linux/arch/parisc/net/bpf_jit_comp64.c
Helge Deller c95e269773 parisc: Add 64-bit eBPF JIT compiler
Signed-off-by: Helge Deller <deller@gmx.de>
2023-08-22 10:24:46 +02:00

1210 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* BPF JIT compiler for PA-RISC (64-bit)
*
* Copyright(c) 2023 Helge Deller <deller@gmx.de>
*
* The code is based on the BPF JIT compiler for RV64 by Björn Töpel.
*
* TODO:
* - check if bpf_jit_needs_zext() is needed (currently enabled)
* - implement arch_prepare_bpf_trampoline(), poke(), ...
*/
#include <linux/bitfield.h>
#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/libgcc.h>
#include "bpf_jit.h"
static const int regmap[] = {
[BPF_REG_0] = HPPA_REG_RET0,
[BPF_REG_1] = HPPA_R(5),
[BPF_REG_2] = HPPA_R(6),
[BPF_REG_3] = HPPA_R(7),
[BPF_REG_4] = HPPA_R(8),
[BPF_REG_5] = HPPA_R(9),
[BPF_REG_6] = HPPA_R(10),
[BPF_REG_7] = HPPA_R(11),
[BPF_REG_8] = HPPA_R(12),
[BPF_REG_9] = HPPA_R(13),
[BPF_REG_FP] = HPPA_R(14),
[BPF_REG_AX] = HPPA_R(15),
};
/*
* Stack layout during BPF program execution (note: stack grows up):
*
* high
* HPPA64 sp => +----------+ <= HPPA64 fp
* | saved sp |
* | saved rp |
* | ... | HPPA64 callee-saved registers
* | curr args|
* | local var|
* +----------+ <= (BPF FP)
* | |
* | ... | BPF program stack
* | |
* | ... | Function call stack
* | |
* +----------+
* low
*/
/* Offset from fp for BPF registers stored on stack. */
#define STACK_ALIGN FRAME_SIZE
#define EXIT_PTR_LOAD(reg) hppa64_ldd_im16(-FRAME_SIZE, HPPA_REG_SP, reg)
#define EXIT_PTR_STORE(reg) hppa64_std_im16(reg, -FRAME_SIZE, HPPA_REG_SP)
#define EXIT_PTR_JUMP(reg, nop) hppa_bv(HPPA_REG_ZERO, reg, nop)
static u8 bpf_to_hppa_reg(int bpf_reg, struct hppa_jit_context *ctx)
{
u8 reg = regmap[bpf_reg];
REG_SET_SEEN(ctx, reg);
return reg;
};
static void emit_hppa_copy(const s8 rs, const s8 rd, struct hppa_jit_context *ctx)
{
REG_SET_SEEN(ctx, rd);
if (OPTIMIZE_HPPA && (rs == rd))
return;
REG_SET_SEEN(ctx, rs);
emit(hppa_copy(rs, rd), ctx);
}
static void emit_hppa64_depd(u8 src, u8 pos, u8 len, u8 target, bool no_zero, struct hppa_jit_context *ctx)
{
int c;
pos &= (BITS_PER_LONG - 1);
pos = 63 - pos;
len = 64 - len;
c = (len < 32) ? 0x4 : 0;
c |= (pos >= 32) ? 0x2 : 0;
c |= (no_zero) ? 0x1 : 0;
emit(hppa_t10_insn(0x3c, target, src, 0, c, pos & 0x1f, len & 0x1f), ctx);
}
static void emit_hppa64_shld(u8 src, int num, u8 target, struct hppa_jit_context *ctx)
{
emit_hppa64_depd(src, 63-num, 64-num, target, 0, ctx);
}
static void emit_hppa64_extrd(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx)
{
int c;
pos &= (BITS_PER_LONG - 1);
len = 64 - len;
c = (len < 32) ? 0x4 : 0;
c |= (pos >= 32) ? 0x2 : 0;
c |= signed_op ? 0x1 : 0;
emit(hppa_t10_insn(0x36, src, target, 0, c, pos & 0x1f, len & 0x1f), ctx);
}
static void emit_hppa64_extrw(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx)
{
int c;
pos &= (32 - 1);
len = 32 - len;
c = 0x06 | (signed_op ? 1 : 0);
emit(hppa_t10_insn(0x34, src, target, 0, c, pos, len), ctx);
}
#define emit_hppa64_zext32(r, target, ctx) \
emit_hppa64_extrd(r, 63, 32, target, false, ctx)
#define emit_hppa64_sext32(r, target, ctx) \
emit_hppa64_extrd(r, 63, 32, target, true, ctx)
static void emit_hppa64_shrd(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx)
{
emit_hppa64_extrd(src, 63-num, 64-num, target, signed_op, ctx);
}
static void emit_hppa64_shrw(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx)
