linux/fs/bcachefs/io.c
Kent Overstreet a9bc0a5173 bcachefs: Check for bad key version number
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:35 -04:00

2315 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Some low level IO code, and hacks for various block layer limitations
*
* Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright 2012 Google, Inc.
*/
#include "bcachefs.h"
#include "alloc_foreground.h"
#include "bkey_on_stack.h"
#include "bset.h"
#include "btree_update.h"
#include "buckets.h"
#include "checksum.h"
#include "compress.h"
#include "clock.h"
#include "debug.h"
#include "disk_groups.h"
#include "ec.h"
#include "error.h"
#include "extent_update.h"
#include "inode.h"
#include "io.h"
#include "journal.h"
#include "keylist.h"
#include "move.h"
#include "rebalance.h"
#include "super.h"
#include "super-io.h"
#include "trace.h"
#include <linux/blkdev.h>
#include <linux/random.h>
#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
static bool bch2_target_congested(struct bch_fs *c, u16 target)
{
const struct bch_devs_mask *devs;
unsigned d, nr = 0, total = 0;
u64 now = local_clock(), last;
s64 congested;
struct bch_dev *ca;
if (!target)
return false;
rcu_read_lock();
devs = bch2_target_to_mask(c, target);
for_each_set_bit(d, devs->d, BCH_SB_MEMBERS_MAX) {
ca = rcu_dereference(c->devs[d]);
if (!ca)
continue;
congested = atomic_read(&ca->congested);
last = READ_ONCE(ca->congested_last);
if (time_after64(now, last))
congested -= (now - last) >> 12;
total += max(congested, 0LL);
nr++;
}
rcu_read_unlock();
return bch2_rand_range(nr * CONGESTED_MAX) < total;
}
static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency,
u64 now, int rw)
{
u64 latency_capable =
ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m;
/* ideally we'd be taking into account the device's variance here: */
u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3);
s64 latency_over = io_latency - latency_threshold;
if (latency_threshold && latency_over > 0) {
/*
* bump up congested by approximately latency_over * 4 /
* latency_threshold - we don't need much accuracy here so don't
* bother with the divide:
*/
if (atomic_read(&ca->congested) < CONGESTED_MAX)
atomic_add(latency_over >>
max_t(int, ilog2(latency_threshold) - 2, 0),
&ca->congested);
ca->congested_last = now;
} else if (atomic_read(&ca->congested) > 0) {
atomic_dec(&ca->congested);
}
}
void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw)
{
atomic64_t *latency = &ca->cur_latency[rw];
u64 now = local_clock();
u64 io_latency = time_after64(now, submit_time)
? now - submit_time
: 0;
u64 old, new, v = atomic64_read(latency);
do {
old = v;
/*
* If the io latency was reasonably close to the current
* latency, skip doing the update and atomic operation - most of
* the time:
*/
if (abs((int) (old - io_latency)) < (old >> 1) &&
now & ~(~0 << 5))
break;
new = ewma_add(old, io_latency, 5);
} while ((v = atomic64_cmpxchg(latency, old, new)) != old);
bch2_congested_acct(ca, io_latency, now, rw);
__bch2_time_stats_update(&ca->io_latency[rw], submit_time, now);
}
#else
static bool bch2_target_congested(struct bch_fs *c, u16 target)
{
return false;
}
#endif
/* Allocate, free from mempool: */
void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio)
{
struct bvec_iter_all iter;
struct bio_vec *bv;
bio_for_each_segment_all(bv, bio, iter)
if (bv->bv_page != ZERO_PAGE(0))
mempool_free(bv->bv_page, &c->bio_bounce_pages);
bio->bi_vcnt = 0;
}
static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool)
{
struct page *page;
if (likely(!*using_mempool)) {
page = alloc_page(GFP_NOIO);
if (unlikely(!page)) {
mutex_lock(&c->bio_bounce_pages_lock);
*using_mempool = true;
goto pool_alloc;
}
} else {
pool_alloc:
page = mempool_alloc(&c->bio_bounce_pages, GFP_NOIO);
}
return page;
}
void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio,
size_t size)
{
bool using_mempool = false;
while (size) {
struct page *page = __bio_alloc_page_pool(c, &using_mempool);
unsigned len = min(PAGE_SIZE, size);
BUG_ON(!bio_add_page(bio, page, len, 0));
size -= len;
}
if (using_mempool)
mutex_unlock(&c->bio_bounce_pages_lock);
}
/* Extent update path: */
static int sum_sector_overwrites(struct btree_trans *trans,
struct btree_iter *extent_iter,
struct bkey_i *new,
bool may_allocate,
bool *maybe_extending,
s64 *delta)
{
struct btree_iter *iter;
struct bkey_s_c old;
int ret = 0;
*maybe_extending = true;
*delta = 0;
iter = bch2_trans_copy_iter(trans, extent_iter);
if (IS_ERR(iter))
return PTR_ERR(iter);
for_each_btree_key_continue(iter, BTREE_ITER_SLOTS, old, ret) {
if (!may_allocate &&
bch2_bkey_nr_ptrs_fully_allocated(old) <
bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new))) {
ret = -ENOSPC;
break;
}
*delta += (min(new->k.p.offset,
old.k->p.offset) -
max(bkey_start_offset(&new->k),
bkey_start_offset(old.k))) *
(bkey_extent_is_allocation(&new->k) -
bkey_extent_is_allocation(old.k));
if (bkey_cmp(old.k->p, new->k.p) >= 0) {
/*
* Check if there's already data above where we're
* going to be writing to - this means we're definitely
* not extending the file:
*
* Note that it's not sufficient to check if there's
* data up to the sector offset we're going to be
* writing to, because i_size could be up to one block
* less:
*/
if (!bkey_cmp(old.k->p, new->k.p))
old = bch2_btree_iter_next(iter);
if (old.k && !bkey_err(old) &&
old.k->p.inode == extent_iter->pos.inode &&
bkey_extent_is_data(old.k))
*maybe_extending = false;
break;
}
}
bch2_trans_iter_put(trans, iter);
return ret;
}
int bch2_extent_update(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *k,
struct disk_reservation *disk_res,
u64 *journal_seq,
u64 new_i_size,
s64 *i_sectors_delta)
{
/* this must live until after bch2_trans_commit(): */
struct bkey_inode_buf inode_p;
bool extending = false;
s64 delta = 0;
int ret;
ret = bch2_extent_trim_atomic(k, iter);
if (ret)
return ret;
ret = sum_sector_overwrites(trans, iter, k,
disk_res && disk_res->sectors != 0,
&extending, &delta);
if (ret)
return ret;
new_i_size = extending
? min(k->k.p.offset << 9, new_i_size)
: 0;
if (delta || new_i_size) {
struct btree_iter *inode_iter;
struct bch_inode_unpacked inode_u;
inode_iter = bch2_inode_peek(trans, &inode_u,
k->k.p.inode, BTREE_ITER_INTENT);
if (IS_ERR(inode_iter))
return PTR_ERR(inode_iter);
/*
* XXX:
* writeback can race a bit with truncate, because truncate
* first updates the inode then truncates the pagecache. This is
* ugly, but lets us preserve the invariant that the in memory
* i_size is always >= the on disk i_size.
