linux/fs/iomap/buffered-io.c
Jan Stancek 3ac974796e iomap: fix short copy in iomap_write_iter()
Starting with commit 5d8edfb900 ("iomap: Copy larger chunks from
userspace"), iomap_write_iter() can get into endless loop. This can
be reproduced with LTP writev07 which uses partially valid iovecs:
        struct iovec wr_iovec[] = {
                { buffer, 64 },
                { bad_addr, 64 },
                { buffer + 64, 64 },
                { buffer + 64 * 2, 64 },
        };

commit bc1bb416bb ("generic_perform_write()/iomap_write_actor():
saner logics for short copy") previously introduced the logic, which
made short copy retry in next iteration with amount of "bytes" it
managed to copy:

                if (unlikely(status == 0)) {
                        /*
                         * A short copy made iomap_write_end() reject the
                         * thing entirely.  Might be memory poisoning
                         * halfway through, might be a race with munmap,
                         * might be severe memory pressure.
                         */
                        if (copied)
                                bytes = copied;

However, since 5d8edfb900 "bytes" is no longer carried into next
iteration, because it is now always initialized at the beginning of
the loop. And for iov_iter_count < PAGE_SIZE, "bytes" ends up with
same value as previous iteration, making the loop retry same copy
over and over, which leads to writev07 testcase hanging.

Make next iteration retry with amount of bytes we managed to copy.

Fixes: 5d8edfb900 ("iomap: Copy larger chunks from userspace")
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2023-10-19 09:41:36 -07:00

2003 lines
58 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2010 Red Hat, Inc.
* Copyright (C) 2016-2019 Christoph Hellwig.
*/
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/iomap.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/buffer_head.h>
#include <linux/dax.h>
#include <linux/writeback.h>
#include <linux/list_sort.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/sched/signal.h>
#include <linux/migrate.h>
#include "trace.h"
#include "../internal.h"
#define IOEND_BATCH_SIZE 4096
typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
/*
* Structure allocated for each folio to track per-block uptodate, dirty state
* and I/O completions.
*/
struct iomap_folio_state {
atomic_t read_bytes_pending;
atomic_t write_bytes_pending;
spinlock_t state_lock;
/*
* Each block has two bits in this bitmap:
* Bits [0..blocks_per_folio) has the uptodate status.
* Bits [b_p_f...(2*b_p_f)) has the dirty status.
*/
unsigned long state[];
};
static struct bio_set iomap_ioend_bioset;
static inline bool ifs_is_fully_uptodate(struct folio *folio,
struct iomap_folio_state *ifs)
{
struct inode *inode = folio->mapping->host;
return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
}
static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
unsigned int block)
{
return test_bit(block, ifs->state);
}
static void ifs_set_range_uptodate(struct folio *folio,
struct iomap_folio_state *ifs, size_t off, size_t len)
{
struct inode *inode = folio->mapping->host;
unsigned int first_blk = off >> inode->i_blkbits;
unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
unsigned int nr_blks = last_blk - first_blk + 1;
unsigned long flags;
spin_lock_irqsave(&ifs->state_lock, flags);
bitmap_set(ifs->state, first_blk, nr_blks);
if (ifs_is_fully_uptodate(folio, ifs))
folio_mark_uptodate(folio);
spin_unlock_irqrestore(&ifs->state_lock, flags);
}
static void iomap_set_range_uptodate(struct folio *folio, size_t off,
size_t len)
{
struct iomap_folio_state *ifs = folio->private;
if (ifs)
ifs_set_range_uptodate(folio, ifs, off, len);
else
folio_mark_uptodate(folio);
}
static inline bool ifs_block_is_dirty(struct folio *folio,
struct iomap_folio_state *ifs, int block)
{
struct inode *inode = folio->mapping->host;
unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
return test_bit(block + blks_per_folio, ifs->state);
}
static void ifs_clear_range_dirty(struct folio *folio,
struct iomap_folio_state *ifs, size_t off, size_t len)
{
struct inode *inode = folio->mapping->host;
unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
unsigned int first_blk = (off >> inode->i_blkbits);
unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
unsigned int nr_blks = last_blk - first_blk + 1;
unsigned long flags;
spin_lock_irqsave(&ifs->state_lock, flags);
bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
spin_unlock_irqrestore(&ifs->state_lock, flags);
}
static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
{
struct iomap_folio_state *ifs = folio->private;
if (ifs)
ifs_clear_range_dirty(folio, ifs, off, len);
}
static void ifs_set_range_dirty(struct folio *folio,
struct iomap_folio_state *ifs, size_t off, size_t len)
{
struct inode *inode = folio->mapping->host;
unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
unsigned int first_blk = (off >> inode->i_blkbits);
unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
unsigned int nr_blks = last_blk - first_blk + 1;
unsigned long flags;
spin_lock_irqsave(&ifs->state_lock, flags);
bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
spin_unlock_irqrestore(&ifs->state_lock, flags);
}
static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
{
struct iomap_folio_state *ifs = folio->private;
if (ifs)
ifs_set_range_dirty(folio, ifs, off, len);
}
static struct iomap_folio_state *ifs_alloc(struct inode *inode,
struct folio *folio, unsigned int flags)
{
struct iomap_folio_state *ifs = folio->private;
unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
gfp_t gfp;
if (ifs || nr_blocks <= 1)
return ifs;
if (flags & IOMAP_NOWAIT)
gfp = GFP_NOWAIT;
else
gfp = GFP_NOFS | __GFP_NOFAIL;
/*
* ifs->state tracks two sets of state flags when the
* filesystem block size is smaller than the folio size.
* The first state tracks per-block uptodate and the
* second tracks per-block dirty state.
*/
ifs = kzalloc(struct_size(ifs, state,
BITS_TO_LONGS(2 * nr_blocks)), gfp);
if (!ifs)
return ifs;
spin_lock_init(&ifs->state_lock);
if (folio_test_uptodate(folio))
bitmap_set(ifs->state, 0, nr_blocks);
if (folio_test_dirty(folio))
bitmap_set(ifs->state, nr_blocks, nr_blocks);
folio_attach_private(folio, ifs);
return ifs;
}
static void ifs_free(struct folio *folio)
{
struct iomap_folio_state *ifs = folio_detach_private(folio);
if (!ifs)
return;
WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending));
WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
folio_test_uptodate(folio));
kfree(ifs);
}
/*
* Calculate the range inside the folio that we actually need to read.
*/
static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
{
struct iomap_folio_state *ifs = folio->private;
loff_t orig_pos = *pos;
loff_t isize = i_size_read(inode);
unsigned block_bits = inode->i_blkbits;
unsigned block_size = (1 << block_bits);
size_t poff = offset_in_folio(folio, *pos);
size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
unsigned first = poff >> block_bits;
unsigned last = (poff + plen - 1) >> block_bits;
/*
* If the block size is smaller than the page size, we need to check the
* per-block uptodate status and adjust the offset and length if needed
* to avoid reading in already uptodate ranges.
