linux/kernel/crash_core.c
Eric DeVolder a72bbec70d crash: hotplug support for kexec_load()
The hotplug support for kexec_load() requires changes to the userspace
kexec-tools and a little extra help from the kernel.

Given a kdump capture kernel loaded via kexec_load(), and a subsequent
hotplug event, the crash hotplug handler finds the elfcorehdr and rewrites
it to reflect the hotplug change.  That is the desired outcome, however,
at kernel panic time, the purgatory integrity check fails (because the
elfcorehdr changed), and the capture kernel does not boot and no vmcore is
generated.

Therefore, the userspace kexec-tools/kexec must indicate to the kernel
that the elfcorehdr can be modified (because the kexec excluded the
elfcorehdr from the digest, and sized the elfcorehdr memory buffer
appropriately).

To facilitate hotplug support with kexec_load():
 - a new kexec flag KEXEC_UPATE_ELFCOREHDR indicates that it is
   safe for the kernel to modify the kexec_load()'d elfcorehdr
 - the /sys/kernel/crash_elfcorehdr_size node communicates the
   preferred size of the elfcorehdr memory buffer
 - The sysfs crash_hotplug nodes (ie.
   /sys/devices/system/[cpu|memory]/crash_hotplug) dynamically
   take into account kexec_file_load() vs kexec_load() and
   KEXEC_UPDATE_ELFCOREHDR.
   This is critical so that the udev rule processing of crash_hotplug
   is all that is needed to determine if the userspace unload-then-load
   of the kdump image is to be skipped, or not. The proposed udev
   rule change looks like:
   # The kernel updates the crash elfcorehdr for CPU and memory changes
   SUBSYSTEM=="cpu", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end"
   SUBSYSTEM=="memory", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end"

The table below indicates the behavior of kexec_load()'d kdump image
updates (with the new udev crash_hotplug rule in place):

 Kernel |Kexec
 -------+-----+----
 Old    |Old  |New
        |  a  | a
 -------+-----+----
 New    |  a  | b
 -------+-----+----

where kexec 'old' and 'new' delineate kexec-tools has the needed
modifications for the crash hotplug feature, and kernel 'old' and 'new'
delineate the kernel supports this crash hotplug feature.

Behavior 'a' indicates the unload-then-reload of the entire kdump image. 
For the kexec 'old' column, the unload-then-reload occurs due to the
missing flag KEXEC_UPDATE_ELFCOREHDR.  An 'old' kernel (with 'new' kexec)
does not present the crash_hotplug sysfs node, which leads to the
unload-then-reload of the kdump image.

Behavior 'b' indicates the desired optimized behavior of the kernel
directly modifying the elfcorehdr and avoiding the unload-then-reload of
the kdump image.

If the udev rule is not updated with crash_hotplug node check, then no
matter any combination of kernel or kexec is new or old, the kdump image
continues to be unload-then-reload on hotplug changes.

To fully support crash hotplug feature, there needs to be a rollout of
kernel, kexec-tools and udev rule changes.  However, the order of the
rollout of these pieces does not matter; kexec_load()'d kdump images still
function for hotplug as-is.

Link: https://lkml.kernel.org/r/20230814214446.6659-7-eric.devolder@oracle.com
Signed-off-by: Eric DeVolder <eric.devolder@oracle.com>
Suggested-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Akhil Raj <lf32.dev@gmail.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Mimi Zohar <zohar@linux.ibm.com>
Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Sourabh Jain <sourabhjain@linux.ibm.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Weißschuh <linux@weissschuh.net>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-24 16:25:14 -07:00

909 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* crash.c - kernel crash support code.
