linux/drivers/mmc/host/omap_hsmmc.c
Kevin Hilman a791daa153 mmc: OMAP HS-MMC: convert to dev_pm_ops
Convert PM operations to use dev_pm_ops.  This will facilitate the runtime
PM coversion which will add to dev_pm_ops hooks.

Note that dev_pm_ops version of the suspend hook no longer takes a 'state'
argument.  However, the MMC core function mmc_suspend_host() still takes a
'state' argument, but it is unused, so a dummy state variable was created
to pass to the MMC core.

In the future, the MMC core should be converted to drop this state
argument and the rest of the MMC drivers could be easily converted to
dev_pm_ops as well.

Signed-off-by: Kevin Hilman <khilman@deeprootsystems.com>
Cc: Madhusudhan Chikkature <madhu.cr@ti.com>
Cc: Adrian Hunter <adrian.hunter@nokia.com>
Cc: Matt Fleming <matt@console-pimps.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Denis Karpov <ext-denis.2.karpov@nokia.com>
Cc: <linux-mmc@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:40 -07:00

2408 lines
58 KiB
C

/*
* drivers/mmc/host/omap_hsmmc.c
*
* Driver for OMAP2430/3430 MMC controller.
*
* Copyright (C) 2007 Texas Instruments.
*
* Authors:
* Syed Mohammed Khasim <x0khasim@ti.com>
* Madhusudhan <madhu.cr@ti.com>
* Mohit Jalori <mjalori@ti.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/timer.h>
#include <linux/clk.h>
#include <linux/mmc/host.h>
#include <linux/mmc/core.h>
#include <linux/io.h>
#include <linux/semaphore.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <plat/dma.h>
#include <mach/hardware.h>
#include <plat/board.h>
#include <plat/mmc.h>
#include <plat/cpu.h>
/* OMAP HSMMC Host Controller Registers */
#define OMAP_HSMMC_SYSCONFIG 0x0010
#define OMAP_HSMMC_SYSSTATUS 0x0014
#define OMAP_HSMMC_CON 0x002C
#define OMAP_HSMMC_BLK 0x0104
#define OMAP_HSMMC_ARG 0x0108
#define OMAP_HSMMC_CMD 0x010C
#define OMAP_HSMMC_RSP10 0x0110
#define OMAP_HSMMC_RSP32 0x0114
#define OMAP_HSMMC_RSP54 0x0118
#define OMAP_HSMMC_RSP76 0x011C
#define OMAP_HSMMC_DATA 0x0120
#define OMAP_HSMMC_HCTL 0x0128
#define OMAP_HSMMC_SYSCTL 0x012C
#define OMAP_HSMMC_STAT 0x0130
#define OMAP_HSMMC_IE 0x0134
#define OMAP_HSMMC_ISE 0x0138
#define OMAP_HSMMC_CAPA 0x0140
#define VS18 (1 << 26)
#define VS30 (1 << 25)
#define SDVS18 (0x5 << 9)
#define SDVS30 (0x6 << 9)
#define SDVS33 (0x7 << 9)
#define SDVS_MASK 0x00000E00
#define SDVSCLR 0xFFFFF1FF
#define SDVSDET 0x00000400
#define AUTOIDLE 0x1
#define SDBP (1 << 8)
#define DTO 0xe
#define ICE 0x1
#define ICS 0x2
#define CEN (1 << 2)
#define CLKD_MASK 0x0000FFC0
#define CLKD_SHIFT 6
#define DTO_MASK 0x000F0000
#define DTO_SHIFT 16
#define INT_EN_MASK 0x307F0033
#define BWR_ENABLE (1 << 4)
#define BRR_ENABLE (1 << 5)
#define INIT_STREAM (1 << 1)
#define DP_SELECT (1 << 21)
#define DDIR (1 << 4)
#define DMA_EN 0x1
#define MSBS (1 << 5)
#define BCE (1 << 1)
#define FOUR_BIT (1 << 1)
#define DW8 (1 << 5)
#define CC 0x1
#define TC 0x02
#define OD 0x1
#define ERR (1 << 15)
#define CMD_TIMEOUT (1 << 16)
#define DATA_TIMEOUT (1 << 20)
#define CMD_CRC (1 << 17)
#define DATA_CRC (1 << 21)
#define CARD_ERR (1 << 28)
#define STAT_CLEAR 0xFFFFFFFF
#define INIT_STREAM_CMD 0x00000000
#define DUAL_VOLT_OCR_BIT 7
#define SRC (1 << 25)
#define SRD (1 << 26)
#define SOFTRESET (1 << 1)
#define RESETDONE (1 << 0)
/*
* FIXME: Most likely all the data using these _DEVID defines should come
* from the platform_data, or implemented in controller and slot specific
* functions.
*/
#define OMAP_MMC1_DEVID 0
#define OMAP_MMC2_DEVID 1
#define OMAP_MMC3_DEVID 2
#define OMAP_MMC4_DEVID 3
#define OMAP_MMC5_DEVID 4
#define MMC_TIMEOUT_MS 20
#define OMAP_MMC_MASTER_CLOCK 96000000
#define DRIVER_NAME "mmci-omap-hs"
/* Timeouts for entering power saving states on inactivity, msec */
#define OMAP_MMC_DISABLED_TIMEOUT 100
#define OMAP_MMC_SLEEP_TIMEOUT 1000
#define OMAP_MMC_OFF_TIMEOUT 8000
/*
* One controller can have multiple slots, like on some omap boards using
* omap.c controller driver. Luckily this is not currently done on any known
* omap_hsmmc.c device.
*/
#define mmc_slot(host) (host->pdata->slots[host->slot_id])
/*
* MMC Host controller read/write API's
*/
#define OMAP_HSMMC_READ(base, reg) \
__raw_readl((base) + OMAP_HSMMC_##reg)
#define OMAP_HSMMC_WRITE(base, reg, val) \
__raw_writel((val), (base) + OMAP_HSMMC_##reg)
struct omap_hsmmc_host {
struct device *dev;
struct mmc_host *mmc;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
struct clk *fclk;
struct clk *iclk;
struct clk *dbclk;
/*
* vcc == configured supply
* vcc_aux == optional
* - MMC1, supply for DAT4..DAT7
* - MMC2/MMC2, external level shifter voltage supply, for
* chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
*/
struct regulator *vcc;
struct regulator *vcc_aux;
struct work_struct mmc_carddetect_work;
void __iomem *base;
resource_size_t mapbase;
spinlock_t irq_lock; /* Prevent races with irq handler */
unsigned int id;
unsigned int dma_len;
unsigned int dma_sg_idx;
unsigned char bus_mode;
unsigned char power_mode;
u32 *buffer;
u32 bytesleft;
int suspended;
int irq;
int use_dma, dma_ch;
int dma_line_tx, dma_line_rx;
int slot_id;
int got_dbclk;
int response_busy;
int context_loss;
int dpm_state;
int vdd;
int protect_card;
int reqs_blocked;
int use_reg;
int req_in_progress;
struct omap_mmc_platform_data *pdata;
};
static int omap_hsmmc_card_detect(struct device *dev, int slot)
{
struct omap_mmc_platform_data *mmc = dev->platform_data;
/* NOTE: assumes card detect signal is active-low */
return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
}
static int omap_hsmmc_get_wp(struct device *dev, int slot)
{
struct omap_mmc_platform_data *mmc = dev->platform_data;
/* NOTE: assumes write protect signal is active-high */
return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
}
static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
{
struct omap_mmc_platform_data *mmc = dev->platform_data;
/* NOTE: assumes card detect signal is active-low */
return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
}
#ifdef CONFIG_PM
static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
{
struct omap_mmc_platform_data *mmc = dev->platform_data;
disable_irq(mmc->slots[0].card_detect_irq);
return 0;
}
static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
{
struct omap_mmc_platform_data *mmc = dev->platform_data;
enable_irq(mmc->slots[0].card_detect_irq);
return 0;
}
#else
#define omap_hsmmc_suspend_cdirq NULL
#define omap_hsmmc_resume_cdirq NULL
#endif
#ifdef CONFIG_REGULATOR
static int omap_hsmmc_1_set_power(struct device *dev, int slot, int power_on,
int vdd)
{
struct omap_hsmmc_host *host =
platform_get_drvdata(to_platform_device(dev));
int ret;
if (mmc_slot(host).before_set_reg)
mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
if (power_on)
ret = mmc_regulator_set_ocr(host->vcc, vdd);
else
ret = mmc_regulator_set_ocr(host->vcc, 0);
if (mmc_slot(host).after_set_reg)
mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
return ret;
}
static int omap_hsmmc_23_set_power(struct device *dev, int slot, int power_on,
int vdd)
{
struct omap_hsmmc_host *host =
platform_get_drvdata(to_platform_device(dev));
int ret = 0;
/*
* If we don't see a Vcc regulator, assume it's a fixed
* voltage always-on regulator.