*/
if (ifs) {
unsigned int i;
/* move forward for each leading block marked uptodate */
for (i = first; i <= last; i++) {
if (!ifs_block_is_uptodate(ifs, i))
break;
*pos += block_size;
poff += block_size;
plen -= block_size;
first++;
}
/* truncate len if we find any trailing uptodate block(s) */
for ( ; i <= last; i++) {
if (ifs_block_is_uptodate(ifs, i)) {
plen -= (last - i + 1) * block_size;
last = i - 1;
break;
}
}
}
/*
* If the extent spans the block that contains the i_size, we need to
* handle both halves separately so that we properly zero data in the
* page cache for blocks that are entirely outside of i_size.
*/
if (orig_pos <= isize && orig_pos + length > isize) {
unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
if (first <= end && last > end)
plen -= (last - end) * block_size;
}
*offp = poff;
*lenp = plen;
}
static void iomap_finish_folio_read(struct folio *folio, size_t offset,
size_t len, int error)
{
struct iomap_folio_state *ifs = folio->private;
if (unlikely(error)) {
folio_clear_uptodate(folio);
folio_set_error(folio);
} else {
iomap_set_range_uptodate(folio, offset, len);
}
if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending))
folio_unlock(folio);
}
static void iomap_read_end_io(struct bio *bio)
{
int error = blk_status_to_errno(bio->bi_status);
struct folio_iter fi;
bio_for_each_folio_all(fi, bio)
iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
bio_put(bio);
}
struct iomap_readpage_ctx {
struct folio *cur_folio;
bool cur_folio_in_bio;
struct bio *bio;
struct readahead_control *rac;
};
/**
* iomap_read_inline_data - copy inline data into the page cache
* @iter: iteration structure
* @folio: folio to copy to
*
* Copy the inline data in @iter into @folio and zero out the rest of the folio.
* Only a single IOMAP_INLINE extent is allowed at the end of each file.
* Returns zero for success to complete the read, or the usual negative errno.
*/
static int iomap_read_inline_data(const struct iomap_iter *iter,
struct folio *folio)
{
const struct iomap *iomap = iomap_iter_srcmap(iter);
size_t size = i_size_read(iter->inode) - iomap->offset;
size_t poff = offset_in_page(iomap->offset);
size_t offset = offset_in_folio(folio, iomap->offset);
void *addr;
if (folio_test_uptodate(folio))
return 0;
if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
return -EIO;
if (WARN_ON_ONCE(size > PAGE_SIZE -
offset_in_page(iomap->inline_data)))
return -EIO;
if (WARN_ON_ONCE(size > iomap->length))
return -EIO;
if (offset > 0)
ifs_alloc(iter->inode, folio, iter->flags);
addr = kmap_local_folio(folio, offset);
memcpy(addr, iomap->inline_data, size);
memset(addr + size, 0, PAGE_SIZE - poff - size);
kunmap_local(addr);
iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff);
return 0;
}
static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
loff_t pos)
{
const struct iomap *srcmap = iomap_iter_srcmap(iter);
return srcmap->type != IOMAP_MAPPED ||
(srcmap->flags & IOMAP_F_NEW) ||
pos >= i_size_read(iter->inode);
}
static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
struct iomap_readpage_ctx *ctx, loff_t offset)
{
const struct iomap *iomap = &iter->iomap;
loff_t pos = iter->pos + offset;
loff_t length = iomap_length(iter) - offset;
struct folio *folio = ctx->cur_folio;
struct iomap_folio_state *ifs;
loff_t orig_pos = pos;
size_t poff, plen;
sector_t sector;
if (iomap->type == IOMAP_INLINE)
return iomap_read_inline_data(iter, folio);
/* zero post-eof blocks as the page may be mapped */
ifs = ifs_alloc(iter->inode, folio, iter->flags);
iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
if (plen == 0)
goto done;
if (iomap_block_needs_zeroing(iter, pos)) {
folio_zero_range(folio, poff, plen);
iomap_set_range_uptodate(folio, poff, plen);
goto done;
}
ctx->cur_folio_in_bio = true;
if (ifs)
atomic_add(plen, &ifs->read_bytes_pending);
sector = iomap_sector(iomap, pos);
if (!ctx->bio ||
bio_end_sector(ctx->bio) != sector ||
!bio_add_folio(ctx->bio, folio, plen, poff)) {
gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
gfp_t orig_gfp = gfp;
unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
if (ctx->bio)
submit_bio(ctx->bio);
if (ctx->rac) /* same as readahead_gfp_mask */
gfp |= __GFP_NORETRY | __GFP_NOWARN;
ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
REQ_OP_READ, gfp);
/*
* If the bio_alloc fails, try it again for a single page to
* avoid having to deal with partial page reads. This emulates
* what do_mpage_read_folio does.
*/
if (!ctx->bio) {
ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
orig_gfp);
}
if (ctx->rac)
ctx->bio->bi_opf |= REQ_RAHEAD;
ctx->bio->bi_iter.bi_sector = sector;
ctx->bio->bi_end_io = iomap_read_end_io;
bio_add_folio_nofail(ctx->bio, folio, plen, poff);
}
done:
/*
* Move the caller beyond our range so that it keeps making progress.
* For that, we have to include any leading non-uptodate ranges, but
* we can skip trailing ones as they will be handled in the next
* iteration.
*/
return pos - orig_pos + plen;
}
int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = folio->mapping->host,
.pos = folio_pos(folio),
.len = folio_size(folio),
};
struct iomap_readpage_ctx ctx = {
.cur_folio = folio,
};
int ret;
trace_iomap_readpage(iter.inode, 1);
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
if (ret < 0)
folio_set_error(folio);
if (ctx.bio) {
submit_bio(ctx.bio);
WARN_ON_ONCE(!ctx.cur_folio_in_bio);
} else {
WARN_ON_ONCE(ctx.cur_folio_in_bio);
folio_unlock(folio);
}
/*
* Just like mpage_readahead and block_read_full_folio, we always
* return 0 and just set the folio error flag on errors. This
* should be cleaned up throughout the stack eventually.
*/
return 0;
}
EXPORT_SYMBOL_GPL(iomap_read_folio);
static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
struct iomap_readpage_ctx *ctx)
{
loff_t length = iomap_length(iter);
loff_t done, ret;
for (done = 0; done < length; done += ret) {
if (ctx->cur_folio &&
offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
if (!ctx->cur_folio_in_bio)
folio_unlock(ctx->cur_folio);
ctx->cur_folio = NULL;
}
if (!ctx->cur_folio) {
ctx->cur_folio = readahead_folio(ctx->rac);
ctx->cur_folio_in_bio = false;
}
ret = iomap_readpage_iter(iter, ctx, done);
if (ret <= 0)
return ret;
}
return done;
}
/**
* iomap_readahead - Attempt to read pages from a file.