{
emit_hppa64_extrw(src, 31-num, 32-num, target, signed_op, ctx);
}
/* Emit variable-length instructions for 32-bit imm */
static void emit_imm32(u8 rd, s32 imm, struct hppa_jit_context *ctx)
{
u32 lower = im11(imm);
REG_SET_SEEN(ctx, rd);
if (OPTIMIZE_HPPA && relative_bits_ok(imm, 14)) {
emit(hppa_ldi(imm, rd), ctx);
return;
}
if (OPTIMIZE_HPPA && lower == imm) {
emit(hppa_ldo(lower, HPPA_REG_ZERO, rd), ctx);
return;
}
emit(hppa_ldil(imm, rd), ctx);
if (OPTIMIZE_HPPA && (lower == 0))
return;
emit(hppa_ldo(lower, rd, rd), ctx);
}
static bool is_32b_int(s64 val)
{
return val == (s32) val;
}
/* Emit variable-length instructions for 64-bit imm */
static void emit_imm(u8 rd, s64 imm, u8 tmpreg, struct hppa_jit_context *ctx)
{
u32 upper32;
/* get lower 32-bits into rd, sign extended */
emit_imm32(rd, imm, ctx);
/* do we have upper 32-bits too ? */
if (OPTIMIZE_HPPA && is_32b_int(imm))
return;
/* load upper 32-bits into lower tmpreg and deposit into rd */
upper32 = imm >> 32;
if (upper32 || !OPTIMIZE_HPPA) {
emit_imm32(tmpreg, upper32, ctx);
emit_hppa64_depd(tmpreg, 31, 32, rd, 1, ctx);
} else
emit_hppa64_depd(HPPA_REG_ZERO, 31, 32, rd, 1, ctx);
}
static int emit_jump(signed long paoff, bool force_far,
struct hppa_jit_context *ctx)
{
unsigned long pc, addr;
/* Note: Use 2 instructions for jumps if force_far is set. */
if (relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 22)) {
/* use BL,long branch followed by nop() */
emit(hppa64_bl_long(paoff - HPPA_BRANCH_DISPLACEMENT), ctx);
if (force_far)
emit(hppa_nop(), ctx);
return 0;
}
pc = (uintptr_t) &ctx->insns[ctx->ninsns];
addr = pc + (paoff * HPPA_INSN_SIZE);
/* even the 64-bit kernel runs in memory below 4GB */
if (WARN_ON_ONCE(addr >> 32))
return -E2BIG;
emit(hppa_ldil(addr, HPPA_REG_R31), ctx);
emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx);
return 0;
}
static void __build_epilogue(bool is_tail_call, struct hppa_jit_context *ctx)
{
int i;
if (is_tail_call) {
/*
* goto *(t0 + 4);
* Skips first instruction of prologue which initializes tail
* call counter. Assumes t0 contains address of target program,
* see emit_bpf_tail_call.
*/
emit(hppa_ldo(1 * HPPA_INSN_SIZE, HPPA_REG_T0, HPPA_REG_T0), ctx);
emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_T0, EXEC_NEXT_INSTR), ctx);
/* in delay slot: */
emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_IN_INIT), ctx);
return;
}
/* load epilogue function pointer and jump to it. */
/* exit point is either at next instruction, or the outest TCC exit function */
emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx);
emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
/* NOTE: we are 64-bit and big-endian, so return lower sign-extended 32-bit value */
emit_hppa64_sext32(regmap[BPF_REG_0], HPPA_REG_RET0, ctx);
/* Restore callee-saved registers. */
for (i = 3; i <= 15; i++) {
if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i)))
continue;
emit(hppa64_ldd_im16(-REG_SIZE * i, HPPA_REG_SP, HPPA_R(i)), ctx);
}
/* load original return pointer (stored by outest TCC function) */
emit(hppa64_ldd_im16(-2*REG_SIZE, HPPA_REG_SP, HPPA_REG_RP), ctx);
emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_RP, EXEC_NEXT_INSTR), ctx);
/* in delay slot: */
emit(hppa64_ldd_im5(-REG_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
emit(hppa_nop(), ctx); // XXX WARUM einer zu wenig ??