*/
if (!host->vcc)
return 0;
if (mmc_slot(host).before_set_reg)
mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
/*
* Assume Vcc regulator is used only to power the card ... OMAP
* VDDS is used to power the pins, optionally with a transceiver to
* support cards using voltages other than VDDS (1.8V nominal). When a
* transceiver is used, DAT3..7 are muxed as transceiver control pins.
*
* In some cases this regulator won't support enable/disable;
* e.g. it's a fixed rail for a WLAN chip.
*
* In other cases vcc_aux switches interface power. Example, for
* eMMC cards it represents VccQ. Sometimes transceivers or SDIO
* chips/cards need an interface voltage rail too.
*/
if (power_on) {
ret = mmc_regulator_set_ocr(host->vcc, vdd);
/* Enable interface voltage rail, if needed */
if (ret == 0 && host->vcc_aux) {
ret = regulator_enable(host->vcc_aux);
if (ret < 0)
ret = mmc_regulator_set_ocr(host->vcc, 0);
}
} else {
if (host->vcc_aux)
ret = regulator_disable(host->vcc_aux);
if (ret == 0)
ret = mmc_regulator_set_ocr(host->vcc, 0);
}
if (mmc_slot(host).after_set_reg)
mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
return ret;
}
static int omap_hsmmc_1_set_sleep(struct device *dev, int slot, int sleep,
int vdd, int cardsleep)
{
struct omap_hsmmc_host *host =
platform_get_drvdata(to_platform_device(dev));
int mode = sleep ? REGULATOR_MODE_STANDBY : REGULATOR_MODE_NORMAL;
return regulator_set_mode(host->vcc, mode);
}
static int omap_hsmmc_23_set_sleep(struct device *dev, int slot, int sleep,
int vdd, int cardsleep)
{
struct omap_hsmmc_host *host =
platform_get_drvdata(to_platform_device(dev));
int err, mode;
/*
* If we don't see a Vcc regulator, assume it's a fixed
* voltage always-on regulator.
*/
if (!host->vcc)
return 0;
mode = sleep ? REGULATOR_MODE_STANDBY : REGULATOR_MODE_NORMAL;
if (!host->vcc_aux)
return regulator_set_mode(host->vcc, mode);
if (cardsleep) {
/* VCC can be turned off if card is asleep */
if (sleep)
err = mmc_regulator_set_ocr(host->vcc, 0);
else
err = mmc_regulator_set_ocr(host->vcc, vdd);
} else
err = regulator_set_mode(host->vcc, mode);
if (err)
return err;
if (!mmc_slot(host).vcc_aux_disable_is_sleep)
return regulator_set_mode(host->vcc_aux, mode);
if (sleep)
return regulator_disable(host->vcc_aux);
else
return regulator_enable(host->vcc_aux);
}
static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
{
struct regulator *reg;
int ret = 0;
switch (host->id) {
case OMAP_MMC1_DEVID:
/* On-chip level shifting via PBIAS0/PBIAS1 */
mmc_slot(host).set_power = omap_hsmmc_1_set_power;
mmc_slot(host).set_sleep = omap_hsmmc_1_set_sleep;
break;
case OMAP_MMC2_DEVID:
case OMAP_MMC3_DEVID:
/* Off-chip level shifting, or none */
mmc_slot(host).set_power = omap_hsmmc_23_set_power;
mmc_slot(host).set_sleep = omap_hsmmc_23_set_sleep;
break;
default:
pr_err("MMC%d configuration not supported!\n", host->id);
return -EINVAL;
}
reg = regulator_get(host->dev, "vmmc");
if (IS_ERR(reg)) {
dev_dbg(host->dev, "vmmc regulator missing\n");
/*
* HACK: until fixed.c regulator is usable,
* we don't require a main regulator
* for MMC2 or MMC3
*/
if (host->id == OMAP_MMC1_DEVID) {
ret = PTR_ERR(reg);
goto err;
}
} else {
host->vcc = reg;
mmc_slot(host).ocr_mask = mmc_regulator_get_ocrmask(reg);
/* Allow an aux regulator */
reg = regulator_get(host->dev, "vmmc_aux");
host->vcc_aux = IS_ERR(reg) ? NULL : reg;
/*
* UGLY HACK: workaround regulator framework bugs.
* When the bootloader leaves a supply active, it's
* initialized with zero usecount ... and we can't
* disable it without first enabling it. Until the
* framework is fixed, we need a workaround like this
* (which is safe for MMC, but not in general).
*/
if (regulator_is_enabled(host->vcc) > 0) {
regulator_enable(host->vcc);
regulator_disable(host->vcc);
}
if (host->vcc_aux) {
if (regulator_is_enabled(reg) > 0) {
regulator_enable(reg);
regulator_disable(reg);
}
}
}
return 0;
err:
mmc_slot(host).set_power = NULL;
mmc_slot(host).set_sleep = NULL;
return ret;
}
static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
{
regulator_put(host->vcc);
regulator_put(host->vcc_aux);
mmc_slot(host).set_power = NULL;
mmc_slot(host).set_sleep = NULL;
}
static inline int omap_hsmmc_have_reg(void)
{
return 1;
}
#else
static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
{
return -EINVAL;
}
static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
{
}
static inline int omap_hsmmc_have_reg(void)
{
return 0;
}
#endif
static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
{
int ret;
if (gpio_is_valid(pdata->slots[0].switch_pin)) {
pdata->suspend = omap_hsmmc_suspend_cdirq;
pdata->resume = omap_hsmmc_resume_cdirq;
if (pdata->slots[0].cover)
pdata->slots[0].get_cover_state =
omap_hsmmc_get_cover_state;
else
pdata->slots[0].card_detect = omap_hsmmc_card_detect;
pdata->slots[0].card_detect_irq =
gpio_to_irq(pdata->slots[0].switch_pin);
ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
if (ret)
return ret;
ret = gpio_direction_input(pdata->slots[0].switch_pin);
if (ret)
goto err_free_sp;
} else
pdata->slots[0].switch_pin = -EINVAL;
if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
pdata->slots[0].get_ro = omap_hsmmc_get_wp;
ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
if (ret)
goto err_free_cd;
ret = gpio_direction_input(pdata->slots[0].gpio_wp);
if (ret)
goto err_free_wp;
} else
pdata->slots[0].gpio_wp = -EINVAL;
return 0;
err_free_wp:
gpio_free(pdata->slots[0].gpio_wp);
err_free_cd:
if (gpio_is_valid(pdata->slots[0].switch_pin))
err_free_sp:
gpio_free(pdata->slots[0].switch_pin);
return ret;
}
static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
{
if (gpio_is_valid(pdata->slots[0].gpio_wp))
gpio_free(pdata->slots[0].gpio_wp);
if (gpio_is_valid(pdata->slots[0].switch_pin))
gpio_free(pdata->slots[0].switch_pin);
}
/*
* Stop clock to the card
*/
static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
{
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stoped\n");
}
static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host)
{
unsigned int irq_mask;
if (host->use_dma)
irq_mask = INT_EN_MASK & ~(BRR_ENABLE | BWR_ENABLE);
else
irq_mask = INT_EN_MASK;
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
}
static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
{
OMAP_HSMMC_WRITE(host->base, ISE, 0);
OMAP_HSMMC_WRITE(host->base, IE, 0);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
}
#ifdef CONFIG_PM
/*
* Restore the MMC host context, if it was lost as result of a
* power state change.