* @rac: Describes the pages to be read.
* @ops: The operations vector for the filesystem.
*
* This function is for filesystems to call to implement their readahead
* address_space operation.
*
* Context: The @ops callbacks may submit I/O (eg to read the addresses of
* blocks from disc), and may wait for it. The caller may be trying to
* access a different page, and so sleeping excessively should be avoided.
* It may allocate memory, but should avoid costly allocations. This
* function is called with memalloc_nofs set, so allocations will not cause
* the filesystem to be reentered.
*/
void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = rac->mapping->host,
.pos = readahead_pos(rac),
.len = readahead_length(rac),
};
struct iomap_readpage_ctx ctx = {
.rac = rac,
};
trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
while (iomap_iter(&iter, ops) > 0)
iter.processed = iomap_readahead_iter(&iter, &ctx);
if (ctx.bio)
submit_bio(ctx.bio);
if (ctx.cur_folio) {
if (!ctx.cur_folio_in_bio)
folio_unlock(ctx.cur_folio);
}
}
EXPORT_SYMBOL_GPL(iomap_readahead);
/*
* iomap_is_partially_uptodate checks whether blocks within a folio are
* uptodate or not.
*
* Returns true if all blocks which correspond to the specified part
* of the folio are uptodate.
*/
bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
{
struct iomap_folio_state *ifs = folio->private;
struct inode *inode = folio->mapping->host;
unsigned first, last, i;
if (!ifs)
return false;
/* Caller's range may extend past the end of this folio */
count = min(folio_size(folio) - from, count);
/* First and last blocks in range within folio */
first = from >> inode->i_blkbits;
last = (from + count - 1) >> inode->i_blkbits;
for (i = first; i <= last; i++)
if (!ifs_block_is_uptodate(ifs, i))
return false;
return true;
}
EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
/**
* iomap_get_folio - get a folio reference for writing
* @iter: iteration structure
* @pos: start offset of write
* @len: Suggested size of folio to create.
*
* Returns a locked reference to the folio at @pos, or an error pointer if the
* folio could not be obtained.
*/
struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
{
fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
if (iter->flags & IOMAP_NOWAIT)
fgp |= FGP_NOWAIT;
fgp |= fgf_set_order(len);
return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
fgp, mapping_gfp_mask(iter->inode->i_mapping));
}
EXPORT_SYMBOL_GPL(iomap_get_folio);
bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
{
trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
folio_size(folio));
/*
* If the folio is dirty, we refuse to release our metadata because
* it may be partially dirty. Once we track per-block dirty state,
* we can release the metadata if every block is dirty.
*/
if (folio_test_dirty(folio))
return false;
ifs_free(folio);
return true;
}
EXPORT_SYMBOL_GPL(iomap_release_folio);
void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
{
trace_iomap_invalidate_folio(folio->mapping->host,
folio_pos(folio) + offset, len);
/*
* If we're invalidating the entire folio, clear the dirty state
* from it and release it to avoid unnecessary buildup of the LRU.
*/
if (offset == 0 && len == folio_size(folio)) {
WARN_ON_ONCE(folio_test_writeback(folio));
folio_cancel_dirty(folio);
ifs_free(folio);
}
}
EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
{
struct inode *inode = mapping->host;
size_t len = folio_size(folio);
ifs_alloc(inode, folio, 0);
iomap_set_range_dirty(folio, 0, len);
return filemap_dirty_folio(mapping, folio);
}
EXPORT_SYMBOL_GPL(iomap_dirty_folio);
static void
iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
{
loff_t i_size = i_size_read(inode);
/*
* Only truncate newly allocated pages beyoned EOF, even if the
* write started inside the existing inode size.
*/
if (pos + len > i_size)
truncate_pagecache_range(inode, max(pos, i_size),
pos + len - 1);
}
static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
size_t poff, size_t plen, const struct iomap *iomap)
{
struct bio_vec bvec;
struct bio bio;
bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
bio_add_folio_nofail(&bio, folio, plen, poff);
return submit_bio_wait(&bio);
}
static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
size_t len, struct folio *folio)
{
const struct iomap *srcmap = iomap_iter_srcmap(iter);
struct iomap_folio_state *ifs;
loff_t block_size = i_blocksize(iter->inode);
loff_t block_start = round_down(pos, block_size);
loff_t block_end = round_up(pos + len, block_size);
unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
size_t from = offset_in_folio(folio, pos), to = from + len;
size_t poff, plen;
/*
* If the write or zeroing completely overlaps the current folio, then
* entire folio will be dirtied so there is no need for
* per-block state tracking structures to be attached to this folio.
* For the unshare case, we must read in the ondisk contents because we
* are not changing pagecache contents.
*/
if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
pos + len >= folio_pos(folio) + folio_size(folio))
return 0;
ifs = ifs_alloc(iter->inode, folio, iter->flags);
if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
return -EAGAIN;
if (folio_test_uptodate(folio))
return 0;
folio_clear_error(folio);
do {
iomap_adjust_read_range(iter->inode, folio, &block_start,
block_end - block_start, &poff, &plen);
if (plen == 0)
break;
if (!(iter->flags & IOMAP_UNSHARE) &&
(from <= poff || from >= poff + plen) &&
(to <= poff || to >= poff + plen))
continue;
if (iomap_block_needs_zeroing(iter, block_start)) {
if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
return -EIO;
folio_zero_segments(folio, poff, from, to, poff + plen);
} else {
int status;
if (iter->flags & IOMAP_NOWAIT)
return -EAGAIN;
status = iomap_read_folio_sync(block_start, folio,
poff, plen, srcmap);
if (status)
return status;
}
iomap_set_range_uptodate(folio, poff, plen);
} while ((block_start += plen) < block_end);
return 0;
}
static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
size_t len)
{
const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
if (folio_ops && folio_ops->get_folio)
return folio_ops->get_folio(iter, pos, len);
else
return iomap_get_folio(iter, pos, len);
}
static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
struct folio *folio)
{
const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
if (folio_ops && folio_ops->put_folio) {
folio_ops->put_folio(iter->inode, pos, ret, folio);
} else {
folio_unlock(folio);
folio_put(folio);
}
}
static int iomap_write_begin_inline(const struct iomap_iter *iter,
struct folio *folio)
{
/* needs more work for the tailpacking case; disable for now */
if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
return -EIO;
return iomap_read_inline_data(iter, folio);
}
static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
size_t len, struct folio **foliop)
{
const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
const struct iomap *srcmap = iomap_iter_srcmap(iter);
struct folio *folio;
int status = 0;
BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
if (srcmap != &iter->iomap)
BUG_ON(pos + len > srcmap->offset + srcmap->length);
if (fatal_signal_pending(current))
return -EINTR;
if (!mapping_large_folio_support(iter->inode->i_mapping))
len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
folio = __iomap_get_folio(iter, pos, len);
if (IS_ERR(folio))
return PTR_ERR(folio);
/*
* Now we have a locked folio, before we do anything with it we need to
* check that the iomap we have cached is not stale. The inode extent
* mapping can change due to concurrent IO in flight (e.g.