*
BUG_ON(new_i_size > inode_u.bi_size &&
(inode_u.bi_flags & BCH_INODE_I_SIZE_DIRTY));
*/
BUG_ON(new_i_size > inode_u.bi_size && !extending);
if (!(inode_u.bi_flags & BCH_INODE_I_SIZE_DIRTY) &&
new_i_size > inode_u.bi_size)
inode_u.bi_size = new_i_size;
else
new_i_size = 0;
inode_u.bi_sectors += delta;
if (delta || new_i_size) {
bch2_inode_pack(&inode_p, &inode_u);
bch2_trans_update(trans, inode_iter,
&inode_p.inode.k_i, 0);
}
bch2_trans_iter_put(trans, inode_iter);
}
bch2_trans_update(trans, iter, k, 0);
ret = bch2_trans_commit(trans, disk_res, journal_seq,
BTREE_INSERT_NOCHECK_RW|
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE);
if (!ret && i_sectors_delta)
*i_sectors_delta += delta;
return ret;
}
int bch2_fpunch_at(struct btree_trans *trans, struct btree_iter *iter,
struct bpos end, u64 *journal_seq,
s64 *i_sectors_delta)
{
struct bch_fs *c = trans->c;
unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits);
struct bkey_s_c k;
int ret = 0, ret2 = 0;
while ((k = bch2_btree_iter_peek(iter)).k &&
bkey_cmp(iter->pos, end) < 0) {
struct disk_reservation disk_res =
bch2_disk_reservation_init(c, 0);
struct bkey_i delete;
bch2_trans_reset(trans, TRANS_RESET_MEM);
ret = bkey_err(k);
if (ret)
goto btree_err;
bkey_init(&delete.k);
delete.k.p = iter->pos;
/* create the biggest key we can */
bch2_key_resize(&delete.k, max_sectors);
bch2_cut_back(end, &delete);
ret = bch2_extent_update(trans, iter, &delete,
&disk_res, journal_seq,
0, i_sectors_delta);
bch2_disk_reservation_put(c, &disk_res);
btree_err:
if (ret == -EINTR) {
ret2 = ret;
ret = 0;
}
if (ret)
break;
}
if (bkey_cmp(iter->pos, end) > 0) {
bch2_btree_iter_set_pos(iter, end);
ret = bch2_btree_iter_traverse(iter);
}
return ret ?: ret2;
}
int bch2_fpunch(struct bch_fs *c, u64 inum, u64 start, u64 end,
u64 *journal_seq, s64 *i_sectors_delta)
{
struct btree_trans trans;
struct btree_iter *iter;
int ret = 0;
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
POS(inum, start),
BTREE_ITER_INTENT);
ret = bch2_fpunch_at(&trans, iter, POS(inum, end),
journal_seq, i_sectors_delta);
bch2_trans_exit(&trans);
if (ret == -EINTR)
ret = 0;
return ret;
}
int bch2_write_index_default(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct bkey_on_stack sk;
struct keylist *keys = &op->insert_keys;
struct bkey_i *k = bch2_keylist_front(keys);
struct btree_trans trans;
struct btree_iter *iter;
int ret;
bkey_on_stack_init(&sk);
bch2_trans_init(&trans, c, BTREE_ITER_MAX, 1024);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
bkey_start_pos(&k->k),
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
do {
bch2_trans_reset(&trans, TRANS_RESET_MEM);
k = bch2_keylist_front(keys);
bkey_on_stack_realloc(&sk, c, k->k.u64s);
bkey_copy(sk.k, k);
bch2_cut_front(iter->pos, sk.k);
ret = bch2_extent_update(&trans, iter, sk.k,
&op->res, op_journal_seq(op),
op->new_i_size, &op->i_sectors_delta);
if (ret == -EINTR)
continue;
if (ret)
break;
if (bkey_cmp(iter->pos, k->k.p) >= 0)
bch2_keylist_pop_front(keys);
} while (!bch2_keylist_empty(keys));
bch2_trans_exit(&trans);
bkey_on_stack_exit(&sk, c);
return ret;
}
/* Writes */
void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c,
enum bch_data_type type,
const struct bkey_i *k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k));
const struct bch_extent_ptr *ptr;
struct bch_write_bio *n;
struct bch_dev *ca;
BUG_ON(c->opts.nochanges);
bkey_for_each_ptr(ptrs, ptr) {
BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX ||
!c->devs[ptr->dev]);
ca = bch_dev_bkey_exists(c, ptr->dev);
if (to_entry(ptr + 1) < ptrs.end) {
n = to_wbio(bio_alloc_clone(NULL, &wbio->bio,
GFP_NOIO, &ca->replica_set));
n->bio.bi_end_io = wbio->bio.bi_end_io;
n->bio.bi_private = wbio->bio.bi_private;
n->parent = wbio;
n->split = true;
n->bounce = false;
n->put_bio = true;
n->bio.bi_opf = wbio->bio.bi_opf;
bio_inc_remaining(&wbio->bio);
} else {
n = wbio;
n->split = false;
}
n->c = c;
n->dev = ptr->dev;
n->have_ioref = bch2_dev_get_ioref(ca, WRITE);
n->submit_time = local_clock();
n->bio.bi_iter.bi_sector = ptr->offset;
if (!journal_flushes_device(ca))
n->bio.bi_opf |= REQ_FUA;
if (likely(n->have_ioref)) {
this_cpu_add(ca->io_done->sectors[WRITE][type],
bio_sectors(&n->bio));
bio_set_dev(&n->bio, ca->disk_sb.bdev);
if (type != BCH_DATA_BTREE && unlikely(c->opts.no_data_io)) {
bio_endio(&n->bio);
continue;
}
submit_bio(&n->bio);
} else {
n->bio.bi_status = BLK_STS_REMOVED;
bio_endio(&n->bio);
}
}
}
static void __bch2_write(struct closure *);
static void bch2_write_done(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_fs *c = op->c;
if (!op->error && (op->flags & BCH_WRITE_FLUSH))
op->error = bch2_journal_error(&c->journal);
if (!(op->flags & BCH_WRITE_NOPUT_RESERVATION))
bch2_disk_reservation_put(c, &op->res);
percpu_ref_put(&c->writes);
bch2_keylist_free(&op->insert_keys, op->inline_keys);
bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time);
if (op->end_io) {
EBUG_ON(cl->parent);
closure_debug_destroy(cl);
op->end_io(op);
} else {
closure_return(cl);
}
}
/**
* bch_write_index - after a write, update index to point to new data
*/
static void __bch2_write_index(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct keylist *keys = &op->insert_keys;
struct bch_extent_ptr *ptr;
struct bkey_i *src, *dst = keys->keys, *n, *k;
unsigned dev;
int ret;
for (src = keys->keys; src != keys->top; src = n) {
n = bkey_next(src);
if (bkey_extent_is_direct_data(&src->k)) {
bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr,
test_bit(ptr->dev, op->failed.d));
if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) {
ret = -EIO;
goto err;
}
}
if (dst != src)
memmove_u64s_down(dst, src, src->u64s);
dst = bkey_next(dst);
}
keys->top = dst;
/*
* probably not the ideal place to hook this in, but I don't
* particularly want to plumb io_opts all the way through the btree
* update stack right now
*/
for_each_keylist_key(keys, k) {
bch2_rebalance_add_key(c, bkey_i_to_s_c(k), &op->opts);
if (bch2_bkey_is_incompressible(bkey_i_to_s_c(k)))
bch2_check_set_feature(op->c, BCH_FEATURE_incompressible);
}
if (!bch2_keylist_empty(keys)) {
u64 sectors_start = keylist_sectors(keys);
int ret = op->index_update_fn(op);
BUG_ON(ret == -EINTR);
BUG_ON(keylist_sectors(keys) && !ret);
op->written += sectors_start - keylist_sectors(keys);
if (ret) {
__bcache_io_error(c, "btree IO error %i", ret);
op->error = ret;
}
}
out:
/* If some a bucket wasn't written, we can't erasure code it: */
for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX)
bch2_open_bucket_write_error(c, &op->open_buckets, dev);
bch2_open_buckets_put(c, &op->open_buckets);
return;
err:
keys->top = keys->keys;
op->error = ret;
goto out;
}
static void bch2_write_index(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_fs *c = op->c;
__bch2_write_index(op);
if (!op->error && (op->flags & BCH_WRITE_FLUSH)) {
bch2_journal_flush_seq_async(&c->journal,
*op_journal_seq(op),
cl);
continue_at(cl, bch2_write_done, index_update_wq(op));
} else {
continue_at_nobarrier(cl, bch2_write_done, NULL);
}
}
static void bch2_write_endio(struct bio *bio)
{
struct closure *cl = bio->bi_private;
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_write_bio *wbio = to_wbio(bio);
struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL;
struct bch_fs *c = wbio->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev);
if (bch2_dev_io_err_on(bio->bi_status, ca, "data write"))
set_bit(wbio->dev, op->failed.d);
if (wbio->have_ioref) {
bch2_latency_acct(ca, wbio->submit_time, WRITE);
percpu_ref_put(&ca->io_ref);
}
if (wbio->bounce)
bch2_bio_free_pages_pool(c, bio);
if (wbio->put_bio)
bio_put(bio);
if (parent)
bio_endio(&parent->bio);
else if (!(op->flags & BCH_WRITE_SKIP_CLOSURE_PUT))
closure_put(cl);
else
continue_at_nobarrier(cl, bch2_write_index, index_update_wq(op));