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
*/
#include <linux/buildid.h>
#include <linux/crash_core.h>
#include <linux/init.h>
#include <linux/utsname.h>
#include <linux/vmalloc.h>
#include <linux/sizes.h>
#include <linux/kexec.h>
#include <linux/memory.h>
#include <linux/cpuhotplug.h>
#include <asm/page.h>
#include <asm/sections.h>
#include <crypto/sha1.h>
#include "kallsyms_internal.h"
#include "kexec_internal.h"
/* Per cpu memory for storing cpu states in case of system crash. */
note_buf_t __percpu *crash_notes;
/* vmcoreinfo stuff */
unsigned char *vmcoreinfo_data;
size_t vmcoreinfo_size;
u32 *vmcoreinfo_note;
/* trusted vmcoreinfo, e.g. we can make a copy in the crash memory */
static unsigned char *vmcoreinfo_data_safecopy;
/*
* parsing the "crashkernel" commandline
*
* this code is intended to be called from architecture specific code
*/
/*
* This function parses command lines in the format
*
* crashkernel=ramsize-range:size[,...][@offset]
*
* The function returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_mem(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
char *cur = cmdline, *tmp;
unsigned long long total_mem = system_ram;
/*
* Firmware sometimes reserves some memory regions for its own use,
* so the system memory size is less than the actual physical memory
* size. Work around this by rounding up the total size to 128M,
* which is enough for most test cases.
*/
total_mem = roundup(total_mem, SZ_128M);
/* for each entry of the comma-separated list */
do {
unsigned long long start, end = ULLONG_MAX, size;
/* get the start of the range */
start = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("crashkernel: Memory value expected\n");
return -EINVAL;
}
cur = tmp;
if (*cur != '-') {
pr_warn("crashkernel: '-' expected\n");
return -EINVAL;
}
cur++;
/* if no ':' is here, than we read the end */
if (*cur != ':') {
end = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("crashkernel: Memory value expected\n");
return -EINVAL;
}
cur = tmp;
if (end <= start) {
pr_warn("crashkernel: end <= start\n");
return -EINVAL;
}
}
if (*cur != ':') {
pr_warn("crashkernel: ':' expected\n");
return -EINVAL;
}
cur++;
size = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("Memory value expected\n");
return -EINVAL;
}
cur = tmp;
if (size >= total_mem) {
pr_warn("crashkernel: invalid size\n");
return -EINVAL;
}
/* match ? */
if (total_mem >= start && total_mem < end) {
*crash_size = size;
break;
}
} while (*cur++ == ',');
if (*crash_size > 0) {
while (*cur && *cur != ' ' && *cur != '@')
cur++;
if (*cur == '@') {
cur++;
*crash_base = memparse(cur, &tmp);
if (cur == tmp) {
pr_warn("Memory value expected after '@'\n");
return -EINVAL;
}
}
} else
pr_info("crashkernel size resulted in zero bytes\n");
return 0;
}
/*
* That function parses "simple" (old) crashkernel command lines like
*
* crashkernel=size[@offset]
*
* It returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_simple(char *cmdline,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
char *cur = cmdline;
*crash_size = memparse(cmdline, &cur);
if (cmdline == cur) {
pr_warn("crashkernel: memory value expected\n");
return -EINVAL;
}
if (*cur == '@')
*crash_base = memparse(cur+1, &cur);
else if (*cur != ' ' && *cur != '\0') {
pr_warn("crashkernel: unrecognized char: %c\n", *cur);
return -EINVAL;
}
return 0;
}
#define SUFFIX_HIGH 0
#define SUFFIX_LOW 1
#define SUFFIX_NULL 2
static __initdata char *suffix_tbl[] = {
[SUFFIX_HIGH] = ",high",
[SUFFIX_LOW] = ",low",
[SUFFIX_NULL] = NULL,
};
/*
* That function parses "suffix" crashkernel command lines like
*
* crashkernel=size,[high|low]
*
* It returns 0 on success and -EINVAL on failure.