* IOMAP_UNWRITTEN state can change and memory reclaim could have
* reclaimed a previously partially written page at this index after IO
* completion before this write reaches this file offset) and hence we
* could do the wrong thing here (zero a page range incorrectly or fail
* to zero) and corrupt data.
*/
if (folio_ops && folio_ops->iomap_valid) {
bool iomap_valid = folio_ops->iomap_valid(iter->inode,
&iter->iomap);
if (!iomap_valid) {
iter->iomap.flags |= IOMAP_F_STALE;
status = 0;
goto out_unlock;
}
}
if (pos + len > folio_pos(folio) + folio_size(folio))
len = folio_pos(folio) + folio_size(folio) - pos;
if (srcmap->type == IOMAP_INLINE)
status = iomap_write_begin_inline(iter, folio);
else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
else
status = __iomap_write_begin(iter, pos, len, folio);
if (unlikely(status))
goto out_unlock;
*foliop = folio;
return 0;
out_unlock:
__iomap_put_folio(iter, pos, 0, folio);
iomap_write_failed(iter->inode, pos, len);
return status;
}
static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
size_t copied, struct folio *folio)
{
flush_dcache_folio(folio);
/*
* The blocks that were entirely written will now be uptodate, so we
* don't have to worry about a read_folio reading them and overwriting a
* partial write. However, if we've encountered a short write and only
* partially written into a block, it will not be marked uptodate, so a
* read_folio might come in and destroy our partial write.
*
* Do the simplest thing and just treat any short write to a
* non-uptodate page as a zero-length write, and force the caller to
* redo the whole thing.
*/
if (unlikely(copied < len && !folio_test_uptodate(folio)))
return 0;
iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
filemap_dirty_folio(inode->i_mapping, folio);
return copied;
}
static size_t iomap_write_end_inline(const struct iomap_iter *iter,
struct folio *folio, loff_t pos, size_t copied)
{
const struct iomap *iomap = &iter->iomap;
void *addr;
WARN_ON_ONCE(!folio_test_uptodate(folio));
BUG_ON(!iomap_inline_data_valid(iomap));
flush_dcache_folio(folio);
addr = kmap_local_folio(folio, pos);
memcpy(iomap_inline_data(iomap, pos), addr, copied);
kunmap_local(addr);
mark_inode_dirty(iter->inode);
return copied;
}
/* Returns the number of bytes copied. May be 0. Cannot be an errno. */
static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
size_t copied, struct folio *folio)
{
const struct iomap *srcmap = iomap_iter_srcmap(iter);
loff_t old_size = iter->inode->i_size;
size_t ret;
if (srcmap->type == IOMAP_INLINE) {
ret = iomap_write_end_inline(iter, folio, pos, copied);
} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
copied, &folio->page, NULL);
} else {
ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
}
/*
* Update the in-memory inode size after copying the data into the page
* cache. It's up to the file system to write the updated size to disk,
* preferably after I/O completion so that no stale data is exposed.
*/
if (pos + ret > old_size) {
i_size_write(iter->inode, pos + ret);
iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
}
__iomap_put_folio(iter, pos, ret, folio);
if (old_size < pos)
pagecache_isize_extended(iter->inode, old_size, pos);
if (ret < len)
iomap_write_failed(iter->inode, pos + ret, len - ret);
return ret;
}
static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
{
loff_t length = iomap_length(iter);
size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
loff_t pos = iter->pos;
ssize_t written = 0;
long status = 0;
struct address_space *mapping = iter->inode->i_mapping;
unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
do {
struct folio *folio;
size_t offset; /* Offset into folio */
size_t bytes; /* Bytes to write to folio */
size_t copied; /* Bytes copied from user */
bytes = iov_iter_count(i);
retry:
offset = pos & (chunk - 1);
bytes = min(chunk - offset, bytes);
status = balance_dirty_pages_ratelimited_flags(mapping,
bdp_flags);
if (unlikely(status))
break;
if (bytes > length)
bytes = length;
/*
* Bring in the user page that we'll copy from _first_.
* Otherwise there's a nasty deadlock on copying from the
* same page as we're writing to, without it being marked
* up-to-date.
*
* For async buffered writes the assumption is that the user
* page has already been faulted in. This can be optimized by
* faulting the user page.
*/
if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
status = -EFAULT;
break;
}
status = iomap_write_begin(iter, pos, bytes, &folio);
if (unlikely(status))
break;
if (iter->iomap.flags & IOMAP_F_STALE)
break;
offset = offset_in_folio(folio, pos);
if (bytes > folio_size(folio) - offset)
bytes = folio_size(folio) - offset;
if (mapping_writably_mapped(mapping))
flush_dcache_folio(folio);
copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
status = iomap_write_end(iter, pos, bytes, copied, folio);
if (unlikely(copied != status))
iov_iter_revert(i, copied - status);
cond_resched();
if (unlikely(status == 0)) {
/*
* A short copy made iomap_write_end() reject the
* thing entirely. Might be memory poisoning
* halfway through, might be a race with munmap,
* might be severe memory pressure.
*/
if (chunk > PAGE_SIZE)
chunk /= 2;
if (copied) {
bytes = copied;
goto retry;
}
} else {
pos += status;
written += status;
length -= status;
}
} while (iov_iter_count(i) && length);
if (status == -EAGAIN) {
iov_iter_revert(i, written);
return -EAGAIN;
}
return written ? written : status;
}
ssize_t
iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = iocb->ki_filp->f_mapping->host,
.pos = iocb->ki_pos,
.len = iov_iter_count(i),
.flags = IOMAP_WRITE,
};
ssize_t ret;
if (iocb->ki_flags & IOCB_NOWAIT)
iter.flags |= IOMAP_NOWAIT;
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_write_iter(&iter, i);
if (unlikely(iter.pos == iocb->ki_pos))
return ret;
ret = iter.pos - iocb->ki_pos;
iocb->ki_pos = iter.pos;
return ret;
}
EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
static int iomap_write_delalloc_ifs_punch(struct inode *inode,
struct folio *folio, loff_t start_byte, loff_t end_byte,
iomap_punch_t punch)
{
unsigned int first_blk, last_blk, i;
loff_t last_byte;
u8 blkbits = inode->i_blkbits;
struct iomap_folio_state *ifs;
int ret = 0;
/*
* When we have per-block dirty tracking, there can be
* blocks within a folio which are marked uptodate
* but not dirty. In that case it is necessary to punch
* out such blocks to avoid leaking any delalloc blocks.