*/
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
{
struct mmc_ios *ios = &host->mmc->ios;
struct omap_mmc_platform_data *pdata = host->pdata;
int context_loss = 0;
u32 hctl, capa, con;
u16 dsor = 0;
unsigned long timeout;
if (pdata->get_context_loss_count) {
context_loss = pdata->get_context_loss_count(host->dev);
if (context_loss < 0)
return 1;
}
dev_dbg(mmc_dev(host->mmc), "context was %slost\n",
context_loss == host->context_loss ? "not " : "");
if (host->context_loss == context_loss)
return 1;
/* Wait for hardware reset */
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, SYSSTATUS) & RESETDONE) != RESETDONE
&& time_before(jiffies, timeout))
;
/* Do software reset */
OMAP_HSMMC_WRITE(host->base, SYSCONFIG, SOFTRESET);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, SYSSTATUS) & RESETDONE) != RESETDONE
&& time_before(jiffies, timeout))
;
OMAP_HSMMC_WRITE(host->base, SYSCONFIG,
OMAP_HSMMC_READ(host->base, SYSCONFIG) | AUTOIDLE);
if (host->id == OMAP_MMC1_DEVID) {
if (host->power_mode != MMC_POWER_OFF &&
(1 << ios->vdd) <= MMC_VDD_23_24)
hctl = SDVS18;
else
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | hctl);
OMAP_HSMMC_WRITE(host->base, CAPA,
OMAP_HSMMC_READ(host->base, CAPA) | capa);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
&& time_before(jiffies, timeout))
;
omap_hsmmc_disable_irq(host);
/* Do not initialize card-specific things if the power is off */
if (host->power_mode == MMC_POWER_OFF)
goto out;
con = OMAP_HSMMC_READ(host->base, CON);
switch (ios->bus_width) {
case MMC_BUS_WIDTH_8:
OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
break;
case MMC_BUS_WIDTH_4:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
break;
case MMC_BUS_WIDTH_1:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
break;
}
if (ios->clock) {
dsor = OMAP_MMC_MASTER_CLOCK / ios->clock;
if (dsor < 1)
dsor = 1;
if (OMAP_MMC_MASTER_CLOCK / dsor > ios->clock)
dsor++;
if (dsor > 250)
dsor = 250;
}
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
OMAP_HSMMC_WRITE(host->base, SYSCTL, (dsor << 6) | (DTO << 16));
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
&& time_before(jiffies, timeout))
;
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
con = OMAP_HSMMC_READ(host->base, CON);
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
OMAP_HSMMC_WRITE(host->base, CON, con | OD);
else
OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
out:
host->context_loss = context_loss;
dev_dbg(mmc_dev(host->mmc), "context is restored\n");
return 0;
}
/*
* Save the MMC host context (store the number of power state changes so far).
*/
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
{
struct omap_mmc_platform_data *pdata = host->pdata;
int context_loss;
if (pdata->get_context_loss_count) {
context_loss = pdata->get_context_loss_count(host->dev);
if (context_loss < 0)
return;
host->context_loss = context_loss;
}
}
#else
static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
{
return 0;
}
static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
{
}
#endif
/*
* Send init stream sequence to card
* before sending IDLE command
*/
static void send_init_stream(struct omap_hsmmc_host *host)
{
int reg = 0;
unsigned long timeout;
if (host->protect_card)
return;
disable_irq(host->irq);
OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((reg != CC) && time_before(jiffies, timeout))
reg = OMAP_HSMMC_READ(host->base, STAT) & CC;
OMAP_HSMMC_WRITE(host->base, CON,
OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
OMAP_HSMMC_READ(host->base, STAT);
enable_irq(host->irq);
}
static inline
int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
{
int r = 1;
if (mmc_slot(host).get_cover_state)
r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
return r;
}
static ssize_t
omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct omap_hsmmc_host *host = mmc_priv(mmc);
return sprintf(buf, "%s\n",
omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
}
static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
static ssize_t
omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
struct omap_hsmmc_host *host = mmc_priv(mmc);
return sprintf(buf, "%s\n", mmc_slot(host).name);
}
static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
/*
* Configure the response type and send the cmd.
*/
static void
omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
struct mmc_data *data)
{
int cmdreg = 0, resptype = 0, cmdtype = 0;
dev_dbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
host->cmd = cmd;
omap_hsmmc_enable_irq(host);
host->response_busy = 0;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
resptype = 1;
else if (cmd->flags & MMC_RSP_BUSY) {
resptype = 3;
host->response_busy = 1;
} else
resptype = 2;
}
/*
* Unlike OMAP1 controller, the cmdtype does not seem to be based on
* ac, bc, adtc, bcr. Only commands ending an open ended transfer need
* a val of 0x3, rest 0x0.
*/
if (cmd == host->mrq->stop)
cmdtype = 0x3;
cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
if (data) {
cmdreg |= DP_SELECT | MSBS | BCE;
if (data->flags & MMC_DATA_READ)
cmdreg |= DDIR;
else
cmdreg &= ~(DDIR);
}
if (host->use_dma)
cmdreg |= DMA_EN;
host->req_in_progress = 1;
OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
}
static int
omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
{
if (data->flags & MMC_DATA_WRITE)
return DMA_TO_DEVICE;
else
return DMA_FROM_DEVICE;
}
static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
{
int dma_ch;
spin_lock(&host->irq_lock);
host->req_in_progress = 0;
dma_ch = host->dma_ch;
spin_unlock(&host->irq_lock);
omap_hsmmc_disable_irq(host);
/* Do not complete the request if DMA is still in progress */
if (mrq->data && host->use_dma && dma_ch != -1)
return;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
/*
* Notify the transfer complete to MMC core
*/
static void
omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
{
if (!data) {
struct mmc_request *mrq = host->mrq;
/* TC before CC from CMD6 - don't know why, but it happens */
if (host->cmd && host->cmd->opcode == 6 &&
host->response_busy) {
host->response_busy = 0;
return;
}
omap_hsmmc_request_done(host, mrq);
return;
}
host->data = NULL;
if (!data->error)
data->bytes_xfered += data->blocks * (data->blksz);
else
data->bytes_xfered = 0;
if (!data->stop) {
omap_hsmmc_request_done(host, data->mrq);
return;
}
omap_hsmmc_start_command(host, data->stop, NULL);
}
/*
* Notify the core about command completion
*/
static void
omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
{
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
/* response type 2 */
cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
} else {
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
}
}
if ((host->data == NULL && !host->response_busy) || cmd->error)
omap_hsmmc_request_done(host, cmd->mrq);
}
/*
* DMA clean up for command errors
*/
static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
{
int dma_ch;
host->data->error = errno;
spin_lock(&host->irq_lock);
dma_ch = host->dma_ch;
host->dma_ch = -1;