}
static int emit_branch(u8 op, u8 rd, u8 rs, signed long paoff,
struct hppa_jit_context *ctx)
{
int e, s;
bool far = false;
int off;
if (op == BPF_JSET) {
/*
* BPF_JSET is a special case: it has no inverse so translate
* to and() function and compare against zero
*/
emit(hppa_and(rd, rs, HPPA_REG_T0), ctx);
paoff -= 1; /* reduce offset due to hppa_and() above */
rd = HPPA_REG_T0;
rs = HPPA_REG_ZERO;
op = BPF_JNE;
}
/* set start after BPF_JSET */
s = ctx->ninsns;
if (!relative_branch_ok(paoff - HPPA_BRANCH_DISPLACEMENT + 1, 12)) {
op = invert_bpf_cond(op);
far = true;
}
/*
* For a far branch, the condition is negated and we jump over the
* branch itself, and the two instructions from emit_jump.
* For a near branch, just use paoff.
*/
off = far ? (2 - HPPA_BRANCH_DISPLACEMENT) : paoff - HPPA_BRANCH_DISPLACEMENT;
switch (op) {
/* IF (dst COND src) JUMP off */
case BPF_JEQ:
emit(hppa_beq(rd, rs, off), ctx);
break;
case BPF_JGT:
emit(hppa_bgtu(rd, rs, off), ctx);
break;
case BPF_JLT:
emit(hppa_bltu(rd, rs, off), ctx);
break;
case BPF_JGE:
emit(hppa_bgeu(rd, rs, off), ctx);
break;
case BPF_JLE:
emit(hppa_bleu(rd, rs, off), ctx);
break;
case BPF_JNE:
emit(hppa_bne(rd, rs, off), ctx);
break;
case BPF_JSGT:
emit(hppa_bgt(rd, rs, off), ctx);
break;
case BPF_JSLT:
emit(hppa_blt(rd, rs, off), ctx);
break;
case BPF_JSGE:
emit(hppa_bge(rd, rs, off), ctx);
break;
case BPF_JSLE:
emit(hppa_ble(rd, rs, off), ctx);
break;
default:
WARN_ON(1);
}
if (far) {
int ret;
e = ctx->ninsns;
/* Adjust for extra insns. */
paoff -= (e - s);
ret = emit_jump(paoff, true, ctx);
if (ret)
return ret;
} else {
/*
* always allocate 2 nops instead of the far branch to
* reduce translation loops
*/
emit(hppa_nop(), ctx);
emit(hppa_nop(), ctx);
}
return 0;
}
static void emit_zext_32(u8 reg, struct hppa_jit_context *ctx)
{
emit_hppa64_zext32(reg, reg, ctx);
}
static void emit_bpf_tail_call(int insn, struct hppa_jit_context *ctx)
{
/*
* R1 -> &ctx
* R2 -> &array
* R3 -> index
*/
int off;
const s8 arr_reg = regmap[BPF_REG_2];
const s8 idx_reg = regmap[BPF_REG_3];
struct bpf_array bpfa;
struct bpf_prog bpfp;
/* if there is any tail call, we need to save & restore all registers */
REG_SET_SEEN_ALL(ctx);
/* get address of TCC main exit function for error case into rp */
emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx);
/* max_entries = array->map.max_entries; */
off = offsetof(struct bpf_array, map.max_entries);
BUILD_BUG_ON(sizeof(bpfa.map.max_entries) != 4);
emit(hppa_ldw(off, arr_reg, HPPA_REG_T1), ctx);
/*
* if (index >= max_entries)
* goto out;
*/
emit(hppa_bltu(idx_reg, HPPA_REG_T1, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
/*
* if (--tcc < 0)
* goto out;
*/
REG_FORCE_SEEN(ctx, HPPA_REG_TCC);
emit(hppa_ldo(-1, HPPA_REG_TCC, HPPA_REG_TCC), ctx);
emit(hppa_bge(HPPA_REG_TCC, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
/*
* prog = array->ptrs[index];
* if (!prog)
* goto out;
*/
BUILD_BUG_ON(sizeof(bpfa.ptrs[0]) != 8);
emit(hppa64_shladd(idx_reg, 3, arr_reg, HPPA_REG_T0), ctx);
off = offsetof(struct bpf_array, ptrs);
BUILD_BUG_ON(off < 16);
emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx);
emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
/*
* tcc = temp_tcc;
* goto *(prog->bpf_func + 4);
*/
off = offsetof(struct bpf_prog, bpf_func);
BUILD_BUG_ON(off < 16);
BUILD_BUG_ON(sizeof(bpfp.bpf_func) != 8);
emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx);
/* Epilogue jumps to *(t0 + 4). */
__build_epilogue(true, ctx);
}
static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
struct hppa_jit_context *ctx)
{
u8 code = insn->code;
switch (code) {
case BPF_JMP | BPF_JA:
case BPF_JMP | BPF_CALL:
case BPF_JMP | BPF_EXIT:
case BPF_JMP | BPF_TAIL_CALL:
break;
default:
*rd = bpf_to_hppa_reg(insn->dst_reg, ctx);
}
if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
code & BPF_LDX || code & BPF_STX)
*rs = bpf_to_hppa_reg(insn->src_reg, ctx);
}