*/
ifs = folio->private;
if (!ifs)
return ret;
last_byte = min_t(loff_t, end_byte - 1,
folio_pos(folio) + folio_size(folio) - 1);
first_blk = offset_in_folio(folio, start_byte) >> blkbits;
last_blk = offset_in_folio(folio, last_byte) >> blkbits;
for (i = first_blk; i <= last_blk; i++) {
if (!ifs_block_is_dirty(folio, ifs, i)) {
ret = punch(inode, folio_pos(folio) + (i << blkbits),
1 << blkbits);
if (ret)
return ret;
}
}
return ret;
}
static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
iomap_punch_t punch)
{
int ret = 0;
if (!folio_test_dirty(folio))
return ret;
/* if dirty, punch up to offset */
if (start_byte > *punch_start_byte) {
ret = punch(inode, *punch_start_byte,
start_byte - *punch_start_byte);
if (ret)
return ret;
}
/* Punch non-dirty blocks within folio */
ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
end_byte, punch);
if (ret)
return ret;
/*
* Make sure the next punch start is correctly bound to
* the end of this data range, not the end of the folio.
*/
*punch_start_byte = min_t(loff_t, end_byte,
folio_pos(folio) + folio_size(folio));
return ret;
}
/*
* Scan the data range passed to us for dirty page cache folios. If we find a
* dirty folio, punch out the preceding range and update the offset from which
* the next punch will start from.
*
* We can punch out storage reservations under clean pages because they either
* contain data that has been written back - in which case the delalloc punch
* over that range is a no-op - or they have been read faults in which case they
* contain zeroes and we can remove the delalloc backing range and any new
* writes to those pages will do the normal hole filling operation...
*
* This makes the logic simple: we only need to keep the delalloc extents only
* over the dirty ranges of the page cache.
*
* This function uses [start_byte, end_byte) intervals (i.e. open ended) to
* simplify range iterations.
*/
static int iomap_write_delalloc_scan(struct inode *inode,
loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
iomap_punch_t punch)
{
while (start_byte < end_byte) {
struct folio *folio;
int ret;
/* grab locked page */
folio = filemap_lock_folio(inode->i_mapping,
start_byte >> PAGE_SHIFT);
if (IS_ERR(folio)) {
start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
PAGE_SIZE;
continue;
}
ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
start_byte, end_byte, punch);
if (ret) {
folio_unlock(folio);
folio_put(folio);
return ret;
}
/* move offset to start of next folio in range */
start_byte = folio_next_index(folio) << PAGE_SHIFT;
folio_unlock(folio);
folio_put(folio);
}
return 0;
}
/*
* Punch out all the delalloc blocks in the range given except for those that
* have dirty data still pending in the page cache - those are going to be
* written and so must still retain the delalloc backing for writeback.
*
* As we are scanning the page cache for data, we don't need to reimplement the
* wheel - mapping_seek_hole_data() does exactly what we need to identify the
* start and end of data ranges correctly even for sub-folio block sizes. This
* byte range based iteration is especially convenient because it means we
* don't have to care about variable size folios, nor where the start or end of
* the data range lies within a folio, if they lie within the same folio or even
* if there are multiple discontiguous data ranges within the folio.
*
* It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
* can return data ranges that exist in the cache beyond EOF. e.g. a page fault
* spanning EOF will initialise the post-EOF data to zeroes and mark it up to
* date. A write page fault can then mark it dirty. If we then fail a write()
* beyond EOF into that up to date cached range, we allocate a delalloc block
* beyond EOF and then have to punch it out. Because the range is up to date,
* mapping_seek_hole_data() will return it, and we will skip the punch because
* the folio is dirty. THis is incorrect - we always need to punch out delalloc
* beyond EOF in this case as writeback will never write back and covert that
* delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
* resulting in always punching out the range from the EOF to the end of the
* range the iomap spans.
*
* Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
* matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
* returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
* returns the end of the data range (data_end). Using closed intervals would
* require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
* the code to subtle off-by-one bugs....
*/
static int iomap_write_delalloc_release(struct inode *inode,
loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
{
loff_t punch_start_byte = start_byte;
loff_t scan_end_byte = min(i_size_read(inode), end_byte);
int error = 0;
/*
* Lock the mapping to avoid races with page faults re-instantiating
* folios and dirtying them via ->page_mkwrite whilst we walk the
* cache and perform delalloc extent removal. Failing to do this can
* leave dirty pages with no space reservation in the cache.
*/
filemap_invalidate_lock(inode->i_mapping);
while (start_byte < scan_end_byte) {
loff_t data_end;
start_byte = mapping_seek_hole_data(inode->i_mapping,
start_byte, scan_end_byte, SEEK_DATA);
/*
* If there is no more data to scan, all that is left is to
* punch out the remaining range.
*/
if (start_byte == -ENXIO || start_byte == scan_end_byte)
break;
if (start_byte < 0) {
error = start_byte;
goto out_unlock;
}
WARN_ON_ONCE(start_byte < punch_start_byte);
WARN_ON_ONCE(start_byte > scan_end_byte);
/*
* We find the end of this contiguous cached data range by
* seeking from start_byte to the beginning of the next hole.
*/
data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
scan_end_byte, SEEK_HOLE);
if (data_end < 0) {
error = data_end;
goto out_unlock;
}
WARN_ON_ONCE(data_end <= start_byte);
WARN_ON_ONCE(data_end > scan_end_byte);
error = iomap_write_delalloc_scan(inode, &punch_start_byte,
start_byte, data_end, punch);
if (error)
goto out_unlock;
/* The next data search starts at the end of this one. */
start_byte = data_end;
}
if (punch_start_byte < end_byte)
error = punch(inode, punch_start_byte,
end_byte - punch_start_byte);
out_unlock:
filemap_invalidate_unlock(inode->i_mapping);
return error;
}
/*
* When a short write occurs, the filesystem may need to remove reserved space
* that was allocated in ->iomap_begin from it's ->iomap_end method. For
* filesystems that use delayed allocation, we need to punch out delalloc
* extents from the range that are not dirty in the page cache. As the write can
* race with page faults, there can be dirty pages over the delalloc extent
* outside the range of a short write but still within the delalloc extent
* allocated for this iomap.