spin_unlock(&host->irq_lock);
if (host->use_dma && dma_ch != -1) {
dma_unmap_sg(mmc_dev(host->mmc), host->data->sg, host->dma_len,
omap_hsmmc_get_dma_dir(host, host->data));
omap_free_dma(dma_ch);
}
host->data = NULL;
}
/*
* Readable error output
*/
#ifdef CONFIG_MMC_DEBUG
static void omap_hsmmc_report_irq(struct omap_hsmmc_host *host, u32 status)
{
/* --- means reserved bit without definition at documentation */
static const char *omap_hsmmc_status_bits[] = {
"CC", "TC", "BGE", "---", "BWR", "BRR", "---", "---", "CIRQ",
"OBI", "---", "---", "---", "---", "---", "ERRI", "CTO", "CCRC",
"CEB", "CIE", "DTO", "DCRC", "DEB", "---", "ACE", "---",
"---", "---", "---", "CERR", "CERR", "BADA", "---", "---", "---"
};
char res[256];
char *buf = res;
int len, i;
len = sprintf(buf, "MMC IRQ 0x%x :", status);
buf += len;
for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
if (status & (1 << i)) {
len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
buf += len;
}
dev_dbg(mmc_dev(host->mmc), "%s\n", res);
}
#endif /* CONFIG_MMC_DEBUG */
/*
* MMC controller internal state machines reset
*
* Used to reset command or data internal state machines, using respectively
* SRC or SRD bit of SYSCTL register
* Can be called from interrupt context
*/
static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
unsigned long bit)
{
unsigned long i = 0;
unsigned long limit = (loops_per_jiffy *
msecs_to_jiffies(MMC_TIMEOUT_MS));
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
(i++ < limit))
cpu_relax();
if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
dev_err(mmc_dev(host->mmc),
"Timeout waiting on controller reset in %s\n",
__func__);
}
static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
{
struct mmc_data *data;
int end_cmd = 0, end_trans = 0;
if (!host->req_in_progress) {
do {
OMAP_HSMMC_WRITE(host->base, STAT, status);
/* Flush posted write */
status = OMAP_HSMMC_READ(host->base, STAT);
} while (status & INT_EN_MASK);
return;
}
data = host->data;
dev_dbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
if (status & ERR) {
#ifdef CONFIG_MMC_DEBUG
omap_hsmmc_report_irq(host, status);
#endif
if ((status & CMD_TIMEOUT) ||
(status & CMD_CRC)) {
if (host->cmd) {
if (status & CMD_TIMEOUT) {
omap_hsmmc_reset_controller_fsm(host,
SRC);
host->cmd->error = -ETIMEDOUT;
} else {
host->cmd->error = -EILSEQ;
}
end_cmd = 1;
}
if (host->data || host->response_busy) {
if (host->data)
omap_hsmmc_dma_cleanup(host,
-ETIMEDOUT);
host->response_busy = 0;
omap_hsmmc_reset_controller_fsm(host, SRD);
}
}
if ((status & DATA_TIMEOUT) ||
(status & DATA_CRC)) {
if (host->data || host->response_busy) {
int err = (status & DATA_TIMEOUT) ?
-ETIMEDOUT : -EILSEQ;
if (host->data)
omap_hsmmc_dma_cleanup(host, err);
else
host->mrq->cmd->error = err;
host->response_busy = 0;
omap_hsmmc_reset_controller_fsm(host, SRD);
end_trans = 1;
}
}
if (status & CARD_ERR) {
dev_dbg(mmc_dev(host->mmc),
"Ignoring card err CMD%d\n", host->cmd->opcode);
if (host->cmd)
end_cmd = 1;
if (host->data)
end_trans = 1;
}
}
OMAP_HSMMC_WRITE(host->base, STAT, status);
if (end_cmd || ((status & CC) && host->cmd))
omap_hsmmc_cmd_done(host, host->cmd);
if ((end_trans || (status & TC)) && host->mrq)
omap_hsmmc_xfer_done(host, data);
}
/*
* MMC controller IRQ handler
*/
static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
{
struct omap_hsmmc_host *host = dev_id;
int status;
status = OMAP_HSMMC_READ(host->base, STAT);
do {
omap_hsmmc_do_irq(host, status);
/* Flush posted write */
status = OMAP_HSMMC_READ(host->base, STAT);
} while (status & INT_EN_MASK);
return IRQ_HANDLED;
}
static void set_sd_bus_power(struct omap_hsmmc_host *host)
{
unsigned long i;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
for (i = 0; i < loops_per_jiffy; i++) {
if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
break;
cpu_relax();
}
}
/*
* Switch MMC interface voltage ... only relevant for MMC1.
*
* MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
* The MMC2 transceiver controls are used instead of DAT4..DAT7.
* Some chips, like eMMC ones, use internal transceivers.
*/
static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
{
u32 reg_val = 0;
int ret;
/* Disable the clocks */
clk_disable(host->fclk);
clk_disable(host->iclk);
if (host->got_dbclk)
clk_disable(host->dbclk);
/* Turn the power off */
ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
/* Turn the power ON with given VDD 1.8 or 3.0v */
if (!ret)
ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
vdd);
clk_enable(host->iclk);
clk_enable(host->fclk);
if (host->got_dbclk)
clk_enable(host->dbclk);
if (ret != 0)
goto err;
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
reg_val = OMAP_HSMMC_READ(host->base, HCTL);
/*
* If a MMC dual voltage card is detected, the set_ios fn calls
* this fn with VDD bit set for 1.8V. Upon card removal from the
* slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
*
* Cope with a bit of slop in the range ... per data sheets:
* - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
* but recommended values are 1.71V to 1.89V
* - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
* but recommended values are 2.7V to 3.3V
*
* Board setup code shouldn't permit anything very out-of-range.
* TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
* middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
*/
if ((1 << vdd) <= MMC_VDD_23_24)
reg_val |= SDVS18;
else
reg_val |= SDVS30;
OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
set_sd_bus_power(host);
return 0;
err:
dev_dbg(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
return ret;
}
/* Protect the card while the cover is open */
static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
{
if (!mmc_slot(host).get_cover_state)
return;
host->reqs_blocked = 0;
if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
if (host->protect_card) {
printk(KERN_INFO "%s: cover is closed, "
"card is now accessible\n",
mmc_hostname(host->mmc));
host->protect_card = 0;
}
} else {
if (!host->protect_card) {
printk(KERN_INFO "%s: cover is open, "
"card is now inaccessible\n",
mmc_hostname(host->mmc));
host->protect_card = 1;
}
}
}
/*
* Work Item to notify the core about card insertion/removal
*/
static void omap_hsmmc_detect(struct work_struct *work)
{
struct omap_hsmmc_host *host =
container_of(work, struct omap_hsmmc_host, mmc_carddetect_work);
struct omap_mmc_slot_data *slot = &mmc_slot(host);
int carddetect;
if (host->suspended)
return;
sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
if (slot->card_detect)
carddetect = slot->card_detect(host->dev, host->slot_id);
else {
omap_hsmmc_protect_card(host);
carddetect = -ENOSYS;
}
if (carddetect)
mmc_detect_change(host->mmc, (HZ * 200) / 1000);
else
mmc_detect_change(host->mmc, (HZ * 50) / 1000);
}
/*
* ISR for handling card insertion and removal
*/
static irqreturn_t omap_hsmmc_cd_handler(int irq, void *dev_id)
{
struct omap_hsmmc_host *host = (struct omap_hsmmc_host *)dev_id;
if (host->suspended)
return IRQ_HANDLED;
schedule_work(&host->mmc_carddetect_work);