*/
static int __init parse_crashkernel_suffix(char *cmdline,
unsigned long long *crash_size,
const char *suffix)
{
char *cur = cmdline;
*crash_size = memparse(cmdline, &cur);
if (cmdline == cur) {
pr_warn("crashkernel: memory value expected\n");
return -EINVAL;
}
/* check with suffix */
if (strncmp(cur, suffix, strlen(suffix))) {
pr_warn("crashkernel: unrecognized char: %c\n", *cur);
return -EINVAL;
}
cur += strlen(suffix);
if (*cur != ' ' && *cur != '\0') {
pr_warn("crashkernel: unrecognized char: %c\n", *cur);
return -EINVAL;
}
return 0;
}
static __init char *get_last_crashkernel(char *cmdline,
const char *name,
const char *suffix)
{
char *p = cmdline, *ck_cmdline = NULL;
/* find crashkernel and use the last one if there are more */
p = strstr(p, name);
while (p) {
char *end_p = strchr(p, ' ');
char *q;
if (!end_p)
end_p = p + strlen(p);
if (!suffix) {
int i;
/* skip the one with any known suffix */
for (i = 0; suffix_tbl[i]; i++) {
q = end_p - strlen(suffix_tbl[i]);
if (!strncmp(q, suffix_tbl[i],
strlen(suffix_tbl[i])))
goto next;
}
ck_cmdline = p;
} else {
q = end_p - strlen(suffix);
if (!strncmp(q, suffix, strlen(suffix)))
ck_cmdline = p;
}
next:
p = strstr(p+1, name);
}
return ck_cmdline;
}
static int __init __parse_crashkernel(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base,
const char *name,
const char *suffix)
{
char *first_colon, *first_space;
char *ck_cmdline;
BUG_ON(!crash_size || !crash_base);
*crash_size = 0;
*crash_base = 0;
ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
if (!ck_cmdline)
return -ENOENT;
ck_cmdline += strlen(name);
if (suffix)
return parse_crashkernel_suffix(ck_cmdline, crash_size,
suffix);
/*
* if the commandline contains a ':', then that's the extended
* syntax -- if not, it must be the classic syntax
*/
first_colon = strchr(ck_cmdline, ':');
first_space = strchr(ck_cmdline, ' ');
if (first_colon && (!first_space || first_colon < first_space))
return parse_crashkernel_mem(ck_cmdline, system_ram,
crash_size, crash_base);
return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
}
/*
* That function is the entry point for command line parsing and should be
* called from the arch-specific code.
*/
int __init parse_crashkernel(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
"crashkernel=", NULL);
}
int __init parse_crashkernel_high(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
}
int __init parse_crashkernel_low(char *cmdline,
unsigned long long system_ram,
unsigned long long *crash_size,
unsigned long long *crash_base)
{
return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
"crashkernel=", suffix_tbl[SUFFIX_LOW]);
}
/*
* Add a dummy early_param handler to mark crashkernel= as a known command line
* parameter and suppress incorrect warnings in init/main.c.
*/
static int __init parse_crashkernel_dummy(char *arg)
{
return 0;
}
early_param("crashkernel", parse_crashkernel_dummy);
int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
void **addr, unsigned long *sz)
{
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
unsigned char *buf;
unsigned int cpu, i;
unsigned long long notes_addr;
unsigned long mstart, mend;
/* extra phdr for vmcoreinfo ELF note */
nr_phdr = nr_cpus + 1;
nr_phdr += mem->nr_ranges;
/*
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
* area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
* I think this is required by tools like gdb. So same physical
* memory will be mapped in two ELF headers. One will contain kernel
* text virtual addresses and other will have __va(physical) addresses.