static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx)
{
emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx);
*rd = HPPA_REG_T2;
emit_hppa64_zext32(*rs, HPPA_REG_T1, ctx);
*rs = HPPA_REG_T1;
}
static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx)
{
emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx);
*rd = HPPA_REG_T2;
emit_hppa64_sext32(*rs, HPPA_REG_T1, ctx);
*rs = HPPA_REG_T1;
}
static void emit_zext_32_rd_t1(u8 *rd, struct hppa_jit_context *ctx)
{
emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx);
*rd = HPPA_REG_T2;
emit_zext_32(HPPA_REG_T1, ctx);
}
static void emit_sext_32_rd(u8 *rd, struct hppa_jit_context *ctx)
{
emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx);
*rd = HPPA_REG_T2;
}
static bool is_signed_bpf_cond(u8 cond)
{
return cond == BPF_JSGT || cond == BPF_JSLT ||
cond == BPF_JSGE || cond == BPF_JSLE;
}
static void emit_call(u64 addr, bool fixed, struct hppa_jit_context *ctx)
{
const int offset_sp = 2*FRAME_SIZE;
emit(hppa_ldo(offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx);
emit_hppa_copy(regmap[BPF_REG_1], HPPA_REG_ARG0, ctx);
emit_hppa_copy(regmap[BPF_REG_2], HPPA_REG_ARG1, ctx);
emit_hppa_copy(regmap[BPF_REG_3], HPPA_REG_ARG2, ctx);
emit_hppa_copy(regmap[BPF_REG_4], HPPA_REG_ARG3, ctx);
emit_hppa_copy(regmap[BPF_REG_5], HPPA_REG_ARG4, ctx);
/* Backup TCC. */
REG_FORCE_SEEN(ctx, HPPA_REG_TCC_SAVED);
if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_SAVED), ctx);
/*
* Use ldil() to load absolute address. Don't use emit_imm as the
* number of emitted instructions should not depend on the value of
* addr.
*/
WARN_ON(addr >> 32);
/* load function address and gp from Elf64_Fdesc descriptor */
emit(hppa_ldil(addr, HPPA_REG_R31), ctx);
emit(hppa_ldo(im11(addr), HPPA_REG_R31, HPPA_REG_R31), ctx);
emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr),
HPPA_REG_R31, HPPA_REG_RP), ctx);
emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx);
emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp),
HPPA_REG_R31, HPPA_REG_GP), ctx);
/* Restore TCC. */
if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_TCC), ctx);
emit(hppa_ldo(-offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx);
/* Set return value. */
emit_hppa_copy(HPPA_REG_RET0, regmap[BPF_REG_0], ctx);
}
static void emit_call_libgcc_ll(void *func, const s8 arg0,
const s8 arg1, u8 opcode, struct hppa_jit_context *ctx)
{
u64 func_addr;
if (BPF_CLASS(opcode) == BPF_ALU) {
emit_hppa64_zext32(arg0, HPPA_REG_ARG0, ctx);
emit_hppa64_zext32(arg1, HPPA_REG_ARG1, ctx);
} else {
emit_hppa_copy(arg0, HPPA_REG_ARG0, ctx);
emit_hppa_copy(arg1, HPPA_REG_ARG1, ctx);
}
/* libcgcc overwrites HPPA_REG_RET0, so keep copy in HPPA_REG_TCC_SAVED */
if (arg0 != HPPA_REG_RET0) {
REG_SET_SEEN(ctx, HPPA_REG_TCC_SAVED);
emit(hppa_copy(HPPA_REG_RET0, HPPA_REG_TCC_SAVED), ctx);
}
/* set up stack */
emit(hppa_ldo(FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
func_addr = (uintptr_t) func;
/* load function func_address and gp from Elf64_Fdesc descriptor */
emit_imm(HPPA_REG_R31, func_addr, arg0, ctx);
emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr),
HPPA_REG_R31, HPPA_REG_RP), ctx);
/* skip the following bve_l instruction if divisor is 0. */
if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) {
if (BPF_OP(opcode) == BPF_DIV)
emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET0, ctx);
else {
emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET0, ctx);
}
emit(hppa_beq(HPPA_REG_ARG1, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
}
emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx);
emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp),
HPPA_REG_R31, HPPA_REG_GP), ctx);
emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
emit_hppa_copy(HPPA_REG_RET0, arg0, ctx);
/* restore HPPA_REG_RET0 */
if (arg0 != HPPA_REG_RET0)
emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_RET0), ctx);
}