return IRQ_HANDLED;
}
static int omap_hsmmc_get_dma_sync_dev(struct omap_hsmmc_host *host,
struct mmc_data *data)
{
int sync_dev;
if (data->flags & MMC_DATA_WRITE)
sync_dev = host->dma_line_tx;
else
sync_dev = host->dma_line_rx;
return sync_dev;
}
static void omap_hsmmc_config_dma_params(struct omap_hsmmc_host *host,
struct mmc_data *data,
struct scatterlist *sgl)
{
int blksz, nblk, dma_ch;
dma_ch = host->dma_ch;
if (data->flags & MMC_DATA_WRITE) {
omap_set_dma_dest_params(dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
(host->mapbase + OMAP_HSMMC_DATA), 0, 0);
omap_set_dma_src_params(dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
sg_dma_address(sgl), 0, 0);
} else {
omap_set_dma_src_params(dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
(host->mapbase + OMAP_HSMMC_DATA), 0, 0);
omap_set_dma_dest_params(dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
sg_dma_address(sgl), 0, 0);
}
blksz = host->data->blksz;
nblk = sg_dma_len(sgl) / blksz;
omap_set_dma_transfer_params(dma_ch, OMAP_DMA_DATA_TYPE_S32,
blksz / 4, nblk, OMAP_DMA_SYNC_FRAME,
omap_hsmmc_get_dma_sync_dev(host, data),
!(data->flags & MMC_DATA_WRITE));
omap_start_dma(dma_ch);
}
/*
* DMA call back function
*/
static void omap_hsmmc_dma_cb(int lch, u16 ch_status, void *cb_data)
{
struct omap_hsmmc_host *host = cb_data;
struct mmc_data *data = host->mrq->data;
int dma_ch, req_in_progress;
if (ch_status & OMAP2_DMA_MISALIGNED_ERR_IRQ)
dev_dbg(mmc_dev(host->mmc), "MISALIGNED_ADRS_ERR\n");
spin_lock(&host->irq_lock);
if (host->dma_ch < 0) {
spin_unlock(&host->irq_lock);
return;
}
host->dma_sg_idx++;
if (host->dma_sg_idx < host->dma_len) {
/* Fire up the next transfer. */
omap_hsmmc_config_dma_params(host, data,
data->sg + host->dma_sg_idx);
spin_unlock(&host->irq_lock);
return;
}
dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->dma_len,
omap_hsmmc_get_dma_dir(host, data));
req_in_progress = host->req_in_progress;
dma_ch = host->dma_ch;
host->dma_ch = -1;
spin_unlock(&host->irq_lock);
omap_free_dma(dma_ch);
/* If DMA has finished after TC, complete the request */
if (!req_in_progress) {
struct mmc_request *mrq = host->mrq;
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
}
/*
* Routine to configure and start DMA for the MMC card
*/
static int omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host,
struct mmc_request *req)
{
int dma_ch = 0, ret = 0, i;
struct mmc_data *data = req->data;
/* Sanity check: all the SG entries must be aligned by block size. */
for (i = 0; i < data->sg_len; i++) {
struct scatterlist *sgl;
sgl = data->sg + i;
if (sgl->length % data->blksz)
return -EINVAL;
}
if ((data->blksz % 4) != 0)
/* REVISIT: The MMC buffer increments only when MSB is written.
* Return error for blksz which is non multiple of four.
*/
return -EINVAL;
BUG_ON(host->dma_ch != -1);
ret = omap_request_dma(omap_hsmmc_get_dma_sync_dev(host, data),
"MMC/SD", omap_hsmmc_dma_cb, host, &dma_ch);
if (ret != 0) {
dev_err(mmc_dev(host->mmc),
"%s: omap_request_dma() failed with %d\n",
mmc_hostname(host->mmc), ret);
return ret;
}
host->dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, omap_hsmmc_get_dma_dir(host, data));
host->dma_ch = dma_ch;
host->dma_sg_idx = 0;
omap_hsmmc_config_dma_params(host, data, data->sg);
return 0;
}
static void set_data_timeout(struct omap_hsmmc_host *host,
unsigned int timeout_ns,
unsigned int timeout_clks)
{
unsigned int timeout, cycle_ns;
uint32_t reg, clkd, dto = 0;
reg = OMAP_HSMMC_READ(host->base, SYSCTL);
clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
if (clkd == 0)
clkd = 1;
cycle_ns = 1000000000 / (clk_get_rate(host->fclk) / clkd);
timeout = timeout_ns / cycle_ns;
timeout += timeout_clks;
if (timeout) {
while ((timeout & 0x80000000) == 0) {
dto += 1;
timeout <<= 1;
}
dto = 31 - dto;
timeout <<= 1;
if (timeout && dto)
dto += 1;
if (dto >= 13)
dto -= 13;
else
dto = 0;
if (dto > 14)
dto = 14;
}
reg &= ~DTO_MASK;
reg |= dto << DTO_SHIFT;
OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
}
/*
* Configure block length for MMC/SD cards and initiate the transfer.
*/
static int
omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
{
int ret;
host->data = req->data;
if (req->data == NULL) {
OMAP_HSMMC_WRITE(host->base, BLK, 0);
/*
* Set an arbitrary 100ms data timeout for commands with
* busy signal.
*/
if (req->cmd->flags & MMC_RSP_BUSY)
set_data_timeout(host, 100000000U, 0);
return 0;
}
OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
| (req->data->blocks << 16));
set_data_timeout(host, req->data->timeout_ns, req->data->timeout_clks);
if (host->use_dma) {
ret = omap_hsmmc_start_dma_transfer(host, req);
if (ret != 0) {
dev_dbg(mmc_dev(host->mmc), "MMC start dma failure\n");
return ret;
}
}
return 0;
}
/*
* Request function. for read/write operation
*/
static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
int err;
BUG_ON(host->req_in_progress);
BUG_ON(host->dma_ch != -1);
if (host->protect_card) {
if (host->reqs_blocked < 3) {
/*
* Ensure the controller is left in a consistent
* state by resetting the command and data state
* machines.
*/
omap_hsmmc_reset_controller_fsm(host, SRD);
omap_hsmmc_reset_controller_fsm(host, SRC);
host->reqs_blocked += 1;
}
req->cmd->error = -EBADF;
if (req->data)
req->data->error = -EBADF;
req->cmd->retries = 0;
mmc_request_done(mmc, req);
return;
} else if (host->reqs_blocked)
host->reqs_blocked = 0;
WARN_ON(host->mrq != NULL);
host->mrq = req;
err = omap_hsmmc_prepare_data(host, req);
if (err) {
req->cmd->error = err;
if (req->data)
req->data->error = err;
host->mrq = NULL;
mmc_request_done(mmc, req);
return;
}
omap_hsmmc_start_command(host, req->cmd, req->data);
}
/* Routine to configure clock values. Exposed API to core */
static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
u16 dsor = 0;
unsigned long regval;
unsigned long timeout;
u32 con;
int do_send_init_stream = 0;
mmc_host_enable(host->mmc);
if (ios->power_mode != host->power_mode) {
switch (ios->power_mode) {
case MMC_POWER_OFF:
mmc_slot(host).set_power(host->dev, host->slot_id,
0, 0);
host->vdd = 0;
break;
case MMC_POWER_UP:
mmc_slot(host).set_power(host->dev, host->slot_id,
1, ios->vdd);
host->vdd = ios->vdd;
break;
case MMC_POWER_ON:
do_send_init_stream = 1;
break;
}
host->power_mode = ios->power_mode;
}
/* FIXME: set registers based only on changes to ios */
con = OMAP_HSMMC_READ(host->base, CON);
switch (mmc->ios.bus_width) {
case MMC_BUS_WIDTH_8:
OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
break;
case MMC_BUS_WIDTH_4:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
break;
case MMC_BUS_WIDTH_1:
OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
break;
}
if (host->id == OMAP_MMC1_DEVID) {
/* Only MMC1 can interface at 3V without some flavor
* of external transceiver; but they all handle 1.8V.
*/
if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
(ios->vdd == DUAL_VOLT_OCR_BIT)) {
/*
* The mmc_select_voltage fn of the core does
* not seem to set the power_mode to
* MMC_POWER_UP upon recalculating the voltage.
* vdd 1.8v.
