linux/arch/sh/kernel/cpu/clock.c
Paul Mundt f6991b0456 sh: Implement clk_round_rate() in the clock framework.
This is an optional component of the clock framework. However,
as we're going to be using this in the cpufreq drivers, add
support for it to the framework.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-07-20 13:29:09 +09:00

358 lines
7.7 KiB
C

/*
* arch/sh/kernel/cpu/clock.c - SuperH clock framework
*
* Copyright (C) 2005, 2006, 2007 Paul Mundt
*
* This clock framework is derived from the OMAP version by:
*
* Copyright (C) 2004 - 2005 Nokia Corporation
* Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
*
* Modified for omap shared clock framework by Tony Lindgren <tony@atomide.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/kref.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/proc_fs.h>
#include <asm/clock.h>
#include <asm/timer.h>
static LIST_HEAD(clock_list);
static DEFINE_SPINLOCK(clock_lock);
static DEFINE_MUTEX(clock_list_sem);
/*
* Each subtype is expected to define the init routines for these clocks,
* as each subtype (or processor family) will have these clocks at the
* very least. These are all provided through the CPG, which even some of
* the more quirky parts (such as ST40, SH4-202, etc.) still have.
*
* The processor-specific code is expected to register any additional
* clock sources that are of interest.
*/
static struct clk master_clk = {
.name = "master_clk",
.flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
.rate = CONFIG_SH_PCLK_FREQ,
};
static struct clk module_clk = {
.name = "module_clk",
.parent = &master_clk,
.flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
};
static struct clk bus_clk = {
.name = "bus_clk",
.parent = &master_clk,
.flags = CLK_ALWAYS_ENABLED | CLK_RATE_PROPAGATES,
};
static struct clk cpu_clk = {
.name = "cpu_clk",
.parent = &master_clk,
.flags = CLK_ALWAYS_ENABLED,
};
/*
* The ordering of these clocks matters, do not change it.
*/
static struct clk *onchip_clocks[] = {
&master_clk,
&module_clk,
&bus_clk,
&cpu_clk,
};
static void propagate_rate(struct clk *clk)
{
struct clk *clkp;
list_for_each_entry(clkp, &clock_list, node) {
if (likely(clkp->parent != clk))
continue;
if (likely(clkp->ops && clkp->ops->recalc))
clkp->ops->recalc(clkp);
}
}
int __clk_enable(struct clk *clk)
{
/*
* See if this is the first time we're enabling the clock, some
* clocks that are always enabled still require "special"
* initialization. This is especially true if the clock mode
* changes and the clock needs to hunt for the proper set of
* divisors to use before it can effectively recalc.
*/
if (unlikely(atomic_read(&clk->kref.refcount) == 1))
if (clk->ops && clk->ops->init)
clk->ops->init(clk);
kref_get(&clk->kref);
if (clk->flags & CLK_ALWAYS_ENABLED)
return 0;
if (likely(clk->ops && clk->ops->enable))
clk->ops->enable(clk);
return 0;
}
EXPORT_SYMBOL_GPL(__clk_enable);
int clk_enable(struct clk *clk)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&clock_lock, flags);
ret = __clk_enable(clk);
spin_unlock_irqrestore(&clock_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(clk_enable);
static void clk_kref_release(struct kref *kref)
{
/* Nothing to do */
}
void __clk_disable(struct clk *clk)
{
int count = kref_put(&clk->kref, clk_kref_release);
if (clk->flags & CLK_ALWAYS_ENABLED)
return;
if (!count) { /* count reaches zero, disable the clock */
if (likely(clk->ops && clk->ops->disable))
clk->ops->disable(clk);
}
}
EXPORT_SYMBOL_GPL(__clk_disable);
void clk_disable(struct clk *clk)
{
unsigned long flags;
spin_lock_irqsave(&clock_lock, flags);
__clk_disable(clk);
spin_unlock_irqrestore(&clock_lock, flags);
}
EXPORT_SYMBOL_GPL(clk_disable);
int clk_register(struct clk *clk)
{
mutex_lock(&clock_list_sem);
list_add(&clk->node, &clock_list);
kref_init(&clk->kref);