}
static void init_append_extent(struct bch_write_op *op,
struct write_point *wp,
struct bversion version,
struct bch_extent_crc_unpacked crc)
{
struct bkey_i_extent *e;
struct bch_extent_ptr *ptr;
op->pos.offset += crc.uncompressed_size;
e = bkey_extent_init(op->insert_keys.top);
e->k.p = op->pos;
e->k.size = crc.uncompressed_size;
e->k.version = version;
if (crc.csum_type ||
crc.compression_type ||
crc.nonce)
bch2_extent_crc_append(&e->k_i, crc);
bch2_alloc_sectors_append_ptrs(op->c, wp, &e->k_i, crc.compressed_size);
if (op->flags & BCH_WRITE_CACHED)
extent_for_each_ptr(extent_i_to_s(e), ptr)
ptr->cached = true;
bch2_keylist_push(&op->insert_keys);
}
static struct bio *bch2_write_bio_alloc(struct bch_fs *c,
struct write_point *wp,
struct bio *src,
bool *page_alloc_failed,
void *buf)
{
struct bch_write_bio *wbio;
struct bio *bio;
unsigned output_available =
min(wp->sectors_free << 9, src->bi_iter.bi_size);
unsigned pages = DIV_ROUND_UP(output_available +
(buf
? ((unsigned long) buf & (PAGE_SIZE - 1))
: 0), PAGE_SIZE);
bio = bio_alloc_bioset(NULL, pages, 0,
GFP_NOIO, &c->bio_write);
wbio = wbio_init(bio);
wbio->put_bio = true;
/* copy WRITE_SYNC flag */
wbio->bio.bi_opf = src->bi_opf;
if (buf) {
bch2_bio_map(bio, buf, output_available);
return bio;
}
wbio->bounce = true;
/*
* We can't use mempool for more than c->sb.encoded_extent_max
* worth of pages, but we'd like to allocate more if we can:
*/
bch2_bio_alloc_pages_pool(c, bio,
min_t(unsigned, output_available,
c->sb.encoded_extent_max << 9));
if (bio->bi_iter.bi_size < output_available)
*page_alloc_failed =
bch2_bio_alloc_pages(bio,
output_available -
bio->bi_iter.bi_size,
GFP_NOFS) != 0;
return bio;
}
static int bch2_write_rechecksum(struct bch_fs *c,
struct bch_write_op *op,
unsigned new_csum_type)
{
struct bio *bio = &op->wbio.bio;
struct bch_extent_crc_unpacked new_crc;
int ret;
/* bch2_rechecksum_bio() can't encrypt or decrypt data: */
if (bch2_csum_type_is_encryption(op->crc.csum_type) !=
bch2_csum_type_is_encryption(new_csum_type))
new_csum_type = op->crc.csum_type;
ret = bch2_rechecksum_bio(c, bio, op->version, op->crc,
NULL, &new_crc,
op->crc.offset, op->crc.live_size,
new_csum_type);
if (ret)
return ret;
bio_advance(bio, op->crc.offset << 9);
bio->bi_iter.bi_size = op->crc.live_size << 9;
op->crc = new_crc;
return 0;
}
static int bch2_write_decrypt(struct bch_write_op *op)
{
struct bch_fs *c = op->c;
struct nonce nonce = extent_nonce(op->version, op->crc);
struct bch_csum csum;
if (!bch2_csum_type_is_encryption(op->crc.csum_type))
return 0;
/*
* If we need to decrypt data in the write path, we'll no longer be able
* to verify the existing checksum (poly1305 mac, in this case) after
* it's decrypted - this is the last point we'll be able to reverify the
* checksum:
*/
csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
if (bch2_crc_cmp(op->crc.csum, csum))
return -EIO;
bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio);
op->crc.csum_type = 0;
op->crc.csum = (struct bch_csum) { 0, 0 };
return 0;
}
static enum prep_encoded_ret {
PREP_ENCODED_OK,
PREP_ENCODED_ERR,
PREP_ENCODED_CHECKSUM_ERR,
PREP_ENCODED_DO_WRITE,
} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp)
{
struct bch_fs *c = op->c;
struct bio *bio = &op->wbio.bio;
if (!(op->flags & BCH_WRITE_DATA_ENCODED))
return PREP_ENCODED_OK;
BUG_ON(bio_sectors(bio) != op->crc.compressed_size);
/* Can we just write the entire extent as is? */
if (op->crc.uncompressed_size == op->crc.live_size &&
op->crc.compressed_size <= wp->sectors_free &&
(op->crc.compression_type == op->compression_type ||
op->incompressible)) {
if (!crc_is_compressed(op->crc) &&
op->csum_type != op->crc.csum_type &&
bch2_write_rechecksum(c, op, op->csum_type))
return PREP_ENCODED_CHECKSUM_ERR;
return PREP_ENCODED_DO_WRITE;
}
/*
* If the data is compressed and we couldn't write the entire extent as
* is, we have to decompress it:
*/
if (crc_is_compressed(op->crc)) {
struct bch_csum csum;
if (bch2_write_decrypt(op))
return PREP_ENCODED_CHECKSUM_ERR;
/* Last point we can still verify checksum: */
csum = bch2_checksum_bio(c, op->crc.csum_type,
extent_nonce(op->version, op->crc),
bio);
if (bch2_crc_cmp(op->crc.csum, csum))
return PREP_ENCODED_CHECKSUM_ERR;
if (bch2_bio_uncompress_inplace(c, bio, &op->crc))
return PREP_ENCODED_ERR;
}
/*
* No longer have compressed data after this point - data might be
* encrypted:
*/
/*
* If the data is checksummed and we're only writing a subset,
* rechecksum and adjust bio to point to currently live data:
*/
if ((op->crc.live_size != op->crc.uncompressed_size ||
op->crc.csum_type != op->csum_type) &&
bch2_write_rechecksum(c, op, op->csum_type))
return PREP_ENCODED_CHECKSUM_ERR;
/*
* If we want to compress the data, it has to be decrypted:
*/
if ((op->compression_type ||
bch2_csum_type_is_encryption(op->crc.csum_type) !=
bch2_csum_type_is_encryption(op->csum_type)) &&
bch2_write_decrypt(op))
return PREP_ENCODED_CHECKSUM_ERR;
return PREP_ENCODED_OK;
}
static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp,
struct bio **_dst)
{
struct bch_fs *c = op->c;
struct bio *src = &op->wbio.bio, *dst = src;
struct bvec_iter saved_iter;
void *ec_buf;
struct bpos ec_pos = op->pos;
unsigned total_output = 0, total_input = 0;
bool bounce = false;
bool page_alloc_failed = false;
int ret, more = 0;
BUG_ON(!bio_sectors(src));
ec_buf = bch2_writepoint_ec_buf(c, wp);
switch (bch2_write_prep_encoded_data(op, wp)) {
case PREP_ENCODED_OK:
break;
case PREP_ENCODED_ERR:
ret = -EIO;
goto err;
case PREP_ENCODED_CHECKSUM_ERR:
goto csum_err;
case PREP_ENCODED_DO_WRITE:
/* XXX look for bug here */
if (ec_buf) {
dst = bch2_write_bio_alloc(c, wp, src,
&page_alloc_failed,
ec_buf);
bio_copy_data(dst, src);
bounce = true;
}
init_append_extent(op, wp, op->version, op->crc);
goto do_write;
}
if (ec_buf ||
op->compression_type ||
(op->csum_type &&
!(op->flags & BCH_WRITE_PAGES_STABLE)) ||
(bch2_csum_type_is_encryption(op->csum_type) &&
!(op->flags & BCH_WRITE_PAGES_OWNED))) {
dst = bch2_write_bio_alloc(c, wp, src,
&page_alloc_failed,
ec_buf);
bounce = true;
}
saved_iter = dst->bi_iter;
do {
struct bch_extent_crc_unpacked crc =
(struct bch_extent_crc_unpacked) { 0 };
struct bversion version = op->version;
size_t dst_len, src_len;
if (page_alloc_failed &&
bio_sectors(dst) < wp->sectors_free &&
bio_sectors(dst) < c->sb.encoded_extent_max)
break;
BUG_ON(op->compression_type &&
(op->flags & BCH_WRITE_DATA_ENCODED) &&
bch2_csum_type_is_encryption(op->crc.csum_type));
BUG_ON(op->compression_type && !bounce);
crc.compression_type = op->incompressible
? BCH_COMPRESSION_TYPE_incompressible
: op->compression_type
? bch2_bio_compress(c, dst, &dst_len, src, &src_len,
op->compression_type)
: 0;
if (!crc_is_compressed(crc)) {
dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size);
dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9);
if (op->csum_type)
dst_len = min_t(unsigned, dst_len,
c->sb.encoded_extent_max << 9);
if (bounce) {
swap(dst->bi_iter.bi_size, dst_len);
bio_copy_data(dst, src);
swap(dst->bi_iter.bi_size, dst_len);
}
src_len = dst_len;
}
BUG_ON(!src_len || !dst_len);
if (bch2_csum_type_is_encryption(op->csum_type)) {
if (bversion_zero(version)) {
version.lo = atomic64_inc_return(&c->key_version);
} else {
crc.nonce = op->nonce;
op->nonce += src_len >> 9;
}
}
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
!crc_is_compressed(crc) &&
bch2_csum_type_is_encryption(op->crc.csum_type) ==
bch2_csum_type_is_encryption(op->csum_type)) {
/*
* Note: when we're using rechecksum(), we need to be
* checksumming @src because it has all the data our
* existing checksum covers - if we bounced (because we
* were trying to compress), @dst will only have the
* part of the data the new checksum will cover.