*/
if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
dev_dbg(mmc_dev(host->mmc),
"Switch operation failed\n");
}
}
if (ios->clock) {
dsor = OMAP_MMC_MASTER_CLOCK / ios->clock;
if (dsor < 1)
dsor = 1;
if (OMAP_MMC_MASTER_CLOCK / dsor > ios->clock)
dsor++;
if (dsor > 250)
dsor = 250;
}
omap_hsmmc_stop_clock(host);
regval = OMAP_HSMMC_READ(host->base, SYSCTL);
regval = regval & ~(CLKD_MASK);
regval = regval | (dsor << 6) | (DTO << 16);
OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
/* Wait till the ICS bit is set */
timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
&& time_before(jiffies, timeout))
msleep(1);
OMAP_HSMMC_WRITE(host->base, SYSCTL,
OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
if (do_send_init_stream)
send_init_stream(host);
con = OMAP_HSMMC_READ(host->base, CON);
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
OMAP_HSMMC_WRITE(host->base, CON, con | OD);
else
OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
if (host->power_mode == MMC_POWER_OFF)
mmc_host_disable(host->mmc);
else
mmc_host_lazy_disable(host->mmc);
}
static int omap_hsmmc_get_cd(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (!mmc_slot(host).card_detect)
return -ENOSYS;
return mmc_slot(host).card_detect(host->dev, host->slot_id);
}
static int omap_hsmmc_get_ro(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
if (!mmc_slot(host).get_ro)
return -ENOSYS;
return mmc_slot(host).get_ro(host->dev, 0);
}
static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
{
u32 hctl, capa, value;
/* Only MMC1 supports 3.0V */
if (host->id == OMAP_MMC1_DEVID) {
hctl = SDVS30;
capa = VS30 | VS18;
} else {
hctl = SDVS18;
capa = VS18;
}
value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
value = OMAP_HSMMC_READ(host->base, CAPA);
OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
/* Set the controller to AUTO IDLE mode */
value = OMAP_HSMMC_READ(host->base, SYSCONFIG);
OMAP_HSMMC_WRITE(host->base, SYSCONFIG, value | AUTOIDLE);
/* Set SD bus power bit */
set_sd_bus_power(host);
}
/*
* Dynamic power saving handling, FSM:
* ENABLED -> DISABLED -> CARDSLEEP / REGSLEEP -> OFF
* ^___________| | |
* |______________________|______________________|
*
* ENABLED: mmc host is fully functional
* DISABLED: fclk is off
* CARDSLEEP: fclk is off, card is asleep, voltage regulator is asleep
* REGSLEEP: fclk is off, voltage regulator is asleep
* OFF: fclk is off, voltage regulator is off
*
* Transition handlers return the timeout for the next state transition
* or negative error.
*/
enum {ENABLED = 0, DISABLED, CARDSLEEP, REGSLEEP, OFF};
/* Handler for [ENABLED -> DISABLED] transition */
static int omap_hsmmc_enabled_to_disabled(struct omap_hsmmc_host *host)
{
omap_hsmmc_context_save(host);
clk_disable(host->fclk);
host->dpm_state = DISABLED;
dev_dbg(mmc_dev(host->mmc), "ENABLED -> DISABLED\n");
if (host->power_mode == MMC_POWER_OFF)
return 0;
return OMAP_MMC_SLEEP_TIMEOUT;
}
/* Handler for [DISABLED -> REGSLEEP / CARDSLEEP] transition */
static int omap_hsmmc_disabled_to_sleep(struct omap_hsmmc_host *host)
{
int err, new_state;
if (!mmc_try_claim_host(host->mmc))
return 0;
clk_enable(host->fclk);
omap_hsmmc_context_restore(host);
if (mmc_card_can_sleep(host->mmc)) {
err = mmc_card_sleep(host->mmc);
if (err < 0) {
clk_disable(host->fclk);
mmc_release_host(host->mmc);
return err;
}
new_state = CARDSLEEP;
} else {
new_state = REGSLEEP;
}
if (mmc_slot(host).set_sleep)
mmc_slot(host).set_sleep(host->dev, host->slot_id, 1, 0,
new_state == CARDSLEEP);
/* FIXME: turn off bus power and perhaps interrupts too */
clk_disable(host->fclk);
host->dpm_state = new_state;
mmc_release_host(host->mmc);
dev_dbg(mmc_dev(host->mmc), "DISABLED -> %s\n",
host->dpm_state == CARDSLEEP ? "CARDSLEEP" : "REGSLEEP");
if (mmc_slot(host).no_off)
return 0;
if ((host->mmc->caps & MMC_CAP_NONREMOVABLE) ||
mmc_slot(host).card_detect ||
(mmc_slot(host).get_cover_state &&
mmc_slot(host).get_cover_state(host->dev, host->slot_id)))
return OMAP_MMC_OFF_TIMEOUT;
return 0;
}
/* Handler for [REGSLEEP / CARDSLEEP -> OFF] transition */
static int omap_hsmmc_sleep_to_off(struct omap_hsmmc_host *host)
{
if (!mmc_try_claim_host(host->mmc))
return 0;
if (mmc_slot(host).no_off)
return 0;
if (!((host->mmc->caps & MMC_CAP_NONREMOVABLE) ||
mmc_slot(host).card_detect ||
(mmc_slot(host).get_cover_state &&
mmc_slot(host).get_cover_state(host->dev, host->slot_id)))) {
mmc_release_host(host->mmc);
return 0;
}
mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
host->vdd = 0;
host->power_mode = MMC_POWER_OFF;
dev_dbg(mmc_dev(host->mmc), "%s -> OFF\n",
host->dpm_state == CARDSLEEP ? "CARDSLEEP" : "REGSLEEP");
host->dpm_state = OFF;
mmc_release_host(host->mmc);
return 0;
}
/* Handler for [DISABLED -> ENABLED] transition */
static int omap_hsmmc_disabled_to_enabled(struct omap_hsmmc_host *host)
{
int err;
err = clk_enable(host->fclk);
if (err < 0)
return err;
omap_hsmmc_context_restore(host);
host->dpm_state = ENABLED;
dev_dbg(mmc_dev(host->mmc), "DISABLED -> ENABLED\n");
return 0;
}
/* Handler for [SLEEP -> ENABLED] transition */
static int omap_hsmmc_sleep_to_enabled(struct omap_hsmmc_host *host)
{
if (!mmc_try_claim_host(host->mmc))
return 0;
clk_enable(host->fclk);
omap_hsmmc_context_restore(host);
if (mmc_slot(host).set_sleep)
mmc_slot(host).set_sleep(host->dev, host->slot_id, 0,
host->vdd, host->dpm_state == CARDSLEEP);
if (mmc_card_can_sleep(host->mmc))
mmc_card_awake(host->mmc);
dev_dbg(mmc_dev(host->mmc), "%s -> ENABLED\n",
host->dpm_state == CARDSLEEP ? "CARDSLEEP" : "REGSLEEP");
host->dpm_state = ENABLED;
mmc_release_host(host->mmc);
return 0;
}
/* Handler for [OFF -> ENABLED] transition */
static int omap_hsmmc_off_to_enabled(struct omap_hsmmc_host *host)
{
clk_enable(host->fclk);
omap_hsmmc_context_restore(host);
omap_hsmmc_conf_bus_power(host);
mmc_power_restore_host(host->mmc);
host->dpm_state = ENABLED;
dev_dbg(mmc_dev(host->mmc), "OFF -> ENABLED\n");
return 0;
}
/*
* Bring MMC host to ENABLED from any other PM state.
*/
static int omap_hsmmc_enable(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
switch (host->dpm_state) {
case DISABLED:
return omap_hsmmc_disabled_to_enabled(host);
case CARDSLEEP:
case REGSLEEP:
return omap_hsmmc_sleep_to_enabled(host);
case OFF:
return omap_hsmmc_off_to_enabled(host);
default:
dev_dbg(mmc_dev(host->mmc), "UNKNOWN state\n");
return -EINVAL;
}
}
/*
* Bring MMC host in PM state (one level deeper).