static void emit_store(const s8 rd, const s8 rs, s16 off,
struct hppa_jit_context *ctx, const u8 size,
const u8 mode)
{
s8 dstreg;
/* need to calculate address since offset does not fit in 14 bits? */
if (relative_bits_ok(off, 14))
dstreg = rd;
else {
/* need to use R1 here, since addil puts result into R1 */
dstreg = HPPA_REG_R1;
emit(hppa_addil(off, rd), ctx);
off = im11(off);
}
switch (size) {
case BPF_B:
emit(hppa_stb(rs, off, dstreg), ctx);
break;
case BPF_H:
emit(hppa_sth(rs, off, dstreg), ctx);
break;
case BPF_W:
emit(hppa_stw(rs, off, dstreg), ctx);
break;
case BPF_DW:
if (off & 7) {
emit(hppa_ldo(off, dstreg, HPPA_REG_R1), ctx);
emit(hppa64_std_im5(rs, 0, HPPA_REG_R1), ctx);
} else if (off >= -16 && off <= 15)
emit(hppa64_std_im5(rs, off, dstreg), ctx);
else
emit(hppa64_std_im16(rs, off, dstreg), ctx);
break;
}
}
int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx,
bool extra_pass)
{
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
BPF_CLASS(insn->code) == BPF_JMP;
int s, e, ret, i = insn - ctx->prog->insnsi;
s64 paoff;
struct bpf_prog_aux *aux = ctx->prog->aux;
u8 rd = -1, rs = -1, code = insn->code;
s16 off = insn->off;
s32 imm = insn->imm;
init_regs(&rd, &rs, insn, ctx);
switch (code) {
/* dst = src */
case BPF_ALU | BPF_MOV | BPF_X:
case BPF_ALU64 | BPF_MOV | BPF_X:
if (imm == 1) {
/* Special mov32 for zext */
emit_zext_32(rd, ctx);
break;
}
if (!is64 && !aux->verifier_zext)
emit_hppa64_zext32(rs, rd, ctx);
else
emit_hppa_copy(rs, rd, ctx);
break;
/* dst = dst OP src */
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
emit(hppa_add(rd, rs, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_X:
emit(hppa_sub(rd, rs, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_AND | BPF_X:
emit(hppa_and(rd, rs, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
emit(hppa_or(rd, rs, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
emit(hppa_xor(rd, rs, rd), ctx);
if (!is64 && !aux->verifier_zext && rs != rd)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU64 | BPF_MUL | BPF_K:
emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
rs = HPPA_REG_T1;
fallthrough;
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_X:
emit_call_libgcc_ll(__muldi3, rd, rs, code, ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_K:
emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
rs = HPPA_REG_T1;
fallthrough;
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_DIV | BPF_X:
emit_call_libgcc_ll(&hppa_div64, rd, rs, code, ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_K:
emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
rs = HPPA_REG_T1;
fallthrough;
case BPF_ALU | BPF_MOD | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_X:
emit_call_libgcc_ll(&hppa_div64_rem, rd, rs, code, ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU64 | BPF_LSH | BPF_X:
emit_hppa64_sext32(rs, HPPA_REG_T0, ctx);
emit(hppa64_mtsarcm(HPPA_REG_T0), ctx);
if (is64)
emit(hppa64_depdz_sar(rd, rd), ctx);
else
emit(hppa_depwz_sar(rd, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU64 | BPF_RSH | BPF_X:
emit(hppa_mtsar(rs), ctx);
if (is64)
emit(hppa64_shrpd_sar(rd, rd), ctx);
else
emit(hppa_shrpw_sar(rd, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_ARSH | BPF_X:
case BPF_ALU64 | BPF_ARSH | BPF_X:
emit_hppa64_sext32(rs, HPPA_REG_T0, ctx);
emit(hppa64_mtsarcm(HPPA_REG_T0), ctx);
if (is64)
emit(hppa_extrd_sar(rd, rd, 1), ctx);
else
emit(hppa_extrws_sar(rd, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
/* dst = -dst */
case BPF_ALU | BPF_NEG:
case BPF_ALU64 | BPF_NEG:
emit(hppa_sub(HPPA_REG_ZERO, rd, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
/* dst = BSWAP##imm(dst) */
case BPF_ALU | BPF_END | BPF_FROM_BE:
switch (imm) {
case 16:
/* zero-extend 16 bits into 64 bits */
emit_hppa64_depd(HPPA_REG_ZERO, 63-16, 64-16, rd, 1, ctx);
break;
case 32:
if (!aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case 64:
/* Do nothing */
break;
}
break;