*/
nr_phdr++;
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
buf = vzalloc(elf_sz);
if (!buf)
return -ENOMEM;
ehdr = (Elf64_Ehdr *)buf;
phdr = (Elf64_Phdr *)(ehdr + 1);
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
ehdr->e_type = ET_CORE;
ehdr->e_machine = ELF_ARCH;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(Elf64_Ehdr);
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
ehdr->e_phentsize = sizeof(Elf64_Phdr);
/* Prepare one phdr of type PT_NOTE for each present CPU */
for_each_present_cpu(cpu) {
phdr->p_type = PT_NOTE;
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
phdr->p_offset = phdr->p_paddr = notes_addr;
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
(ehdr->e_phnum)++;
phdr++;
}
/* Prepare one PT_NOTE header for vmcoreinfo */
phdr->p_type = PT_NOTE;
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
(ehdr->e_phnum)++;
phdr++;
/* Prepare PT_LOAD type program header for kernel text region */
if (need_kernel_map) {
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_vaddr = (unsigned long) _text;
phdr->p_filesz = phdr->p_memsz = _end - _text;
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
ehdr->e_phnum++;
phdr++;
}
/* Go through all the ranges in mem->ranges[] and prepare phdr */
for (i = 0; i < mem->nr_ranges; i++) {
mstart = mem->ranges[i].start;
mend = mem->ranges[i].end;
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_offset = mstart;
phdr->p_paddr = mstart;
phdr->p_vaddr = (unsigned long) __va(mstart);
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
phdr->p_align = 0;
ehdr->e_phnum++;
pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
ehdr->e_phnum, phdr->p_offset);
phdr++;
}
*addr = buf;
*sz = elf_sz;
return 0;
}
int crash_exclude_mem_range(struct crash_mem *mem,
unsigned long long mstart, unsigned long long mend)
{
int i, j;
unsigned long long start, end, p_start, p_end;
struct range temp_range = {0, 0};
for (i = 0; i < mem->nr_ranges; i++) {
start = mem->ranges[i].start;
end = mem->ranges[i].end;
p_start = mstart;
p_end = mend;
if (mstart > end || mend < start)
continue;
/* Truncate any area outside of range */
if (mstart < start)
p_start = start;
if (mend > end)
p_end = end;
/* Found completely overlapping range */
if (p_start == start && p_end == end) {
mem->ranges[i].start = 0;
mem->ranges[i].end = 0;
if (i < mem->nr_ranges - 1) {
/* Shift rest of the ranges to left */
for (j = i; j < mem->nr_ranges - 1; j++) {
mem->ranges[j].start =
mem->ranges[j+1].start;
mem->ranges[j].end =
mem->ranges[j+1].end;
}
/*
* Continue to check if there are another overlapping ranges
* from the current position because of shifting the above
* mem ranges.
*/
i--;
mem->nr_ranges--;
continue;
}
mem->nr_ranges--;
return 0;
}
if (p_start > start && p_end < end) {
/* Split original range */
mem->ranges[i].end = p_start - 1;
temp_range.start = p_end + 1;
temp_range.end = end;
} else if (p_start != start)
mem->ranges[i].end = p_start - 1;
else
mem->ranges[i].start = p_end + 1;
break;
}
/* If a split happened, add the split to array */
if (!temp_range.end)
return 0;
/* Split happened */
if (i == mem->max_nr_ranges - 1)
return -ENOMEM;
/* Location where new range should go */
j = i + 1;
if (j < mem->nr_ranges) {
/* Move over all ranges one slot towards the end */
for (i = mem->nr_ranges - 1; i >= j; i--)
mem->ranges[i + 1] = mem->ranges[i];
}
mem->ranges[j].start = temp_range.start;
mem->ranges[j].end = temp_range.end;
mem->nr_ranges++;
return 0;
}
Elf_Word *append_elf_note(Elf_Word *buf, char *name, unsigned int type,
void *data, size_t data_len)
{
struct elf_note *note = (struct elf_note *)buf;
note->n_namesz = strlen(name) + 1;
note->n_descsz = data_len;
note->n_type = type;
buf += DIV_ROUND_UP(sizeof(*note), sizeof(Elf_Word));
memcpy(buf, name, note->n_namesz);
buf += DIV_ROUND_UP(note->n_namesz, sizeof(Elf_Word));
memcpy(buf, data, data_len);
buf += DIV_ROUND_UP(data_len, sizeof(Elf_Word));
return buf;
}
void final_note(Elf_Word *buf)
{
memset(buf, 0, sizeof(struct elf_note));
}
static void update_vmcoreinfo_note(void)
{
u32 *buf = vmcoreinfo_note;
if (!vmcoreinfo_size)
return;
buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
vmcoreinfo_size);
final_note(buf);
}
void crash_update_vmcoreinfo_safecopy(void *ptr)
{
if (ptr)
memcpy(ptr, vmcoreinfo_data, vmcoreinfo_size);
vmcoreinfo_data_safecopy = ptr;
}
void crash_save_vmcoreinfo(void)
{
if (!vmcoreinfo_note)
return;
/* Use the safe copy to generate vmcoreinfo note if have */
if (vmcoreinfo_data_safecopy)
vmcoreinfo_data = vmcoreinfo_data_safecopy;
vmcoreinfo_append_str("CRASHTIME=%lld\n", ktime_get_real_seconds());
update_vmcoreinfo_note();
}
void vmcoreinfo_append_str(const char *fmt, ...)