*/
static int omap_hsmmc_disable(struct mmc_host *mmc, int lazy)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
switch (host->dpm_state) {
case ENABLED: {
int delay;
delay = omap_hsmmc_enabled_to_disabled(host);
if (lazy || delay < 0)
return delay;
return 0;
}
case DISABLED:
return omap_hsmmc_disabled_to_sleep(host);
case CARDSLEEP:
case REGSLEEP:
return omap_hsmmc_sleep_to_off(host);
default:
dev_dbg(mmc_dev(host->mmc), "UNKNOWN state\n");
return -EINVAL;
}
}
static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
int err;
err = clk_enable(host->fclk);
if (err)
return err;
dev_dbg(mmc_dev(host->mmc), "mmc_fclk: enabled\n");
omap_hsmmc_context_restore(host);
return 0;
}
static int omap_hsmmc_disable_fclk(struct mmc_host *mmc, int lazy)
{
struct omap_hsmmc_host *host = mmc_priv(mmc);
omap_hsmmc_context_save(host);
clk_disable(host->fclk);
dev_dbg(mmc_dev(host->mmc), "mmc_fclk: disabled\n");
return 0;
}
static const struct mmc_host_ops omap_hsmmc_ops = {
.enable = omap_hsmmc_enable_fclk,
.disable = omap_hsmmc_disable_fclk,
.request = omap_hsmmc_request,
.set_ios = omap_hsmmc_set_ios,
.get_cd = omap_hsmmc_get_cd,
.get_ro = omap_hsmmc_get_ro,
/* NYET -- enable_sdio_irq */
};
static const struct mmc_host_ops omap_hsmmc_ps_ops = {
.enable = omap_hsmmc_enable,
.disable = omap_hsmmc_disable,
.request = omap_hsmmc_request,
.set_ios = omap_hsmmc_set_ios,
.get_cd = omap_hsmmc_get_cd,
.get_ro = omap_hsmmc_get_ro,
/* NYET -- enable_sdio_irq */
};
#ifdef CONFIG_DEBUG_FS
static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
{
struct mmc_host *mmc = s->private;
struct omap_hsmmc_host *host = mmc_priv(mmc);
int context_loss = 0;
if (host->pdata->get_context_loss_count)
context_loss = host->pdata->get_context_loss_count(host->dev);
seq_printf(s, "mmc%d:\n"
" enabled:\t%d\n"
" dpm_state:\t%d\n"
" nesting_cnt:\t%d\n"
" ctx_loss:\t%d:%d\n"
"\nregs:\n",
mmc->index, mmc->enabled ? 1 : 0,
host->dpm_state, mmc->nesting_cnt,
host->context_loss, context_loss);
if (host->suspended || host->dpm_state == OFF) {
seq_printf(s, "host suspended, can't read registers\n");
return 0;
}
if (clk_enable(host->fclk) != 0) {
seq_printf(s, "can't read the regs\n");
return 0;
}
seq_printf(s, "SYSCONFIG:\t0x%08x\n",
OMAP_HSMMC_READ(host->base, SYSCONFIG));
seq_printf(s, "CON:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, CON));
seq_printf(s, "HCTL:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, HCTL));
seq_printf(s, "SYSCTL:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, SYSCTL));
seq_printf(s, "IE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, IE));
seq_printf(s, "ISE:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, ISE));
seq_printf(s, "CAPA:\t\t0x%08x\n",
OMAP_HSMMC_READ(host->base, CAPA));
clk_disable(host->fclk);
return 0;
}
static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
{
return single_open(file, omap_hsmmc_regs_show, inode->i_private);
}
static const struct file_operations mmc_regs_fops = {
.open = omap_hsmmc_regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
{
if (mmc->debugfs_root)
debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
mmc, &mmc_regs_fops);
}
#else
static void omap_hsmmc_debugfs(struct mmc_host *mmc)
{
}
#endif
static int __init omap_hsmmc_probe(struct platform_device *pdev)
{
struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
struct mmc_host *mmc;
struct omap_hsmmc_host *host = NULL;
struct resource *res;
int ret, irq;
if (pdata == NULL) {
dev_err(&pdev->dev, "Platform Data is missing\n");
return -ENXIO;
}
if (pdata->nr_slots == 0) {
dev_err(&pdev->dev, "No Slots\n");
return -ENXIO;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (res == NULL || irq < 0)
return -ENXIO;
res = request_mem_region(res->start, res->end - res->start + 1,
pdev->name);
if (res == NULL)
return -EBUSY;
ret = omap_hsmmc_gpio_init(pdata);
if (ret)
goto err;
mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto err_alloc;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->pdata = pdata;
host->dev = &pdev->dev;
host->use_dma = 1;
host->dev->dma_mask = &pdata->dma_mask;
host->dma_ch = -1;
host->irq = irq;
host->id = pdev->id;
host->slot_id = 0;
host->mapbase = res->start;
host->base = ioremap(host->mapbase, SZ_4K);
host->power_mode = MMC_POWER_OFF;
platform_set_drvdata(pdev, host);
INIT_WORK(&host->mmc_carddetect_work, omap_hsmmc_detect);
if (mmc_slot(host).power_saving)
mmc->ops = &omap_hsmmc_ps_ops;
else
mmc->ops = &omap_hsmmc_ops;
/*
* If regulator_disable can only put vcc_aux to sleep then there is
* no off state.
*/
if (mmc_slot(host).vcc_aux_disable_is_sleep)
mmc_slot(host).no_off = 1;
mmc->f_min = 400000;
mmc->f_max = 52000000;
spin_lock_init(&host->irq_lock);
host->iclk = clk_get(&pdev->dev, "ick");
if (IS_ERR(host->iclk)) {
ret = PTR_ERR(host->iclk);
host->iclk = NULL;
goto err1;
}
host->fclk = clk_get(&pdev->dev, "fck");
if (IS_ERR(host->fclk)) {
ret = PTR_ERR(host->fclk);
host->fclk = NULL;
clk_put(host->iclk);
goto err1;
}
omap_hsmmc_context_save(host);
mmc->caps |= MMC_CAP_DISABLE;
mmc_set_disable_delay(mmc, OMAP_MMC_DISABLED_TIMEOUT);
/* we start off in DISABLED state */
host->dpm_state = DISABLED;
if (mmc_host_enable(host->mmc) != 0) {
clk_put(host->iclk);
clk_put(host->fclk);
goto err1;
}
if (clk_enable(host->iclk) != 0) {
mmc_host_disable(host->mmc);
clk_put(host->iclk);
clk_put(host->fclk);
goto err1;
}
if (cpu_is_omap2430()) {
host->dbclk = clk_get(&pdev->dev, "mmchsdb_fck");
/*
* MMC can still work without debounce clock.