*
* But normally we want to be checksumming post bounce,
* because part of the reason for bouncing is so the
* data can't be modified (by userspace) while it's in
* flight.
*/
if (bch2_rechecksum_bio(c, src, version, op->crc,
&crc, &op->crc,
src_len >> 9,
bio_sectors(src) - (src_len >> 9),
op->csum_type))
goto csum_err;
} else {
if ((op->flags & BCH_WRITE_DATA_ENCODED) &&
bch2_rechecksum_bio(c, src, version, op->crc,
NULL, &op->crc,
src_len >> 9,
bio_sectors(src) - (src_len >> 9),
op->crc.csum_type))
goto csum_err;
crc.compressed_size = dst_len >> 9;
crc.uncompressed_size = src_len >> 9;
crc.live_size = src_len >> 9;
swap(dst->bi_iter.bi_size, dst_len);
bch2_encrypt_bio(c, op->csum_type,
extent_nonce(version, crc), dst);
crc.csum = bch2_checksum_bio(c, op->csum_type,
extent_nonce(version, crc), dst);
crc.csum_type = op->csum_type;
swap(dst->bi_iter.bi_size, dst_len);
}
init_append_extent(op, wp, version, crc);
if (dst != src)
bio_advance(dst, dst_len);
bio_advance(src, src_len);
total_output += dst_len;
total_input += src_len;
} while (dst->bi_iter.bi_size &&
src->bi_iter.bi_size &&
wp->sectors_free &&
!bch2_keylist_realloc(&op->insert_keys,
op->inline_keys,
ARRAY_SIZE(op->inline_keys),
BKEY_EXTENT_U64s_MAX));
more = src->bi_iter.bi_size != 0;
dst->bi_iter = saved_iter;
if (dst == src && more) {
BUG_ON(total_output != total_input);
dst = bio_split(src, total_input >> 9,
GFP_NOIO, &c->bio_write);
wbio_init(dst)->put_bio = true;
/* copy WRITE_SYNC flag */
dst->bi_opf = src->bi_opf;
}
dst->bi_iter.bi_size = total_output;
do_write:
/* might have done a realloc... */
bch2_ec_add_backpointer(c, wp, ec_pos, total_input >> 9);
*_dst = dst;
return more;
csum_err:
bch_err(c, "error verifying existing checksum while "
"rewriting existing data (memory corruption?)");
ret = -EIO;
err:
if (to_wbio(dst)->bounce)
bch2_bio_free_pages_pool(c, dst);
if (to_wbio(dst)->put_bio)
bio_put(dst);
return ret;
}
static void __bch2_write(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bch_fs *c = op->c;
struct write_point *wp;
struct bio *bio;
bool skip_put = true;
int ret;
again:
memset(&op->failed, 0, sizeof(op->failed));
do {
struct bkey_i *key_to_write;
unsigned key_to_write_offset = op->insert_keys.top_p -
op->insert_keys.keys_p;
/* +1 for possible cache device: */
if (op->open_buckets.nr + op->nr_replicas + 1 >
ARRAY_SIZE(op->open_buckets.v))
goto flush_io;
if (bch2_keylist_realloc(&op->insert_keys,
op->inline_keys,
ARRAY_SIZE(op->inline_keys),
BKEY_EXTENT_U64s_MAX))
goto flush_io;
wp = bch2_alloc_sectors_start(c,
op->target,
op->opts.erasure_code,
op->write_point,
&op->devs_have,
op->nr_replicas,
op->nr_replicas_required,
op->alloc_reserve,
op->flags,
(op->flags & BCH_WRITE_ALLOC_NOWAIT) ? NULL : cl);
EBUG_ON(!wp);
if (unlikely(IS_ERR(wp))) {
if (unlikely(PTR_ERR(wp) != -EAGAIN)) {
ret = PTR_ERR(wp);
goto err;
}
goto flush_io;
}
bch2_open_bucket_get(c, wp, &op->open_buckets);
ret = bch2_write_extent(op, wp, &bio);
bch2_alloc_sectors_done(c, wp);
if (ret < 0)
goto err;
if (ret)
skip_put = false;
bio->bi_end_io = bch2_write_endio;
bio->bi_private = &op->cl;
bio->bi_opf |= REQ_OP_WRITE;
if (!skip_put)
closure_get(bio->bi_private);
else
op->flags |= BCH_WRITE_SKIP_CLOSURE_PUT;
key_to_write = (void *) (op->insert_keys.keys_p +
key_to_write_offset);
bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_USER,
key_to_write);
} while (ret);
if (!skip_put)
continue_at(cl, bch2_write_index, index_update_wq(op));
return;
err:
op->error = ret;
continue_at(cl, bch2_write_index, index_update_wq(op));
return;
flush_io:
closure_sync(cl);
if (!bch2_keylist_empty(&op->insert_keys)) {
__bch2_write_index(op);
if (op->error) {
continue_at_nobarrier(cl, bch2_write_done, NULL);
return;
}
}
goto again;
}
static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len)
{
struct closure *cl = &op->cl;
struct bio *bio = &op->wbio.bio;
struct bvec_iter iter;
struct bkey_i_inline_data *id;
unsigned sectors;
int ret;
bch2_check_set_feature(op->c, BCH_FEATURE_inline_data);
ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys,
ARRAY_SIZE(op->inline_keys),
BKEY_U64s + DIV_ROUND_UP(data_len, 8));
if (ret) {
op->error = ret;
goto err;
}
sectors = bio_sectors(bio);
op->pos.offset += sectors;
id = bkey_inline_data_init(op->insert_keys.top);
id->k.p = op->pos;
id->k.version = op->version;
id->k.size = sectors;
iter = bio->bi_iter;
iter.bi_size = data_len;
memcpy_from_bio(id->v.data, bio, iter);
while (data_len & 7)
id->v.data[data_len++] = '\0';
set_bkey_val_bytes(&id->k, data_len);
bch2_keylist_push(&op->insert_keys);
op->flags |= BCH_WRITE_WROTE_DATA_INLINE;
continue_at_nobarrier(cl, bch2_write_index, NULL);
return;
err:
bch2_write_done(&op->cl);
}
/**
* bch_write - handle a write to a cache device or flash only volume
*
* This is the starting point for any data to end up in a cache device; it could
* be from a normal write, or a writeback write, or a write to a flash only
* volume - it's also used by the moving garbage collector to compact data in
* mostly empty buckets.
*
* It first writes the data to the cache, creating a list of keys to be inserted
* (if the data won't fit in a single open bucket, there will be multiple keys);
* after the data is written it calls bch_journal, and after the keys have been
* added to the next journal write they're inserted into the btree.
*
* If op->discard is true, instead of inserting the data it invalidates the
* region of the cache represented by op->bio and op->inode.