*
* This function uses [start_byte, end_byte) intervals (i.e. open ended) to
* simplify range iterations.
*
* The punch() callback *must* only punch delalloc extents in the range passed
* to it. It must skip over all other types of extents in the range and leave
* them completely unchanged. It must do this punch atomically with respect to
* other extent modifications.
*
* The punch() callback may be called with a folio locked to prevent writeback
* extent allocation racing at the edge of the range we are currently punching.
* The locked folio may or may not cover the range being punched, so it is not
* safe for the punch() callback to lock folios itself.
*
* Lock order is:
*
* inode->i_rwsem (shared or exclusive)
* inode->i_mapping->invalidate_lock (exclusive)
* folio_lock()
* ->punch
* internal filesystem allocation lock
*/
int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
struct iomap *iomap, loff_t pos, loff_t length,
ssize_t written, iomap_punch_t punch)
{
loff_t start_byte;
loff_t end_byte;
unsigned int blocksize = i_blocksize(inode);
if (iomap->type != IOMAP_DELALLOC)
return 0;
/* If we didn't reserve the blocks, we're not allowed to punch them. */
if (!(iomap->flags & IOMAP_F_NEW))
return 0;
/*
* start_byte refers to the first unused block after a short write. If
* nothing was written, round offset down to point at the first block in
* the range.
*/
if (unlikely(!written))
start_byte = round_down(pos, blocksize);
else
start_byte = round_up(pos + written, blocksize);
end_byte = round_up(pos + length, blocksize);
/* Nothing to do if we've written the entire delalloc extent */
if (start_byte >= end_byte)
return 0;
return iomap_write_delalloc_release(inode, start_byte, end_byte,
punch);
}
EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
static loff_t iomap_unshare_iter(struct iomap_iter *iter)
{
struct iomap *iomap = &iter->iomap;
const struct iomap *srcmap = iomap_iter_srcmap(iter);
loff_t pos = iter->pos;
loff_t length = iomap_length(iter);
loff_t written = 0;
/* don't bother with blocks that are not shared to start with */
if (!(iomap->flags & IOMAP_F_SHARED))
return length;
/* don't bother with holes or unwritten extents */
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
return length;
do {
struct folio *folio;
int status;
size_t offset;
size_t bytes = min_t(u64, SIZE_MAX, length);
status = iomap_write_begin(iter, pos, bytes, &folio);
if (unlikely(status))
return status;
if (iomap->flags & IOMAP_F_STALE)
break;
offset = offset_in_folio(folio, pos);
if (bytes > folio_size(folio) - offset)
bytes = folio_size(folio) - offset;
bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
if (WARN_ON_ONCE(bytes == 0))
return -EIO;
cond_resched();
pos += bytes;
written += bytes;
length -= bytes;
balance_dirty_pages_ratelimited(iter->inode->i_mapping);
} while (length > 0);
return written;
}
int
iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = inode,
.pos = pos,
.len = len,
.flags = IOMAP_WRITE | IOMAP_UNSHARE,
};
int ret;
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_unshare_iter(&iter);
return ret;
}
EXPORT_SYMBOL_GPL(iomap_file_unshare);
static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
{
const struct iomap *srcmap = iomap_iter_srcmap(iter);
loff_t pos = iter->pos;
loff_t length = iomap_length(iter);
loff_t written = 0;
/* already zeroed? we're done. */
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
return length;
do {
struct folio *folio;
int status;
size_t offset;
size_t bytes = min_t(u64, SIZE_MAX, length);
status = iomap_write_begin(iter, pos, bytes, &folio);
if (status)
return status;
if (iter->iomap.flags & IOMAP_F_STALE)
break;
offset = offset_in_folio(folio, pos);
if (bytes > folio_size(folio) - offset)
bytes = folio_size(folio) - offset;
folio_zero_range(folio, offset, bytes);
folio_mark_accessed(folio);
bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
if (WARN_ON_ONCE(bytes == 0))
return -EIO;
pos += bytes;
length -= bytes;
written += bytes;
} while (length > 0);
if (did_zero)
*did_zero = true;
return written;
}
int
iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = inode,
.pos = pos,
.len = len,
.flags = IOMAP_ZERO,
};
int ret;
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_zero_iter(&iter, did_zero);
return ret;
}
EXPORT_SYMBOL_GPL(iomap_zero_range);
int
iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
const struct iomap_ops *ops)
{
unsigned int blocksize = i_blocksize(inode);
unsigned int off = pos & (blocksize - 1);
/* Block boundary? Nothing to do */
if (!off)
return 0;
return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
}
EXPORT_SYMBOL_GPL(iomap_truncate_page);
static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
struct folio *folio)
{
loff_t length = iomap_length(iter);
int ret;
if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
ret = __block_write_begin_int(folio, iter->pos, length, NULL,
&iter->iomap);
if (ret)
return ret;
block_commit_write(&folio->page, 0, length);
} else {
WARN_ON_ONCE(!folio_test_uptodate(folio));
folio_mark_dirty(folio);
}
return length;
}
vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
{
struct iomap_iter iter = {
.inode = file_inode(vmf->vma->vm_file),
.flags = IOMAP_WRITE | IOMAP_FAULT,
};
struct folio *folio = page_folio(vmf->page);
ssize_t ret;
folio_lock(folio);
ret = folio_mkwrite_check_truncate(folio, iter.inode);
if (ret < 0)
goto out_unlock;
iter.pos = folio_pos(folio);
iter.len = ret;
while ((ret = iomap_iter(&iter, ops)) > 0)
iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
if (ret < 0)
goto out_unlock;
folio_wait_stable(folio);
return VM_FAULT_LOCKED;
out_unlock:
folio_unlock(folio);
return vmf_fs_error(ret);
}
EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
size_t len, int error)
{
struct iomap_folio_state *ifs = folio->private;
if (error) {
folio_set_error(folio);
mapping_set_error(inode->i_mapping, error);
}
WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
folio_end_writeback(folio);
}
/*
* We're now finished for good with this ioend structure. Update the page
* state, release holds on bios, and finally free up memory. Do not use the
* ioend after this.
*/
static u32
iomap_finish_ioend(struct iomap_ioend *ioend, int error)
{
struct inode *inode = ioend->io_inode;
struct bio *bio = &ioend->io_inline_bio;
struct bio *last = ioend->io_bio, *next;
u64 start = bio->bi_iter.bi_sector;
loff_t offset = ioend->io_offset;
bool quiet = bio_flagged(bio, BIO_QUIET);
u32 folio_count = 0;
for (bio = &ioend->io_inline_bio; bio; bio = next) {
struct folio_iter fi;
/*
* For the last bio, bi_private points to the ioend, so we
* need to explicitly end the iteration here.