case BPF_ALU | BPF_END | BPF_FROM_LE:
switch (imm) {
case 16:
emit(hppa_extru(rd, 31 - 8, 8, HPPA_REG_T1), ctx);
emit(hppa_depwz(rd, 23, 8, HPPA_REG_T1), ctx);
emit(hppa_extru(HPPA_REG_T1, 31, 16, rd), ctx);
emit_hppa64_extrd(HPPA_REG_T1, 63, 16, rd, 0, ctx);
break;
case 32:
emit(hppa_shrpw(rd, rd, 16, HPPA_REG_T1), ctx);
emit_hppa64_depd(HPPA_REG_T1, 63-16, 8, HPPA_REG_T1, 1, ctx);
emit(hppa_shrpw(rd, HPPA_REG_T1, 8, HPPA_REG_T1), ctx);
emit_hppa64_extrd(HPPA_REG_T1, 63, 32, rd, 0, ctx);
break;
case 64:
emit(hppa64_permh_3210(rd, HPPA_REG_T1), ctx);
emit(hppa64_hshl(HPPA_REG_T1, 8, HPPA_REG_T2), ctx);
emit(hppa64_hshr_u(HPPA_REG_T1, 8, HPPA_REG_T1), ctx);
emit(hppa_or(HPPA_REG_T2, HPPA_REG_T1, rd), ctx);
break;
default:
pr_err("bpf-jit: BPF_END imm %d invalid\n", imm);
return -1;
}
break;
/* dst = imm */
case BPF_ALU | BPF_MOV | BPF_K:
case BPF_ALU64 | BPF_MOV | BPF_K:
emit_imm(rd, imm, HPPA_REG_T2, ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
/* dst = dst OP imm */
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_K:
if (relative_bits_ok(imm, 14)) {
emit(hppa_ldo(imm, rd, rd), ctx);
} else {
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
emit(hppa_add(rd, HPPA_REG_T1, rd), ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
if (relative_bits_ok(-imm, 14)) {
emit(hppa_ldo(-imm, rd, rd), ctx);
} else {
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
emit(hppa_sub(rd, HPPA_REG_T1, rd), ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
emit(hppa_and(rd, HPPA_REG_T1, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
emit(hppa_or(rd, HPPA_REG_T1, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
emit(hppa_xor(rd, HPPA_REG_T1, rd), ctx);
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU64 | BPF_LSH | BPF_K:
if (imm != 0) {
emit_hppa64_shld(rd, imm, rd, ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU64 | BPF_RSH | BPF_K:
if (imm != 0) {
if (is64)
emit_hppa64_shrd(rd, imm, rd, false, ctx);
else
emit_hppa64_shrw(rd, imm, rd, false, ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
case BPF_ALU | BPF_ARSH | BPF_K:
case BPF_ALU64 | BPF_ARSH | BPF_K:
if (imm != 0) {
if (is64)
emit_hppa64_shrd(rd, imm, rd, true, ctx);
else
emit_hppa64_shrw(rd, imm, rd, true, ctx);
}
if (!is64 && !aux->verifier_zext)
emit_zext_32(rd, ctx);
break;
/* JUMP off */
case BPF_JMP | BPF_JA:
paoff = hppa_offset(i, off, ctx);
ret = emit_jump(paoff, false, ctx);
if (ret)
return ret;
break;
/* IF (dst COND src) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_X:
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
paoff = hppa_offset(i, off, ctx);
if (!is64) {
s = ctx->ninsns;
if (is_signed_bpf_cond(BPF_OP(code)))
emit_sext_32_rd_rs(&rd, &rs, ctx);
else
emit_zext_32_rd_rs(&rd, &rs, ctx);
e = ctx->ninsns;
/* Adjust for extra insns */
paoff -= (e - s);
}
if (BPF_OP(code) == BPF_JSET) {
/* Adjust for and */
paoff -= 1;
emit(hppa_and(rs, rd, HPPA_REG_T1), ctx);
emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff,
ctx);
} else {
emit_branch(BPF_OP(code), rd, rs, paoff, ctx);
}
break;
/* IF (dst COND imm) JUMP off */
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_K:
paoff = hppa_offset(i, off, ctx);
s = ctx->ninsns;
if (imm) {
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
rs = HPPA_REG_T1;
} else {
rs = HPPA_REG_ZERO;
}
if (!is64) {
if (is_signed_bpf_cond(BPF_OP(code)))
emit_sext_32_rd(&rd, ctx);
else
emit_zext_32_rd_t1(&rd, ctx);
}
e = ctx->ninsns;
/* Adjust for extra insns */
paoff -= (e - s);
emit_branch(BPF_OP(code), rd, rs, paoff, ctx);
break;
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_K:
paoff = hppa_offset(i, off, ctx);
s = ctx->ninsns;
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
emit(hppa_and(HPPA_REG_T1, rd, HPPA_REG_T1), ctx);
/* For jset32, we should clear the upper 32 bits of t1, but
* sign-extension is sufficient here and saves one instruction,
* as t1 is used only in comparison against zero.