*/
void bch2_write(struct closure *cl)
{
struct bch_write_op *op = container_of(cl, struct bch_write_op, cl);
struct bio *bio = &op->wbio.bio;
struct bch_fs *c = op->c;
unsigned data_len;
BUG_ON(!op->nr_replicas);
BUG_ON(!op->write_point.v);
BUG_ON(!bkey_cmp(op->pos, POS_MAX));
op->start_time = local_clock();
bch2_keylist_init(&op->insert_keys, op->inline_keys);
wbio_init(bio)->put_bio = false;
if (bio_sectors(bio) & (c->opts.block_size - 1)) {
__bcache_io_error(c, "misaligned write");
op->error = -EIO;
goto err;
}
if (c->opts.nochanges ||
!percpu_ref_tryget(&c->writes)) {
__bcache_io_error(c, "read only");
op->error = -EROFS;
goto err;
}
bch2_increment_clock(c, bio_sectors(bio), WRITE);
data_len = min_t(u64, bio->bi_iter.bi_size,
op->new_i_size - (op->pos.offset << 9));
if (c->opts.inline_data &&
data_len <= min(block_bytes(c) / 2, 1024U)) {
bch2_write_data_inline(op, data_len);
return;
}
continue_at_nobarrier(cl, __bch2_write, NULL);
return;
err:
if (!(op->flags & BCH_WRITE_NOPUT_RESERVATION))
bch2_disk_reservation_put(c, &op->res);
if (op->end_io) {
EBUG_ON(cl->parent);
closure_debug_destroy(cl);
op->end_io(op);
} else {
closure_return(cl);
}
}
/* Cache promotion on read */
struct promote_op {
struct closure cl;
struct rcu_head rcu;
u64 start_time;
struct rhash_head hash;
struct bpos pos;
struct migrate_write write;
struct bio_vec bi_inline_vecs[0]; /* must be last */
};
static const struct rhashtable_params bch_promote_params = {
.head_offset = offsetof(struct promote_op, hash),
.key_offset = offsetof(struct promote_op, pos),
.key_len = sizeof(struct bpos),
};
static inline bool should_promote(struct bch_fs *c, struct bkey_s_c k,
struct bpos pos,
struct bch_io_opts opts,
unsigned flags)
{
if (!(flags & BCH_READ_MAY_PROMOTE))
return false;
if (!opts.promote_target)
return false;
if (bch2_bkey_has_target(c, k, opts.promote_target))
return false;
if (bch2_target_congested(c, opts.promote_target)) {
/* XXX trace this */
return false;
}
if (rhashtable_lookup_fast(&c->promote_table, &pos,
bch_promote_params))
return false;
return true;
}
static void promote_free(struct bch_fs *c, struct promote_op *op)
{
int ret;
ret = rhashtable_remove_fast(&c->promote_table, &op->hash,
bch_promote_params);
BUG_ON(ret);
percpu_ref_put(&c->writes);
kfree_rcu(op, rcu);
}
static void promote_done(struct closure *cl)
{
struct promote_op *op =
container_of(cl, struct promote_op, cl);
struct bch_fs *c = op->write.op.c;
bch2_time_stats_update(&c->times[BCH_TIME_data_promote],
op->start_time);
bch2_bio_free_pages_pool(c, &op->write.op.wbio.bio);
promote_free(c, op);
}
static void promote_start(struct promote_op *op, struct bch_read_bio *rbio)
{
struct bch_fs *c = rbio->c;
struct closure *cl = &op->cl;
struct bio *bio = &op->write.op.wbio.bio;
trace_promote(&rbio->bio);
/* we now own pages: */
BUG_ON(!rbio->bounce);
BUG_ON(rbio->bio.bi_vcnt > bio->bi_max_vecs);
memcpy(bio->bi_io_vec, rbio->bio.bi_io_vec,
sizeof(struct bio_vec) * rbio->bio.bi_vcnt);
swap(bio->bi_vcnt, rbio->bio.bi_vcnt);
bch2_migrate_read_done(&op->write, rbio);
closure_init(cl, NULL);
closure_call(&op->write.op.cl, bch2_write, c->wq, cl);
closure_return_with_destructor(cl, promote_done);
}
static struct promote_op *__promote_alloc(struct bch_fs *c,
enum btree_id btree_id,
struct bkey_s_c k,
struct bpos pos,
struct extent_ptr_decoded *pick,
struct bch_io_opts opts,
unsigned sectors,
struct bch_read_bio **rbio)
{
struct promote_op *op = NULL;
struct bio *bio;
unsigned pages = DIV_ROUND_UP(sectors, PAGE_SECTORS);
int ret;
if (!percpu_ref_tryget(&c->writes))
return NULL;
op = kzalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOIO);
if (!op)
goto err;
op->start_time = local_clock();
op->pos = pos;
/*
* We don't use the mempool here because extents that aren't
* checksummed or compressed can be too big for the mempool:
*/
*rbio = kzalloc(sizeof(struct bch_read_bio) +
sizeof(struct bio_vec) * pages,
GFP_NOIO);
if (!*rbio)
goto err;
rbio_init(&(*rbio)->bio, opts);
bio_init(&(*rbio)->bio, NULL, (*rbio)->bio.bi_inline_vecs, pages, 0);
if (bch2_bio_alloc_pages(&(*rbio)->bio, sectors << 9,
GFP_NOIO))
goto err;
(*rbio)->bounce = true;
(*rbio)->split = true;
(*rbio)->kmalloc = true;
if (rhashtable_lookup_insert_fast(&c->promote_table, &op->hash,
bch_promote_params))
goto err;
bio = &op->write.op.wbio.bio;
bio_init(bio, NULL, bio->bi_inline_vecs, pages, 0);
ret = bch2_migrate_write_init(c, &op->write,
writepoint_hashed((unsigned long) current),
opts,
DATA_PROMOTE,
(struct data_opts) {
.target = opts.promote_target
},
btree_id, k);
BUG_ON(ret);
return op;
err:
if (*rbio)
bio_free_pages(&(*rbio)->bio);
kfree(*rbio);
*rbio = NULL;
kfree(op);
percpu_ref_put(&c->writes);
return NULL;
}
noinline
static struct promote_op *promote_alloc(struct bch_fs *c,
struct bvec_iter iter,
struct bkey_s_c k,
struct extent_ptr_decoded *pick,
struct bch_io_opts opts,
unsigned flags,
struct bch_read_bio **rbio,
bool *bounce,
bool *read_full)
{
bool promote_full = *read_full || READ_ONCE(c->promote_whole_extents);
/* data might have to be decompressed in the write path: */
unsigned sectors = promote_full
? max(pick->crc.compressed_size, pick->crc.live_size)
: bvec_iter_sectors(iter);
struct bpos pos = promote_full
? bkey_start_pos(k.k)
: POS(k.k->p.inode, iter.bi_sector);
struct promote_op *promote;
if (!should_promote(c, k, pos, opts, flags))
return NULL;
promote = __promote_alloc(c,
k.k->type == KEY_TYPE_reflink_v
? BTREE_ID_REFLINK
: BTREE_ID_EXTENTS,
k, pos, pick, opts, sectors, rbio);
if (!promote)
return NULL;
*bounce = true;
*read_full = promote_full;
return promote;
}
/* Read */
#define READ_RETRY_AVOID 1
#define READ_RETRY 2
#define READ_ERR 3
enum rbio_context {
RBIO_CONTEXT_NULL,
RBIO_CONTEXT_HIGHPRI,
RBIO_CONTEXT_UNBOUND,
};
static inline struct bch_read_bio *
bch2_rbio_parent(struct bch_read_bio *rbio)
{
return rbio->split ? rbio->parent : rbio;
}
__always_inline
static void bch2_rbio_punt(struct bch_read_bio *rbio, work_func_t fn,
enum rbio_context context,
struct workqueue_struct *wq)
{
if (context <= rbio->context) {
fn(&rbio->work);
} else {
rbio->work.func = fn;
rbio->context = context;
queue_work(wq, &rbio->work);
}
}
static inline struct bch_read_bio *bch2_rbio_free(struct bch_read_bio *rbio)
{
BUG_ON(rbio->bounce && !rbio->split);
if (rbio->promote)
promote_free(rbio->c, rbio->promote);
rbio->promote = NULL;
if (rbio->bounce)
bch2_bio_free_pages_pool(rbio->c, &rbio->bio);
if (rbio->split) {
struct bch_read_bio *parent = rbio->parent;