mutex_unlock(&clock_list_sem);
if (clk->flags & CLK_ALWAYS_ENABLED) {
pr_debug( "Clock '%s' is ALWAYS_ENABLED\n", clk->name);
if (clk->ops && clk->ops->init)
clk->ops->init(clk);
if (clk->ops && clk->ops->enable)
clk->ops->enable(clk);
pr_debug( "Enabled.");
}
return 0;
}
EXPORT_SYMBOL_GPL(clk_register);
void clk_unregister(struct clk *clk)
{
mutex_lock(&clock_list_sem);
list_del(&clk->node);
mutex_unlock(&clock_list_sem);
}
EXPORT_SYMBOL_GPL(clk_unregister);
unsigned long clk_get_rate(struct clk *clk)
{
return clk->rate;
}
EXPORT_SYMBOL_GPL(clk_get_rate);
int clk_set_rate(struct clk *clk, unsigned long rate)
{
return clk_set_rate_ex(clk, rate, 0);
}
EXPORT_SYMBOL_GPL(clk_set_rate);
int clk_set_rate_ex(struct clk *clk, unsigned long rate, int algo_id)
{
int ret = -EOPNOTSUPP;
if (likely(clk->ops && clk->ops->set_rate)) {
unsigned long flags;
spin_lock_irqsave(&clock_lock, flags);
ret = clk->ops->set_rate(clk, rate, algo_id);
spin_unlock_irqrestore(&clock_lock, flags);
}
if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
propagate_rate(clk);
return ret;
}
EXPORT_SYMBOL_GPL(clk_set_rate_ex);
void clk_recalc_rate(struct clk *clk)
{
if (likely(clk->ops && clk->ops->recalc)) {
unsigned long flags;
spin_lock_irqsave(&clock_lock, flags);
clk->ops->recalc(clk);
spin_unlock_irqrestore(&clock_lock, flags);
}
if (unlikely(clk->flags & CLK_RATE_PROPAGATES))
propagate_rate(clk);
}
EXPORT_SYMBOL_GPL(clk_recalc_rate);
long clk_round_rate(struct clk *clk, unsigned long rate)
{
if (likely(clk->ops && clk->ops->round_rate)) {
unsigned long flags, rounded;
spin_lock_irqsave(&clock_lock, flags);
rounded = clk->ops->round_rate(clk, rate);
spin_unlock_irqrestore(&clock_lock, flags);
return rounded;
}
return clk_get_rate(clk);
}
EXPORT_SYMBOL_GPL(clk_round_rate);
/*
* Returns a clock. Note that we first try to use device id on the bus
* and clock name. If this fails, we try to use clock name only.
*/
struct clk *clk_get(struct device *dev, const char *id)
{
struct clk *p, *clk = ERR_PTR(-ENOENT);
int idno;
if (dev == NULL || dev->bus != &platform_bus_type)
idno = -1;
else
idno = to_platform_device(dev)->id;
mutex_lock(&clock_list_sem);
list_for_each_entry(p, &clock_list, node) {
if (p->id == idno &&
strcmp(id, p->name) == 0 && try_module_get(p->owner)) {
clk = p;
goto found;
}
}
list_for_each_entry(p, &clock_list, node) {
if (strcmp(id, p->name) == 0 && try_module_get(p->owner)) {
clk = p;
break;
}
}
found:
mutex_unlock(&clock_list_sem);
return clk;
}
EXPORT_SYMBOL_GPL(clk_get);
void clk_put(struct clk *clk)
{
if (clk && !IS_ERR(clk))
module_put(clk->owner);
}
EXPORT_SYMBOL_GPL(clk_put);
void __init __attribute__ ((weak))
arch_init_clk_ops(struct clk_ops **ops, int type)
{
}
void __init __attribute__ ((weak))
arch_clk_init(void)
{
}
static int show_clocks(char *buf, char **start, off_t off,
int len, int *eof, void *data)
{
struct clk *clk;
char *p = buf;
list_for_each_entry_reverse(clk, &clock_list, node) {
unsigned long rate = clk_get_rate(clk);
/*
* Don't bother listing dummy clocks with no ancestry
* that only support enable and disable ops.
*/
if (unlikely(!rate && !clk->parent))
continue;
p += sprintf(p, "%-12s\t: %ld.%02ldMHz\n", clk->name,
rate / 1000000, (rate % 1000000) / 10000);
}
return p - buf;
}
int __init clk_init(void)
{
int i, ret = 0;
BUG_ON(!master_clk.rate);
for (i = 0; i < ARRAY_SIZE(onchip_clocks); i++) {
struct clk *clk = onchip_clocks[i];
arch_init_clk_ops(&clk->ops, i);
ret |= clk_register(clk);
}
arch_clk_init();
/* Kick the child clocks.. */
propagate_rate(&master_clk);
propagate_rate(&bus_clk);
return ret;
}
static int __init clk_proc_init(void)
{
struct proc_dir_entry *p;
p = create_proc_read_entry("clocks", S_IRUSR, NULL,
show_clocks, NULL);
if (unlikely(!p))
return -EINVAL;
return 0;
}
subsys_initcall(clk_proc_init);