type);
if (error < 0) {
pr_err("bus type registration failed: %d\n", error);
goto error_cleanup_cache;
}
error = platform_driver_register(&fsl_mc_bus_driver);
if (error < 0) {
pr_err("platform_driver_register() failed: %d\n", error);
goto error_cleanup_bus;
}
error = dprc_driver_init();
if (error < 0)
goto error_cleanup_driver;
error = fsl_mc_allocator_driver_init();
if (error < 0)
goto error_cleanup_dprc_driver;
return bus_register_notifier(&platform_bus_type, &fsl_mc_nb);
error_cleanup_dprc_driver:
dprc_driver_exit();
error_cleanup_driver:
platform_driver_unregister(&fsl_mc_bus_driver);
error_cleanup_bus:
bus_unregister(&fsl_mc_bus_type);
error_cleanup_cache:
return error;
}
postcore_initcall(fsl_mc_bus_driver_init);