if (rbio->kmalloc)
kfree(rbio);
else
bio_put(&rbio->bio);
rbio = parent;
}
return rbio;
}
/*
* Only called on a top level bch_read_bio to complete an entire read request,
* not a split:
*/
static void bch2_rbio_done(struct bch_read_bio *rbio)
{
if (rbio->start_time)
bch2_time_stats_update(&rbio->c->times[BCH_TIME_data_read],
rbio->start_time);
bio_endio(&rbio->bio);
}
static void bch2_read_retry_nodecode(struct bch_fs *c, struct bch_read_bio *rbio,
struct bvec_iter bvec_iter, u64 inode,
struct bch_io_failures *failed,
unsigned flags)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_on_stack sk;
struct bkey_s_c k;
int ret;
flags &= ~BCH_READ_LAST_FRAGMENT;
flags |= BCH_READ_MUST_CLONE;
bkey_on_stack_init(&sk);
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
rbio->pos, BTREE_ITER_SLOTS);
retry:
rbio->bio.bi_status = 0;
k = bch2_btree_iter_peek_slot(iter);
if (bkey_err(k))
goto err;
bkey_on_stack_reassemble(&sk, c, k);
k = bkey_i_to_s_c(sk.k);
bch2_trans_unlock(&trans);
if (!bch2_bkey_matches_ptr(c, k,
rbio->pick.ptr,
rbio->pos.offset -
rbio->pick.crc.offset)) {
/* extent we wanted to read no longer exists: */
rbio->hole = true;
goto out;
}
ret = __bch2_read_extent(c, rbio, bvec_iter, k, 0, failed, flags);
if (ret == READ_RETRY)
goto retry;
if (ret)
goto err;
out:
bch2_rbio_done(rbio);
bch2_trans_exit(&trans);
bkey_on_stack_exit(&sk, c);
return;
err:
rbio->bio.bi_status = BLK_STS_IOERR;
goto out;
}
static void bch2_read_retry(struct bch_fs *c, struct bch_read_bio *rbio,
struct bvec_iter bvec_iter, u64 inode,
struct bch_io_failures *failed, unsigned flags)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_on_stack sk;
struct bkey_s_c k;
int ret;
flags &= ~BCH_READ_LAST_FRAGMENT;
flags |= BCH_READ_MUST_CLONE;
bkey_on_stack_init(&sk);
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
for_each_btree_key(&trans, iter, BTREE_ID_EXTENTS,
POS(inode, bvec_iter.bi_sector),
BTREE_ITER_SLOTS, k, ret) {
unsigned bytes, sectors, offset_into_extent;
bkey_on_stack_reassemble(&sk, c, k);
k = bkey_i_to_s_c(sk.k);
offset_into_extent = iter->pos.offset -
bkey_start_offset(k.k);
sectors = k.k->size - offset_into_extent;
ret = bch2_read_indirect_extent(&trans,
&offset_into_extent, sk.k);
if (ret)
break;
sectors = min(sectors, k.k->size - offset_into_extent);
bch2_trans_unlock(&trans);
bytes = min(sectors, bvec_iter_sectors(bvec_iter)) << 9;
swap(bvec_iter.bi_size, bytes);
ret = __bch2_read_extent(c, rbio, bvec_iter, k,
offset_into_extent, failed, flags);
switch (ret) {
case READ_RETRY:
goto retry;
case READ_ERR:
goto err;
};
if (bytes == bvec_iter.bi_size)
goto out;
swap(bvec_iter.bi_size, bytes);
bio_advance_iter(&rbio->bio, &bvec_iter, bytes);
}
if (ret == -EINTR)
goto retry;
/*
* If we get here, it better have been because there was an error
* reading a btree node
*/
BUG_ON(!ret);
__bcache_io_error(c, "btree IO error: %i", ret);
err:
rbio->bio.bi_status = BLK_STS_IOERR;
out:
bch2_trans_exit(&trans);
bkey_on_stack_exit(&sk, c);
bch2_rbio_done(rbio);
}
static void bch2_rbio_retry(struct work_struct *work)
{
struct bch_read_bio *rbio =
container_of(work, struct bch_read_bio, work);
struct bch_fs *c = rbio->c;
struct bvec_iter iter = rbio->bvec_iter;
unsigned flags = rbio->flags;
u64 inode = rbio->pos.inode;
struct bch_io_failures failed = { .nr = 0 };
trace_read_retry(&rbio->bio);
if (rbio->retry == READ_RETRY_AVOID)
bch2_mark_io_failure(&failed, &rbio->pick);
rbio->bio.bi_status = 0;
rbio = bch2_rbio_free(rbio);
flags |= BCH_READ_IN_RETRY;
flags &= ~BCH_READ_MAY_PROMOTE;
if (flags & BCH_READ_NODECODE)
bch2_read_retry_nodecode(c, rbio, iter, inode, &failed, flags);
else
bch2_read_retry(c, rbio, iter, inode, &failed, flags);
}
static void bch2_rbio_error(struct bch_read_bio *rbio, int retry,
blk_status_t error)
{
rbio->retry = retry;
if (rbio->flags & BCH_READ_IN_RETRY)
return;
if (retry == READ_ERR) {
rbio = bch2_rbio_free(rbio);
rbio->bio.bi_status = error;
bch2_rbio_done(rbio);
} else {
bch2_rbio_punt(rbio, bch2_rbio_retry,
RBIO_CONTEXT_UNBOUND, system_unbound_wq);
}
}
static void bch2_rbio_narrow_crcs(struct bch_read_bio *rbio)
{
struct bch_fs *c = rbio->c;
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
struct bkey_on_stack new;
struct bch_extent_crc_unpacked new_crc;
u64 data_offset = rbio->pos.offset - rbio->pick.crc.offset;
int ret;
if (crc_is_compressed(rbio->pick.crc))
return;
bkey_on_stack_init(&new);
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, rbio->pos,
BTREE_ITER_SLOTS|BTREE_ITER_INTENT);
k = bch2_btree_iter_peek_slot(iter);
if (IS_ERR_OR_NULL(k.k))
goto out;
bkey_on_stack_reassemble(&new, c, k);
k = bkey_i_to_s_c(new.k);
if (bversion_cmp(k.k->version, rbio->version) ||
!bch2_bkey_matches_ptr(c, k, rbio->pick.ptr, data_offset))
goto out;
/* Extent was merged? */
if (bkey_start_offset(k.k) < data_offset ||
k.k->p.offset > data_offset + rbio->pick.crc.uncompressed_size)
goto out;
if (bch2_rechecksum_bio(c, &rbio->bio, rbio->version,
rbio->pick.crc, NULL, &new_crc,
bkey_start_offset(k.k) - data_offset, k.k->size,
rbio->pick.crc.csum_type)) {
bch_err(c, "error verifying existing checksum while narrowing checksum (memory corruption?)");
goto out;
}
if (!bch2_bkey_narrow_crcs(new.k, new_crc))
goto out;
bch2_trans_update(&trans, iter, new.k, 0);
ret = bch2_trans_commit(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_NOWAIT);
if (ret == -EINTR)
goto retry;
out:
bch2_trans_exit(&trans);
bkey_on_stack_exit(&new, c);
}
/* Inner part that may run in process context */
static void __bch2_read_endio(struct work_struct *work)
{
struct bch_read_bio *rbio =
container_of(work, struct bch_read_bio, work);
struct bch_fs *c = rbio->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev);
struct bio *src = &rbio->bio;
struct bio *dst = &bch2_rbio_parent(rbio)->bio;
struct bvec_iter dst_iter = rbio->bvec_iter;
struct bch_extent_crc_unpacked crc = rbio->pick.crc;
struct nonce nonce = extent_nonce(rbio->version, crc);
struct bch_csum csum;
/* Reset iterator for checksumming and copying bounced data: */
if (rbio->bounce) {
src->bi_iter.bi_size = crc.compressed_size << 9;
src->bi_iter.bi_idx = 0;
src->bi_iter.bi_bvec_done = 0;
} else {
src->bi_iter = rbio->bvec_iter;
}
csum = bch2_checksum_bio(c, crc.csum_type, nonce, src);
if (bch2_crc_cmp(csum, rbio->pick.crc.csum) && !c->opts.no_data_io)
goto csum_err;
if (unlikely(rbio->narrow_crcs))
bch2_rbio_narrow_crcs(rbio);
if (rbio->flags & BCH_READ_NODECODE)
goto nodecode;
/* Adjust crc to point to subset of data we want: */