{
va_list args;
char buf[0x50];
size_t r;
va_start(args, fmt);
r = vscnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
r = min(r, (size_t)VMCOREINFO_BYTES - vmcoreinfo_size);
memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
vmcoreinfo_size += r;
WARN_ONCE(vmcoreinfo_size == VMCOREINFO_BYTES,
"vmcoreinfo data exceeds allocated size, truncating");
}
/*
* provide an empty default implementation here -- architecture
* code may override this
*/
void __weak arch_crash_save_vmcoreinfo(void)
{}
phys_addr_t __weak paddr_vmcoreinfo_note(void)
{
return __pa(vmcoreinfo_note);
}
EXPORT_SYMBOL(paddr_vmcoreinfo_note);
static int __init crash_save_vmcoreinfo_init(void)
{
vmcoreinfo_data = (unsigned char *)get_zeroed_page(GFP_KERNEL);
if (!vmcoreinfo_data) {
pr_warn("Memory allocation for vmcoreinfo_data failed\n");
return -ENOMEM;
}
vmcoreinfo_note = alloc_pages_exact(VMCOREINFO_NOTE_SIZE,
GFP_KERNEL | __GFP_ZERO);
if (!vmcoreinfo_note) {
free_page((unsigned long)vmcoreinfo_data);
vmcoreinfo_data = NULL;
pr_warn("Memory allocation for vmcoreinfo_note failed\n");
return -ENOMEM;
}
VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
VMCOREINFO_BUILD_ID();
VMCOREINFO_PAGESIZE(PAGE_SIZE);
VMCOREINFO_SYMBOL(init_uts_ns);
VMCOREINFO_OFFSET(uts_namespace, name);
VMCOREINFO_SYMBOL(node_online_map);
#ifdef CONFIG_MMU
VMCOREINFO_SYMBOL_ARRAY(swapper_pg_dir);
#endif
VMCOREINFO_SYMBOL(_stext);
VMCOREINFO_SYMBOL(vmap_area_list);
#ifndef CONFIG_NUMA
VMCOREINFO_SYMBOL(mem_map);
VMCOREINFO_SYMBOL(contig_page_data);
#endif
#ifdef CONFIG_SPARSEMEM
VMCOREINFO_SYMBOL_ARRAY(mem_section);
VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
VMCOREINFO_STRUCT_SIZE(mem_section);
VMCOREINFO_OFFSET(mem_section, section_mem_map);
VMCOREINFO_NUMBER(SECTION_SIZE_BITS);
VMCOREINFO_NUMBER(MAX_PHYSMEM_BITS);
#endif
VMCOREINFO_STRUCT_SIZE(page);
VMCOREINFO_STRUCT_SIZE(pglist_data);
VMCOREINFO_STRUCT_SIZE(zone);
VMCOREINFO_STRUCT_SIZE(free_area);
VMCOREINFO_STRUCT_SIZE(list_head);
VMCOREINFO_SIZE(nodemask_t);
VMCOREINFO_OFFSET(page, flags);
VMCOREINFO_OFFSET(page, _refcount);
VMCOREINFO_OFFSET(page, mapping);
VMCOREINFO_OFFSET(page, lru);
VMCOREINFO_OFFSET(page, _mapcount);
VMCOREINFO_OFFSET(page, private);
VMCOREINFO_OFFSET(folio, _folio_dtor);
VMCOREINFO_OFFSET(folio, _folio_order);
VMCOREINFO_OFFSET(page, compound_head);
VMCOREINFO_OFFSET(pglist_data, node_zones);
VMCOREINFO_OFFSET(pglist_data, nr_zones);
#ifdef CONFIG_FLATMEM
VMCOREINFO_OFFSET(pglist_data, node_mem_map);