*/
if (bio == last)
next = NULL;
else
next = bio->bi_private;
/* walk all folios in bio, ending page IO on them */
bio_for_each_folio_all(fi, bio) {
iomap_finish_folio_write(inode, fi.folio, fi.length,
error);
folio_count++;
}
bio_put(bio);
}
/* The ioend has been freed by bio_put() */
if (unlikely(error && !quiet)) {
printk_ratelimited(KERN_ERR
"%s: writeback error on inode %lu, offset %lld, sector %llu",
inode->i_sb->s_id, inode->i_ino, offset, start);
}
return folio_count;
}
/*
* Ioend completion routine for merged bios. This can only be called from task
* contexts as merged ioends can be of unbound length. Hence we have to break up
* the writeback completions into manageable chunks to avoid long scheduler
* holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
* good batch processing throughput without creating adverse scheduler latency
* conditions.
*/
void
iomap_finish_ioends(struct iomap_ioend *ioend, int error)
{
struct list_head tmp;
u32 completions;
might_sleep();
list_replace_init(&ioend->io_list, &tmp);
completions = iomap_finish_ioend(ioend, error);
while (!list_empty(&tmp)) {
if (completions > IOEND_BATCH_SIZE * 8) {
cond_resched();
completions = 0;
}
ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
list_del_init(&ioend->io_list);
completions += iomap_finish_ioend(ioend, error);
}
}
EXPORT_SYMBOL_GPL(iomap_finish_ioends);
/*
* We can merge two adjacent ioends if they have the same set of work to do.
*/
static bool
iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
{
if (ioend->io_bio->bi_status != next->io_bio->bi_status)
return false;
if ((ioend->io_flags & IOMAP_F_SHARED) ^
(next->io_flags & IOMAP_F_SHARED))
return false;
if ((ioend->io_type == IOMAP_UNWRITTEN) ^
(next->io_type == IOMAP_UNWRITTEN))
return false;
if (ioend->io_offset + ioend->io_size != next->io_offset)
return false;
/*
* Do not merge physically discontiguous ioends. The filesystem
* completion functions will have to iterate the physical
* discontiguities even if we merge the ioends at a logical level, so
* we don't gain anything by merging physical discontiguities here.
*
* We cannot use bio->bi_iter.bi_sector here as it is modified during
* submission so does not point to the start sector of the bio at
* completion.
*/
if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
return false;
return true;
}
void
iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
{
struct iomap_ioend *next;
INIT_LIST_HEAD(&ioend->io_list);
while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
io_list))) {
if (!iomap_ioend_can_merge(ioend, next))
break;
list_move_tail(&next->io_list, &ioend->io_list);
ioend->io_size += next->io_size;
}
}
EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
static int
iomap_ioend_compare(void *priv, const struct list_head *a,
const struct list_head *b)
{
struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
if (ia->io_offset < ib->io_offset)
return -1;
if (ia->io_offset > ib->io_offset)
return 1;
return 0;
}
void
iomap_sort_ioends(struct list_head *ioend_list)
{
list_sort(NULL, ioend_list, iomap_ioend_compare);
}
EXPORT_SYMBOL_GPL(iomap_sort_ioends);
static void iomap_writepage_end_bio(struct bio *bio)
{
struct iomap_ioend *ioend = bio->bi_private;
iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
}
/*
* Submit the final bio for an ioend.
*
* If @error is non-zero, it means that we have a situation where some part of
* the submission process has failed after we've marked pages for writeback
* and unlocked them. In this situation, we need to fail the bio instead of
* submitting it. This typically only happens on a filesystem shutdown.
*/
static int
iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
int error)
{
ioend->io_bio->bi_private = ioend;
ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
if (wpc->ops->prepare_ioend)
error = wpc->ops->prepare_ioend(ioend, error);
if (error) {
/*
* If we're failing the IO now, just mark the ioend with an
* error and finish it. This will run IO completion immediately
* as there is only one reference to the ioend at this point in
* time.
*/
ioend->io_bio->bi_status = errno_to_blk_status(error);
bio_endio(ioend->io_bio);
return error;
}
submit_bio(ioend->io_bio);
return 0;
}
static struct iomap_ioend *
iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
loff_t offset, sector_t sector, struct writeback_control *wbc)
{
struct iomap_ioend *ioend;
struct bio *bio;
bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
REQ_OP_WRITE | wbc_to_write_flags(wbc),
GFP_NOFS, &iomap_ioend_bioset);
bio->bi_iter.bi_sector = sector;
wbc_init_bio(wbc, bio);
ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
INIT_LIST_HEAD(&ioend->io_list);
ioend->io_type = wpc->iomap.type;
ioend->io_flags = wpc->iomap.flags;
ioend->io_inode = inode;
ioend->io_size = 0;
ioend->io_folios = 0;
ioend->io_offset = offset;
ioend->io_bio = bio;
ioend->io_sector = sector;
return ioend;
}
/*
* Allocate a new bio, and chain the old bio to the new one.
*
* Note that we have to perform the chaining in this unintuitive order
* so that the bi_private linkage is set up in the right direction for the
* traversal in iomap_finish_ioend().
*/
static struct bio *
iomap_chain_bio(struct bio *prev)
{
struct bio *new;
new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
bio_clone_blkg_association(new, prev);
new->bi_iter.bi_sector = bio_end_sector(prev);
bio_chain(prev, new);
bio_get(prev); /* for iomap_finish_ioend */
submit_bio(prev);
return new;
}
static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
sector_t sector)
{
if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
(wpc->ioend->io_flags & IOMAP_F_SHARED))
return false;
if (wpc->iomap.type != wpc->ioend->io_type)
return false;
if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
return false;
if (sector != bio_end_sector(wpc->ioend->io_bio))
return false;
/*
* Limit ioend bio chain lengths to minimise IO completion latency. This
* also prevents long tight loops ending page writeback on all the
* folios in the ioend.
*/
if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
return false;
return true;
}
/*
* Test to see if we have an existing ioend structure that we could append to
* first; otherwise finish off the current ioend and start another.
*/
static void
iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
struct writeback_control *wbc, struct list_head *iolist)
{
sector_t sector = iomap_sector(&wpc->iomap, pos);
unsigned len = i_blocksize(inode);
size_t poff = offset_in_folio(folio, pos);
if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
if (wpc->ioend)
list_add(&wpc->ioend->io_list, iolist);
wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
}
if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
}
if (ifs)
atomic_add(len, &ifs->write_bytes_pending);
wpc->ioend->io_size += len;
wbc_account_cgroup_owner(wbc, &folio->page, len);
}
/*
* We implement an immediate ioend submission policy here to avoid needing to
* chain multiple ioends and hence nest mempool allocations which can violate
* the forward progress guarantees we need to provide. The current ioend we're
* adding blocks to is cached in the writepage context, and if the new block
* doesn't append to the cached ioend, it will create a new ioend and cache that
* instead.