crc.offset += rbio->offset_into_extent;
crc.live_size = bvec_iter_sectors(rbio->bvec_iter);
if (crc_is_compressed(crc)) {
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
if (bch2_bio_uncompress(c, src, dst, dst_iter, crc))
goto decompression_err;
} else {
/* don't need to decrypt the entire bio: */
nonce = nonce_add(nonce, crc.offset << 9);
bio_advance(src, crc.offset << 9);
BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size);
src->bi_iter.bi_size = dst_iter.bi_size;
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
if (rbio->bounce) {
struct bvec_iter src_iter = src->bi_iter;
bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
}
}
if (rbio->promote) {
/*
* Re encrypt data we decrypted, so it's consistent with
* rbio->crc:
*/
bch2_encrypt_bio(c, crc.csum_type, nonce, src);
promote_start(rbio->promote, rbio);
rbio->promote = NULL;
}
nodecode:
if (likely(!(rbio->flags & BCH_READ_IN_RETRY))) {
rbio = bch2_rbio_free(rbio);
bch2_rbio_done(rbio);
}
return;
csum_err:
/*
* Checksum error: if the bio wasn't bounced, we may have been
* reading into buffers owned by userspace (that userspace can
* scribble over) - retry the read, bouncing it this time:
*/
if (!rbio->bounce && (rbio->flags & BCH_READ_USER_MAPPED)) {
rbio->flags |= BCH_READ_MUST_BOUNCE;
bch2_rbio_error(rbio, READ_RETRY, BLK_STS_IOERR);
return;
}
bch2_dev_io_error(ca,
"data checksum error, inode %llu offset %llu: expected %0llx:%0llx got %0llx:%0llx (type %u)",
rbio->pos.inode, (u64) rbio->bvec_iter.bi_sector,
rbio->pick.crc.csum.hi, rbio->pick.crc.csum.lo,
csum.hi, csum.lo, crc.csum_type);
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
return;
decompression_err:
__bcache_io_error(c, "decompression error, inode %llu offset %llu",
rbio->pos.inode,
(u64) rbio->bvec_iter.bi_sector);
bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR);
return;
}
static void bch2_read_endio(struct bio *bio)
{
struct bch_read_bio *rbio =
container_of(bio, struct bch_read_bio, bio);
struct bch_fs *c = rbio->c;
struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev);
struct workqueue_struct *wq = NULL;
enum rbio_context context = RBIO_CONTEXT_NULL;
if (rbio->have_ioref) {
bch2_latency_acct(ca, rbio->submit_time, READ);
percpu_ref_put(&ca->io_ref);
}
if (!rbio->split)
rbio->bio.bi_end_io = rbio->end_io;
if (bch2_dev_io_err_on(bio->bi_status, ca, "data read")) {
bch2_rbio_error(rbio, READ_RETRY_AVOID, bio->bi_status);
return;
}
if (rbio->pick.ptr.cached &&
(((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) ||
ptr_stale(ca, &rbio->pick.ptr))) {
atomic_long_inc(&c->read_realloc_races);
if (rbio->flags & BCH_READ_RETRY_IF_STALE)
bch2_rbio_error(rbio, READ_RETRY, BLK_STS_AGAIN);
else
bch2_rbio_error(rbio, READ_ERR, BLK_STS_AGAIN);
return;
}
if (rbio->narrow_crcs ||
crc_is_compressed(rbio->pick.crc) ||
bch2_csum_type_is_encryption(rbio->pick.crc.csum_type))
context = RBIO_CONTEXT_UNBOUND, wq = system_unbound_wq;
else if (rbio->pick.crc.csum_type)
context = RBIO_CONTEXT_HIGHPRI, wq = system_highpri_wq;
bch2_rbio_punt(rbio, __bch2_read_endio, context, wq);
}
int __bch2_read_indirect_extent(struct btree_trans *trans,
unsigned *offset_into_extent,
struct bkey_i *orig_k)
{
struct btree_iter *iter;
struct bkey_s_c k;
u64 reflink_offset;
int ret;
reflink_offset = le64_to_cpu(bkey_i_to_reflink_p(orig_k)->v.idx) +
*offset_into_extent;
iter = bch2_trans_get_iter(trans, BTREE_ID_REFLINK,
POS(0, reflink_offset),
BTREE_ITER_SLOTS);
ret = PTR_ERR_OR_ZERO(iter);
if (ret)
return ret;
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
goto err;
if (k.k->type != KEY_TYPE_reflink_v) {
__bcache_io_error(trans->c,
"pointer to nonexistent indirect extent");
ret = -EIO;
goto err;
}
*offset_into_extent = iter->pos.offset - bkey_start_offset(k.k);
bkey_reassemble(orig_k, k);
err:
bch2_trans_iter_put(trans, iter);
return ret;
}
int __bch2_read_extent(struct bch_fs *c, struct bch_read_bio *orig,
struct bvec_iter iter, struct bkey_s_c k,
unsigned offset_into_extent,
struct bch_io_failures *failed, unsigned flags)
{
struct extent_ptr_decoded pick;
struct bch_read_bio *rbio = NULL;
struct bch_dev *ca;
struct promote_op *promote = NULL;
bool bounce = false, read_full = false, narrow_crcs = false;
struct bpos pos = bkey_start_pos(k.k);
int pick_ret;
if (k.k->type == KEY_TYPE_inline_data) {
struct bkey_s_c_inline_data d = bkey_s_c_to_inline_data(k);
unsigned bytes = min_t(unsigned, iter.bi_size,
bkey_val_bytes(d.k));
swap(iter.bi_size, bytes);
memcpy_to_bio(&orig->bio, iter, d.v->data);
swap(iter.bi_size, bytes);
bio_advance_iter(&orig->bio, &iter, bytes);
zero_fill_bio_iter(&orig->bio, iter);
goto out_read_done;
}
pick_ret = bch2_bkey_pick_read_device(c, k, failed, &pick);
/* hole or reservation - just zero fill: */
if (!pick_ret)
goto hole;
if (pick_ret < 0) {
__bcache_io_error(c, "no device to read from");
goto err;
}
if (pick_ret > 0)
ca = bch_dev_bkey_exists(c, pick.ptr.dev);
if (flags & BCH_READ_NODECODE) {
/*
* can happen if we retry, and the extent we were going to read
* has been merged in the meantime:
*/
if (pick.crc.compressed_size > orig->bio.bi_vcnt * PAGE_SECTORS)
goto hole;
iter.bi_size = pick.crc.compressed_size << 9;
goto get_bio;
}
if (!(flags & BCH_READ_LAST_FRAGMENT) ||
bio_flagged(&orig->bio, BIO_CHAIN))
flags |= BCH_READ_MUST_CLONE;
narrow_crcs = !(flags & BCH_READ_IN_RETRY) &&
bch2_can_narrow_extent_crcs(k, pick.crc);
if (narrow_crcs && (flags & BCH_READ_USER_MAPPED))
flags |= BCH_READ_MUST_BOUNCE;
EBUG_ON(offset_into_extent + bvec_iter_sectors(iter) > k.k->size);
if (crc_is_compressed(pick.crc) ||
(pick.crc.csum_type != BCH_CSUM_NONE &&
(bvec_iter_sectors(iter) != pick.crc.uncompressed_size ||
(bch2_csum_type_is_encryption(pick.crc.csum_type) &&
(flags & BCH_READ_USER_MAPPED)) ||
(flags & BCH_READ_MUST_BOUNCE)))) {
read_full = true;
bounce = true;
}
if (orig->opts.promote_target)
promote = promote_alloc(c, iter, k, &pick, orig->opts, flags,
&rbio, &bounce, &read_full);
if (!read_full) {
EBUG_ON(crc_is_compressed(pick.crc));
EBUG_ON(pick.crc.csum_type &&
(bvec_iter_sectors(iter) != pick.crc.uncompressed_size ||
bvec_iter_sectors(iter) != pick.crc.live_size ||
pick.crc.offset ||
offset_into_extent));
pos.offset += offset_into_extent;
pick.ptr.offset += pick.crc.offset +
offset_into_extent;
offset_into_extent = 0;
pick.crc.compressed_size = bvec_iter_sectors(iter);
pick.crc.uncompressed_size = bvec_iter_sectors(iter);
pick.crc.offset = 0;
pick.crc.live_size = bvec_iter_sectors(iter);