*/
if (!is64 && imm < 0)
emit_hppa64_sext32(HPPA_REG_T1, HPPA_REG_T1, ctx);
e = ctx->ninsns;
paoff -= (e - s);
emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff, ctx);
break;
/* function call */
case BPF_JMP | BPF_CALL:
{
bool fixed_addr;
u64 addr;
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
&addr, &fixed_addr);
if (ret < 0)
return ret;
REG_SET_SEEN_ALL(ctx);
emit_call(addr, fixed_addr, ctx);
break;
}
/* tail call */
case BPF_JMP | BPF_TAIL_CALL:
emit_bpf_tail_call(i, ctx);
break;
/* function return */
case BPF_JMP | BPF_EXIT:
if (i == ctx->prog->len - 1)
break;
paoff = epilogue_offset(ctx);
ret = emit_jump(paoff, false, ctx);
if (ret)
return ret;
break;
/* dst = imm64 */
case BPF_LD | BPF_IMM | BPF_DW:
{
struct bpf_insn insn1 = insn[1];
u64 imm64 = (u64)insn1.imm << 32 | (u32)imm;
if (bpf_pseudo_func(insn))
imm64 = (uintptr_t)dereference_function_descriptor((void*)imm64);
emit_imm(rd, imm64, HPPA_REG_T2, ctx);
return 1;
}
/* LDX: dst = *(size *)(src + off) */
case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_DW:
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
{
u8 srcreg;
/* need to calculate address since offset does not fit in 14 bits? */
if (relative_bits_ok(off, 14))
srcreg = rs;
else {
/* need to use R1 here, since addil puts result into R1 */
srcreg = HPPA_REG_R1;
BUG_ON(rs == HPPA_REG_R1);
BUG_ON(rd == HPPA_REG_R1);
emit(hppa_addil(off, rs), ctx);
off = im11(off);
}
switch (BPF_SIZE(code)) {
case BPF_B:
emit(hppa_ldb(off, srcreg, rd), ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_H:
emit(hppa_ldh(off, srcreg, rd), ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_W:
emit(hppa_ldw(off, srcreg, rd), ctx);
if (insn_is_zext(&insn[1]))
return 1;
break;
case BPF_DW:
if (off & 7) {
emit(hppa_ldo(off, srcreg, HPPA_REG_R1), ctx);
emit(hppa64_ldd_reg(HPPA_REG_ZERO, HPPA_REG_R1, rd), ctx);
} else if (off >= -16 && off <= 15)
emit(hppa64_ldd_im5(off, srcreg, rd), ctx);
else
emit(hppa64_ldd_im16(off, srcreg, rd), ctx);
break;
}
break;
}
/* speculation barrier */
case BPF_ST | BPF_NOSPEC:
break;
/* ST: *(size *)(dst + off) = imm */
/* STX: *(size *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_B:
case BPF_ST | BPF_MEM | BPF_H:
case BPF_ST | BPF_MEM | BPF_W:
case BPF_ST | BPF_MEM | BPF_DW:
case BPF_STX | BPF_MEM | BPF_B:
case BPF_STX | BPF_MEM | BPF_H:
case BPF_STX | BPF_MEM | BPF_W:
case BPF_STX | BPF_MEM | BPF_DW:
if (BPF_CLASS(code) == BPF_ST) {
emit_imm(HPPA_REG_T2, imm, HPPA_REG_T1, ctx);
rs = HPPA_REG_T2;
}
emit_store(rd, rs, off, ctx, BPF_SIZE(code), BPF_MODE(code));
break;
case BPF_STX | BPF_ATOMIC | BPF_W:
case BPF_STX | BPF_ATOMIC | BPF_DW:
pr_info_once(
"bpf-jit: not supported: atomic operation %02x ***\n",
insn->imm);
return -EFAULT;
default:
pr_err("bpf-jit: unknown opcode %02x\n", code);
return -EINVAL;
}
return 0;
}
void bpf_jit_build_prologue(struct hppa_jit_context *ctx)
{
int bpf_stack_adjust, stack_adjust, i;
unsigned long addr;
s8 reg;
/*
* stack on hppa grows up, so if tail calls are used we need to
* allocate the maximum stack size
*/
if (REG_ALL_SEEN(ctx))
bpf_stack_adjust = MAX_BPF_STACK;
else
bpf_stack_adjust = ctx->prog->aux->stack_depth;
bpf_stack_adjust = round_up(bpf_stack_adjust, STACK_ALIGN);
stack_adjust = FRAME_SIZE + bpf_stack_adjust;
stack_adjust = round_up(stack_adjust, STACK_ALIGN);
/*
* NOTE: We construct an Elf64_Fdesc descriptor here.