*/
if (IS_ERR(host->dbclk))
dev_warn(mmc_dev(host->mmc),
"Failed to get debounce clock\n");
else
host->got_dbclk = 1;
if (host->got_dbclk)
if (clk_enable(host->dbclk) != 0)
dev_dbg(mmc_dev(host->mmc), "Enabling debounce"
" clk failed\n");
}
/* Since we do only SG emulation, we can have as many segs
* as we want. */
mmc->max_phys_segs = 1024;
mmc->max_hw_segs = 1024;
mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
mmc->max_seg_size = mmc->max_req_size;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_WAIT_WHILE_BUSY;
if (mmc_slot(host).wires >= 8)
mmc->caps |= MMC_CAP_8_BIT_DATA;
else if (mmc_slot(host).wires >= 4)
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (mmc_slot(host).nonremovable)
mmc->caps |= MMC_CAP_NONREMOVABLE;
omap_hsmmc_conf_bus_power(host);
/* Select DMA lines */
switch (host->id) {
case OMAP_MMC1_DEVID:
host->dma_line_tx = OMAP24XX_DMA_MMC1_TX;
host->dma_line_rx = OMAP24XX_DMA_MMC1_RX;
break;
case OMAP_MMC2_DEVID:
host->dma_line_tx = OMAP24XX_DMA_MMC2_TX;
host->dma_line_rx = OMAP24XX_DMA_MMC2_RX;
break;
case OMAP_MMC3_DEVID:
host->dma_line_tx = OMAP34XX_DMA_MMC3_TX;
host->dma_line_rx = OMAP34XX_DMA_MMC3_RX;
break;
case OMAP_MMC4_DEVID:
host->dma_line_tx = OMAP44XX_DMA_MMC4_TX;
host->dma_line_rx = OMAP44XX_DMA_MMC4_RX;
break;
case OMAP_MMC5_DEVID:
host->dma_line_tx = OMAP44XX_DMA_MMC5_TX;
host->dma_line_rx = OMAP44XX_DMA_MMC5_RX;
break;
default:
dev_err(mmc_dev(host->mmc), "Invalid MMC id\n");
goto err_irq;
}
/* Request IRQ for MMC operations */
ret = request_irq(host->irq, omap_hsmmc_irq, IRQF_DISABLED,
mmc_hostname(mmc), host);
if (ret) {
dev_dbg(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
goto err_irq;
}
if (pdata->init != NULL) {
if (pdata->init(&pdev->dev) != 0) {
dev_dbg(mmc_dev(host->mmc),
"Unable to configure MMC IRQs\n");
goto err_irq_cd_init;
}
}
if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
ret = omap_hsmmc_reg_get(host);
if (ret)
goto err_reg;
host->use_reg = 1;
}
mmc->ocr_avail = mmc_slot(host).ocr_mask;
/* Request IRQ for card detect */
if ((mmc_slot(host).card_detect_irq)) {
ret = request_irq(mmc_slot(host).card_detect_irq,
omap_hsmmc_cd_handler,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING
| IRQF_DISABLED,
mmc_hostname(mmc), host);
if (ret) {
dev_dbg(mmc_dev(host->mmc),
"Unable to grab MMC CD IRQ\n");
goto err_irq_cd;
}
}
omap_hsmmc_disable_irq(host);
mmc_host_lazy_disable(host->mmc);
omap_hsmmc_protect_card(host);
mmc_add_host(mmc);
if (mmc_slot(host).name != NULL) {
ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
if (ret < 0)
goto err_slot_name;
}
if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
ret = device_create_file(&mmc->class_dev,
&dev_attr_cover_switch);
if (ret < 0)
goto err_slot_name;
}
omap_hsmmc_debugfs(mmc);
return 0;
err_slot_name:
mmc_remove_host(mmc);
free_irq(mmc_slot(host).card_detect_irq, host);
err_irq_cd:
if (host->use_reg)
omap_hsmmc_reg_put(host);
err_reg:
if (host->pdata->cleanup)
host->pdata->cleanup(&pdev->dev);
err_irq_cd_init:
free_irq(host->irq, host);
err_irq:
mmc_host_disable(host->mmc);
clk_disable(host->iclk);
clk_put(host->fclk);
clk_put(host->iclk);
if (host->got_dbclk) {
clk_disable(host->dbclk);
clk_put(host->dbclk);
}
err1:
iounmap(host->base);
platform_set_drvdata(pdev, NULL);
mmc_free_host(mmc);
err_alloc:
omap_hsmmc_gpio_free(pdata);
err:
release_mem_region(res->start, res->end - res->start + 1);
return ret;
}
static int omap_hsmmc_remove(struct platform_device *pdev)
{
struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
struct resource *res;
if (host) {
mmc_host_enable(host->mmc);
mmc_remove_host(host->mmc);
if (host->use_reg)
omap_hsmmc_reg_put(host);
if (host->pdata->cleanup)
host->pdata->cleanup(&pdev->dev);
free_irq(host->irq, host);
if (mmc_slot(host).card_detect_irq)
free_irq(mmc_slot(host).card_detect_irq, host);
flush_scheduled_work();
mmc_host_disable(host->mmc);
clk_disable(host->iclk);
clk_put(host->fclk);
clk_put(host->iclk);
if (host->got_dbclk) {
clk_disable(host->dbclk);
clk_put(host->dbclk);
}
mmc_free_host(host->mmc);
iounmap(host->base);
omap_hsmmc_gpio_free(pdev->dev.platform_data);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
release_mem_region(res->start, res->end - res->start + 1);
platform_set_drvdata(pdev, NULL);
return 0;
}
#ifdef CONFIG_PM
static int omap_hsmmc_suspend(struct device *dev)
{
int ret = 0;
struct platform_device *pdev = to_platform_device(dev);
struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
pm_message_t state = PMSG_SUSPEND; /* unused by MMC core */
if (host && host->suspended)
return 0;
if (host) {
host->suspended = 1;
if (host->pdata->suspend) {
ret = host->pdata->suspend(&pdev->dev,
host->slot_id);
if (ret) {
dev_dbg(mmc_dev(host->mmc),
"Unable to handle MMC board"
" level suspend\n");
host->suspended = 0;
return ret;
}
}
cancel_work_sync(&host->mmc_carddetect_work);
mmc_host_enable(host->mmc);
ret = mmc_suspend_host(host->mmc, state);
if (ret == 0) {
omap_hsmmc_disable_irq(host);
OMAP_HSMMC_WRITE(host->base, HCTL,
OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
mmc_host_disable(host->mmc);
clk_disable(host->iclk);
if (host->got_dbclk)
clk_disable(host->dbclk);
} else {
host->suspended = 0;
if (host->pdata->resume) {
ret = host->pdata->resume(&pdev->dev,
host->slot_id);
if (ret)
dev_dbg(mmc_dev(host->mmc),
"Unmask interrupt failed\n");
}
mmc_host_disable(host->mmc);
}
}
return ret;
}
/* Routine to resume the MMC device */
static int omap_hsmmc_resume(struct device *dev)
{
int ret = 0;
struct platform_device *pdev = to_platform_device(dev);
struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
if (host && !host->suspended)
return 0;
if (host) {
ret = clk_enable(host->iclk);
if (ret)
goto clk_en_err;
if (mmc_host_enable(host->mmc) != 0) {
clk_disable(host->iclk);
goto clk_en_err;
}
if (host->got_dbclk)
clk_enable(host->dbclk);
omap_hsmmc_conf_bus_power(host);
if (host->pdata->resume) {
ret = host->pdata->resume(&pdev->dev, host->slot_id);
if (ret)
dev_dbg(mmc_dev(host->mmc),
"Unmask interrupt failed\n");
}
omap_hsmmc_protect_card(host);
/* Notify the core to resume the host */
ret = mmc_resume_host(host->mmc);
if (ret == 0)
host->suspended = 0;
mmc_host_lazy_disable(host->mmc);
}
return ret;
clk_en_err:
dev_dbg(mmc_dev(host->mmc),
"Failed to enable MMC clocks during resume\n");
return ret;
}
#else
#define omap_hsmmc_suspend NULL
#define omap_hsmmc_resume NULL
#endif
static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
.suspend = omap_hsmmc_suspend,
.resume = omap_hsmmc_resume,
};
static struct platform_driver omap_hsmmc_driver = {
.remove = omap_hsmmc_remove,
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.pm = &omap_hsmmc_dev_pm_ops,
},
};
static int __init omap_hsmmc_init(void)
{
/* Register the MMC driver */
return platform_driver_probe(&omap_hsmmc_driver, omap_hsmmc_probe);
}
static void __exit omap_hsmmc_cleanup(void)
{
/* Unregister MMC driver */
platform_driver_unregister(&omap_hsmmc_driver);
}
module_init(omap_hsmmc_init);
module_exit(omap_hsmmc_cleanup);
MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Texas Instruments Inc");