*
* If a new ioend is created and cached, the old ioend is returned and queued
* locally for submission once the entire page is processed or an error has been
* detected. While ioends are submitted immediately after they are completed,
* batching optimisations are provided by higher level block plugging.
*
* At the end of a writeback pass, there will be a cached ioend remaining on the
* writepage context that the caller will need to submit.
*/
static int
iomap_writepage_map(struct iomap_writepage_ctx *wpc,
struct writeback_control *wbc, struct inode *inode,
struct folio *folio, u64 end_pos)
{
struct iomap_folio_state *ifs = folio->private;
struct iomap_ioend *ioend, *next;
unsigned len = i_blocksize(inode);
unsigned nblocks = i_blocks_per_folio(inode, folio);
u64 pos = folio_pos(folio);
int error = 0, count = 0, i;
LIST_HEAD(submit_list);
WARN_ON_ONCE(end_pos <= pos);
if (!ifs && nblocks > 1) {
ifs = ifs_alloc(inode, folio, 0);
iomap_set_range_dirty(folio, 0, end_pos - pos);
}
WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
/*
* Walk through the folio to find areas to write back. If we
* run off the end of the current map or find the current map
* invalid, grab a new one.
*/
for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
if (ifs && !ifs_block_is_dirty(folio, ifs, i))
continue;
error = wpc->ops->map_blocks(wpc, inode, pos);
if (error)
break;
trace_iomap_writepage_map(inode, &wpc->iomap);
if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
continue;
if (wpc->iomap.type == IOMAP_HOLE)
continue;
iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
&submit_list);
count++;
}
if (count)
wpc->ioend->io_folios++;
WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
WARN_ON_ONCE(!folio_test_locked(folio));
WARN_ON_ONCE(folio_test_writeback(folio));
WARN_ON_ONCE(folio_test_dirty(folio));
/*
* We cannot cancel the ioend directly here on error. We may have
* already set other pages under writeback and hence we have to run I/O
* completion to mark the error state of the pages under writeback
* appropriately.
*/
if (unlikely(error)) {
/*
* Let the filesystem know what portion of the current page
* failed to map. If the page hasn't been added to ioend, it
* won't be affected by I/O completion and we must unlock it
* now.
*/
if (wpc->ops->discard_folio)
wpc->ops->discard_folio(folio, pos);
if (!count) {
folio_unlock(folio);
goto done;
}
}
/*
* We can have dirty bits set past end of file in page_mkwrite path
* while mapping the last partial folio. Hence it's better to clear
* all the dirty bits in the folio here.
*/
iomap_clear_range_dirty(folio, 0, folio_size(folio));
folio_start_writeback(folio);
folio_unlock(folio);
/*
* Preserve the original error if there was one; catch
* submission errors here and propagate into subsequent ioend
* submissions.
*/
list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
int error2;
list_del_init(&ioend->io_list);
error2 = iomap_submit_ioend(wpc, ioend, error);
if (error2 && !error)
error = error2;
}
/*
* We can end up here with no error and nothing to write only if we race
* with a partial page truncate on a sub-page block sized filesystem.
*/
if (!count)
folio_end_writeback(folio);
done:
mapping_set_error(inode->i_mapping, error);
return error;
}
/*
* Write out a dirty page.
*
* For delalloc space on the page, we need to allocate space and flush it.
* For unwritten space on the page, we need to start the conversion to
* regular allocated space.
*/
static int iomap_do_writepage(struct folio *folio,
struct writeback_control *wbc, void *data)
{
struct iomap_writepage_ctx *wpc = data;
struct inode *inode = folio->mapping->host;
u64 end_pos, isize;
trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
/*
* Refuse to write the folio out if we're called from reclaim context.
*
* This avoids stack overflows when called from deeply used stacks in
* random callers for direct reclaim or memcg reclaim. We explicitly
* allow reclaim from kswapd as the stack usage there is relatively low.
*
* This should never happen except in the case of a VM regression so
* warn about it.
*/
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
PF_MEMALLOC))
goto redirty;
/*
* Is this folio beyond the end of the file?
*
* The folio index is less than the end_index, adjust the end_pos
* to the highest offset that this folio should represent.
* -----------------------------------------------------
* | file mapping | <EOF> |
* -----------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | |
* ^--------------------------------^----------|--------
* | desired writeback range | see else |
* ---------------------------------^------------------|
*/
isize = i_size_read(inode);
end_pos = folio_pos(folio) + folio_size(folio);
if (end_pos > isize) {
/*
* Check whether the page to write out is beyond or straddles
* i_size or not.
* -------------------------------------------------------
* | file mapping | <EOF> |
* -------------------------------------------------------
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
* ^--------------------------------^-----------|---------
* | | Straddles |
* ---------------------------------^-----------|--------|
*/
size_t poff = offset_in_folio(folio, isize);
pgoff_t end_index = isize >> PAGE_SHIFT;
/*
* Skip the page if it's fully outside i_size, e.g.
* due to a truncate operation that's in progress. We've
* cleaned this page and truncate will finish things off for
* us.
*
* Note that the end_index is unsigned long. If the given
* offset is greater than 16TB on a 32-bit system then if we
* checked if the page is fully outside i_size with
* "if (page->index >= end_index + 1)", "end_index + 1" would
* overflow and evaluate to 0. Hence this page would be
* redirtied and written out repeatedly, which would result in
* an infinite loop; the user program performing this operation
* would hang. Instead, we can detect this situation by
* checking if the page is totally beyond i_size or if its
* offset is just equal to the EOF.
*/
if (folio->index > end_index ||
(folio->index == end_index && poff == 0))
goto unlock;
/*
* The page straddles i_size. It must be zeroed out on each
* and every writepage invocation because it may be mmapped.
* "A file is mapped in multiples of the page size. For a file
* that is not a multiple of the page size, the remaining
* memory is zeroed when mapped, and writes to that region are
* not written out to the file."
*/
folio_zero_segment(folio, poff, folio_size(folio));
end_pos = isize;
}
return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
redirty:
folio_redirty_for_writepage(wbc, folio);
unlock:
folio_unlock(folio);
return 0;
}
int
iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
struct iomap_writepage_ctx *wpc,
const struct iomap_writeback_ops *ops)
{
int ret;
wpc->ops = ops;
ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
if (!wpc->ioend)
return ret;
return iomap_submit_ioend(wpc, wpc->ioend, ret);
}
EXPORT_SYMBOL_GPL(iomap_writepages);
static int __init iomap_init(void)
{
return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
offsetof(struct iomap_ioend, io_inline_bio),
BIOSET_NEED_BVECS);
}
fs_initcall(iomap_init);