* The first 4 words initialize the TCC and compares them.
* Then follows the virtual address of the eBPF function,
* and the gp for this function.
*
* The first instruction sets the tail-call-counter (TCC) register.
* This instruction is skipped by tail calls.
* Use a temporary register instead of a caller-saved register initially.
*/
REG_FORCE_SEEN(ctx, HPPA_REG_TCC_IN_INIT);
emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC_IN_INIT), ctx);
/*
* Skip all initializations when called as BPF TAIL call.
*/
emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_R1), ctx);
emit(hppa_beq(HPPA_REG_TCC_IN_INIT, HPPA_REG_R1, 6 - HPPA_BRANCH_DISPLACEMENT), ctx);
emit(hppa64_bl_long(ctx->prologue_len - 3 - HPPA_BRANCH_DISPLACEMENT), ctx);
/* store entry address of this eBPF function */
addr = (uintptr_t) &ctx->insns[0];
emit(addr >> 32, ctx);
emit(addr & 0xffffffff, ctx);
/* store gp of this eBPF function */
asm("copy %%r27,%0" : "=r" (addr) );
emit(addr >> 32, ctx);
emit(addr & 0xffffffff, ctx);
/* Set up hppa stack frame. */
emit_hppa_copy(HPPA_REG_SP, HPPA_REG_R1, ctx);
emit(hppa_ldo(stack_adjust, HPPA_REG_SP, HPPA_REG_SP), ctx);
emit(hppa64_std_im5 (HPPA_REG_R1, -REG_SIZE, HPPA_REG_SP), ctx);
emit(hppa64_std_im16(HPPA_REG_RP, -2*REG_SIZE, HPPA_REG_SP), ctx);
/* Save callee-save registers. */
for (i = 3; i <= 15; i++) {
if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i)))
continue;
emit(hppa64_std_im16(HPPA_R(i), -REG_SIZE * i, HPPA_REG_SP), ctx);
}
/* load function parameters; load all if we use tail functions */
#define LOAD_PARAM(arg, dst) \
if (REG_WAS_SEEN(ctx, regmap[dst]) || \
REG_WAS_SEEN(ctx, HPPA_REG_TCC)) \
emit_hppa_copy(arg, regmap[dst], ctx)
LOAD_PARAM(HPPA_REG_ARG0, BPF_REG_1);
LOAD_PARAM(HPPA_REG_ARG1, BPF_REG_2);
LOAD_PARAM(HPPA_REG_ARG2, BPF_REG_3);
LOAD_PARAM(HPPA_REG_ARG3, BPF_REG_4);
LOAD_PARAM(HPPA_REG_ARG4, BPF_REG_5);
#undef LOAD_PARAM
REG_FORCE_SEEN(ctx, HPPA_REG_T0);
REG_FORCE_SEEN(ctx, HPPA_REG_T1);
REG_FORCE_SEEN(ctx, HPPA_REG_T2);
/*
* Now really set the tail call counter (TCC) register.
*/
if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC), ctx);
/*
* Save epilogue function pointer for outer TCC call chain.
* The main TCC call stores the final RP on stack.
*/
addr = (uintptr_t) &ctx->insns[ctx->epilogue_offset];
/* skip first two instructions which jump to exit */
addr += 2 * HPPA_INSN_SIZE;
emit_imm(HPPA_REG_T2, addr, HPPA_REG_T1, ctx);
emit(EXIT_PTR_STORE(HPPA_REG_T2), ctx);
/* Set up BPF frame pointer. */
reg = regmap[BPF_REG_FP]; /* -> HPPA_REG_FP */
if (REG_WAS_SEEN(ctx, reg)) {
emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, reg), ctx);
}
}
void bpf_jit_build_epilogue(struct hppa_jit_context *ctx)
{
__build_epilogue(false, ctx);
}
bool bpf_jit_supports_kfunc_call(void)
{
return true;
}