#endif
VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
VMCOREINFO_OFFSET(pglist_data, node_id);
VMCOREINFO_OFFSET(zone, free_area);
VMCOREINFO_OFFSET(zone, vm_stat);
VMCOREINFO_OFFSET(zone, spanned_pages);
VMCOREINFO_OFFSET(free_area, free_list);
VMCOREINFO_OFFSET(list_head, next);
VMCOREINFO_OFFSET(list_head, prev);
VMCOREINFO_OFFSET(vmap_area, va_start);
VMCOREINFO_OFFSET(vmap_area, list);
VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER + 1);
log_buf_vmcoreinfo_setup();
VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
VMCOREINFO_NUMBER(NR_FREE_PAGES);
VMCOREINFO_NUMBER(PG_lru);
VMCOREINFO_NUMBER(PG_private);
VMCOREINFO_NUMBER(PG_swapcache);
VMCOREINFO_NUMBER(PG_swapbacked);
VMCOREINFO_NUMBER(PG_slab);
#ifdef CONFIG_MEMORY_FAILURE
VMCOREINFO_NUMBER(PG_hwpoison);
#endif
VMCOREINFO_NUMBER(PG_head_mask);
#define PAGE_BUDDY_MAPCOUNT_VALUE (~PG_buddy)
VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
#ifdef CONFIG_HUGETLB_PAGE
VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
#define PAGE_OFFLINE_MAPCOUNT_VALUE (~PG_offline)
VMCOREINFO_NUMBER(PAGE_OFFLINE_MAPCOUNT_VALUE);
#endif
#ifdef CONFIG_KALLSYMS
VMCOREINFO_SYMBOL(kallsyms_names);
VMCOREINFO_SYMBOL(kallsyms_num_syms);
VMCOREINFO_SYMBOL(kallsyms_token_table);
VMCOREINFO_SYMBOL(kallsyms_token_index);
#ifdef CONFIG_KALLSYMS_BASE_RELATIVE
VMCOREINFO_SYMBOL(kallsyms_offsets);
VMCOREINFO_SYMBOL(kallsyms_relative_base);
#else
VMCOREINFO_SYMBOL(kallsyms_addresses);
#endif /* CONFIG_KALLSYMS_BASE_RELATIVE */
#endif /* CONFIG_KALLSYMS */
arch_crash_save_vmcoreinfo();
update_vmcoreinfo_note();
return 0;
}
subsys_initcall(crash_save_vmcoreinfo_init);
static int __init crash_notes_memory_init(void)
{
/* Allocate memory for saving cpu registers. */
size_t size, align;
/*
* crash_notes could be allocated across 2 vmalloc pages when percpu
* is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
* pages are also on 2 continuous physical pages. In this case the
* 2nd part of crash_notes in 2nd page could be lost since only the
* starting address and size of crash_notes are exported through sysfs.
* Here round up the size of crash_notes to the nearest power of two
* and pass it to __alloc_percpu as align value. This can make sure
* crash_notes is allocated inside one physical page.
*/
size = sizeof(note_buf_t);
align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
/*
* Break compile if size is bigger than PAGE_SIZE since crash_notes
* definitely will be in 2 pages with that.