offset_into_extent = 0;
}
get_bio:
if (rbio) {
/*
* promote already allocated bounce rbio:
* promote needs to allocate a bio big enough for uncompressing
* data in the write path, but we're not going to use it all
* here:
*/
EBUG_ON(rbio->bio.bi_iter.bi_size <
pick.crc.compressed_size << 9);
rbio->bio.bi_iter.bi_size =
pick.crc.compressed_size << 9;
} else if (bounce) {
unsigned sectors = pick.crc.compressed_size;
rbio = rbio_init(bio_alloc_bioset(NULL,
DIV_ROUND_UP(sectors, PAGE_SECTORS),
0,
GFP_NOIO,
&c->bio_read_split),
orig->opts);
bch2_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9);
rbio->bounce = true;
rbio->split = true;
} else if (flags & BCH_READ_MUST_CLONE) {
/*
* Have to clone if there were any splits, due to error
* reporting issues (if a split errored, and retrying didn't
* work, when it reports the error to its parent (us) we don't
* know if the error was from our bio, and we should retry, or
* from the whole bio, in which case we don't want to retry and
* lose the error)
*/
rbio = rbio_init(bio_alloc_clone(NULL, &orig->bio, GFP_NOIO,
&c->bio_read_split),
orig->opts);
rbio->bio.bi_iter = iter;
rbio->split = true;
} else {
rbio = orig;
rbio->bio.bi_iter = iter;
EBUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN));
}
EBUG_ON(bio_sectors(&rbio->bio) != pick.crc.compressed_size);
rbio->c = c;
rbio->submit_time = local_clock();
if (rbio->split)
rbio->parent = orig;
else
rbio->end_io = orig->bio.bi_end_io;
rbio->bvec_iter = iter;
rbio->offset_into_extent= offset_into_extent;
rbio->flags = flags;
rbio->have_ioref = pick_ret > 0 && bch2_dev_get_ioref(ca, READ);
rbio->narrow_crcs = narrow_crcs;
rbio->hole = 0;
rbio->retry = 0;
rbio->context = 0;
/* XXX: only initialize this if needed */
rbio->devs_have = bch2_bkey_devs(k);
rbio->pick = pick;
rbio->pos = pos;
rbio->version = k.k->version;
rbio->promote = promote;
INIT_WORK(&rbio->work, NULL);
rbio->bio.bi_opf = orig->bio.bi_opf;
rbio->bio.bi_iter.bi_sector = pick.ptr.offset;
rbio->bio.bi_end_io = bch2_read_endio;
if (rbio->bounce)
trace_read_bounce(&rbio->bio);
bch2_increment_clock(c, bio_sectors(&rbio->bio), READ);
rcu_read_lock();
bucket_io_clock_reset(c, ca, PTR_BUCKET_NR(ca, &pick.ptr), READ);
rcu_read_unlock();
if (!(flags & (BCH_READ_IN_RETRY|BCH_READ_LAST_FRAGMENT))) {
bio_inc_remaining(&orig->bio);
trace_read_split(&orig->bio);
}
if (!rbio->pick.idx) {
if (!rbio->have_ioref) {
__bcache_io_error(c, "no device to read from");
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
goto out;
}
this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_USER],
bio_sectors(&rbio->bio));
bio_set_dev(&rbio->bio, ca->disk_sb.bdev);
if (unlikely(c->opts.no_data_io)) {
if (likely(!(flags & BCH_READ_IN_RETRY)))
bio_endio(&rbio->bio);
} else {
if (likely(!(flags & BCH_READ_IN_RETRY)))
submit_bio(&rbio->bio);
else
submit_bio_wait(&rbio->bio);
}
} else {
/* Attempting reconstruct read: */
if (bch2_ec_read_extent(c, rbio)) {
bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR);
goto out;
}
if (likely(!(flags & BCH_READ_IN_RETRY)))
bio_endio(&rbio->bio);
}
out:
if (likely(!(flags & BCH_READ_IN_RETRY))) {
return 0;
} else {
int ret;
rbio->context = RBIO_CONTEXT_UNBOUND;
bch2_read_endio(&rbio->bio);
ret = rbio->retry;
rbio = bch2_rbio_free(rbio);
if (ret == READ_RETRY_AVOID) {
bch2_mark_io_failure(failed, &pick);
ret = READ_RETRY;
}
return ret;
}
err:
if (flags & BCH_READ_IN_RETRY)
return READ_ERR;
orig->bio.bi_status = BLK_STS_IOERR;
goto out_read_done;
hole:
/*
* won't normally happen in the BCH_READ_NODECODE
* (bch2_move_extent()) path, but if we retry and the extent we wanted
* to read no longer exists we have to signal that:
*/
if (flags & BCH_READ_NODECODE)
orig->hole = true;
zero_fill_bio_iter(&orig->bio, iter);
out_read_done:
if (flags & BCH_READ_LAST_FRAGMENT)
bch2_rbio_done(orig);
return 0;
}
void bch2_read(struct bch_fs *c, struct bch_read_bio *rbio, u64 inode)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_on_stack sk;
struct bkey_s_c k;
unsigned flags = BCH_READ_RETRY_IF_STALE|
BCH_READ_MAY_PROMOTE|
BCH_READ_USER_MAPPED;
int ret;
BUG_ON(rbio->_state);
BUG_ON(flags & BCH_READ_NODECODE);
BUG_ON(flags & BCH_READ_IN_RETRY);
rbio->c = c;
rbio->start_time = local_clock();
bkey_on_stack_init(&sk);
bch2_trans_init(&trans, c, 0, 0);
retry:
bch2_trans_begin(&trans);
iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS,
POS(inode, rbio->bio.bi_iter.bi_sector),
BTREE_ITER_SLOTS);
while (1) {
unsigned bytes, sectors, offset_into_extent;
bch2_btree_iter_set_pos(iter,
POS(inode, rbio->bio.bi_iter.bi_sector));
k = bch2_btree_iter_peek_slot(iter);
ret = bkey_err(k);
if (ret)
goto err;
offset_into_extent = iter->pos.offset -
bkey_start_offset(k.k);
sectors = k.k->size - offset_into_extent;
bkey_on_stack_reassemble(&sk, c, k);
k = bkey_i_to_s_c(sk.k);
ret = bch2_read_indirect_extent(&trans,
&offset_into_extent, sk.k);
if (ret)
goto err;
/*
* With indirect extents, the amount of data to read is the min
* of the original extent and the indirect extent:
*/
sectors = min(sectors, k.k->size - offset_into_extent);
/*
* Unlock the iterator while the btree node's lock is still in
* cache, before doing the IO:
*/
bch2_trans_unlock(&trans);
bytes = min(sectors, bio_sectors(&rbio->bio)) << 9;
swap(rbio->bio.bi_iter.bi_size, bytes);
if (rbio->bio.bi_iter.bi_size == bytes)
flags |= BCH_READ_LAST_FRAGMENT;
bch2_read_extent(c, rbio, k, offset_into_extent, flags);
if (flags & BCH_READ_LAST_FRAGMENT)
break;
swap(rbio->bio.bi_iter.bi_size, bytes);
bio_advance(&rbio->bio, bytes);
}
out:
bch2_trans_exit(&trans);
bkey_on_stack_exit(&sk, c);
return;
err:
if (ret == -EINTR)
goto retry;
bcache_io_error(c, &rbio->bio, "btree IO error: %i", ret);
bch2_rbio_done(rbio);
goto out;
}
void bch2_fs_io_exit(struct bch_fs *c)
{
if (c->promote_table.tbl)
rhashtable_destroy(&c->promote_table);
mempool_exit(&c->bio_bounce_pages);
bioset_exit(&c->bio_write);
bioset_exit(&c->bio_read_split);
bioset_exit(&c->bio_read);
}
int bch2_fs_io_init(struct bch_fs *c)
{
if (bioset_init(&c->bio_read, 1, offsetof(struct bch_read_bio, bio),
BIOSET_NEED_BVECS) ||
bioset_init(&c->bio_read_split, 1, offsetof(struct bch_read_bio, bio),
BIOSET_NEED_BVECS) ||
bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio),
BIOSET_NEED_BVECS) ||
mempool_init_page_pool(&c->bio_bounce_pages,
max_t(unsigned,
c->opts.btree_node_size,
c->sb.encoded_extent_max) /
PAGE_SECTORS, 0) ||
rhashtable_init(&c->promote_table, &bch_promote_params))
return -ENOMEM;
return 0;
}