*/
BUILD_BUG_ON(size > PAGE_SIZE);
crash_notes = __alloc_percpu(size, align);
if (!crash_notes) {
pr_warn("Memory allocation for saving cpu register states failed\n");
return -ENOMEM;
}
return 0;
}
subsys_initcall(crash_notes_memory_init);
#ifdef CONFIG_CRASH_HOTPLUG
#undef pr_fmt
#define pr_fmt(fmt) "crash hp: " fmt
/*
* This routine utilized when the crash_hotplug sysfs node is read.
* It reflects the kernel's ability/permission to update the crash
* elfcorehdr directly.
*/
int crash_check_update_elfcorehdr(void)
{
int rc = 0;
/* Obtain lock while reading crash information */
if (!kexec_trylock()) {
pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
return 0;
}
if (kexec_crash_image) {
if (kexec_crash_image->file_mode)
rc = 1;
else
rc = kexec_crash_image->update_elfcorehdr;
}
/* Release lock now that update complete */
kexec_unlock();
return rc;
}
/*
* To accurately reflect hot un/plug changes of cpu and memory resources
* (including onling and offlining of those resources), the elfcorehdr
* (which is passed to the crash kernel via the elfcorehdr= parameter)
* must be updated with the new list of CPUs and memories.
*
* In order to make changes to elfcorehdr, two conditions are needed:
* First, the segment containing the elfcorehdr must be large enough
* to permit a growing number of resources; the elfcorehdr memory size
* is based on NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES.
* Second, purgatory must explicitly exclude the elfcorehdr from the
* list of segments it checks (since the elfcorehdr changes and thus
* would require an update to purgatory itself to update the digest).
*/
static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu)
{
struct kimage *image;
/* Obtain lock while changing crash information */
if (!kexec_trylock()) {
pr_info("kexec_trylock() failed, elfcorehdr may be inaccurate\n");
return;
}
/* Check kdump is not loaded */
if (!kexec_crash_image)
goto out;
image = kexec_crash_image;
/* Check that updating elfcorehdr is permitted */
if (!(image->file_mode || image->update_elfcorehdr))
goto out;
if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
else
pr_debug("hp_action %u\n", hp_action);
/*
* The elfcorehdr_index is set to -1 when the struct kimage
* is allocated. Find the segment containing the elfcorehdr,
* if not already found.
*/
if (image->elfcorehdr_index < 0) {
unsigned long mem;
unsigned char *ptr;
unsigned int n;
for (n = 0; n < image->nr_segments; n++) {
mem = image->segment[n].mem;
ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
if (ptr) {
/* The segment containing elfcorehdr */
if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
image->elfcorehdr_index = (int)n;
kunmap_local(ptr);
}
}
}
if (image->elfcorehdr_index < 0) {
pr_err("unable to locate elfcorehdr segment");
goto out;
}
/* Needed in order for the segments to be updated */
arch_kexec_unprotect_crashkres();
/* Differentiate between normal load and hotplug update */
image->hp_action = hp_action;
/* Now invoke arch-specific update handler */
arch_crash_handle_hotplug_event(image);
/* No longer handling a hotplug event */
image->hp_action = KEXEC_CRASH_HP_NONE;
image->elfcorehdr_updated = true;
/* Change back to read-only */
arch_kexec_protect_crashkres();
/* Errors in the callback is not a reason to rollback state */
out:
/* Release lock now that update complete */
kexec_unlock();
}
static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *v)
{
switch (val) {
case MEM_ONLINE:
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
KEXEC_CRASH_HP_INVALID_CPU);
break;
case MEM_OFFLINE:
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
KEXEC_CRASH_HP_INVALID_CPU);
break;
}
return NOTIFY_OK;
}
static struct notifier_block crash_memhp_nb = {
.notifier_call = crash_memhp_notifier,
.priority = 0
};
static int crash_cpuhp_online(unsigned int cpu)
{
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu);
return 0;
}
static int crash_cpuhp_offline(unsigned int cpu)
{
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu);
return 0;
}
static int __init crash_hotplug_init(void)
{
int result = 0;
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
register_memory_notifier(&crash_memhp_nb);
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
}
return result;
}
subsys_initcall(crash_hotplug_init);
#endif