mirror of
https://github.com/torvalds/linux.git
synced 2024-12-26 04:42:12 +00:00
a728b97742
Currently, the coherency fabric support registers two bus notifiers;
one for platform, one for pci bus types, with the same notifier block.
However, this is illegal and can cause serious issues: the notifier
block is also a link in the notifier list and cannot be inserted twice.
This commit fixes this by using different notifier blocks (with the same
notifier callback) to set the platform and pci bus types notifiers.
Fixes: b0063aad5d
("ARM: mvebu: use hardware I/O coherency also for PCI devices")
Reported-by: Paolo Pisati <p.pisati@gmail.com>
Signed-off-by: Ezequiel Garcia <ezequiel.garcia@free-electrons.com>
Link: https://lkml.kernel.org/r/1404826657-6977-1-git-send-email-ezequiel.garcia@free-electrons.com
Signed-off-by: Jason Cooper <jason@lakedaemon.net>
440 lines
12 KiB
C
440 lines
12 KiB
C
/*
|
|
* Coherency fabric (Aurora) support for Armada 370 and XP platforms.
|
|
*
|
|
* Copyright (C) 2012 Marvell
|
|
*
|
|
* Yehuda Yitschak <yehuday@marvell.com>
|
|
* Gregory Clement <gregory.clement@free-electrons.com>
|
|
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
|
|
*
|
|
* This file is licensed under the terms of the GNU General Public
|
|
* License version 2. This program is licensed "as is" without any
|
|
* warranty of any kind, whether express or implied.
|
|
*
|
|
* The Armada 370 and Armada XP SOCs have a coherency fabric which is
|
|
* responsible for ensuring hardware coherency between all CPUs and between
|
|
* CPUs and I/O masters. This file initializes the coherency fabric and
|
|
* supplies basic routines for configuring and controlling hardware coherency
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "mvebu-coherency: " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/io.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mbus.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/pci.h>
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/mach/map.h>
|
|
#include "armada-370-xp.h"
|
|
#include "coherency.h"
|
|
#include "mvebu-soc-id.h"
|
|
|
|
unsigned long coherency_phys_base;
|
|
void __iomem *coherency_base;
|
|
static void __iomem *coherency_cpu_base;
|
|
|
|
/* Coherency fabric registers */
|
|
#define COHERENCY_FABRIC_CFG_OFFSET 0x4
|
|
|
|
#define IO_SYNC_BARRIER_CTL_OFFSET 0x0
|
|
|
|
enum {
|
|
COHERENCY_FABRIC_TYPE_NONE,
|
|
COHERENCY_FABRIC_TYPE_ARMADA_370_XP,
|
|
COHERENCY_FABRIC_TYPE_ARMADA_375,
|
|
COHERENCY_FABRIC_TYPE_ARMADA_380,
|
|
};
|
|
|
|
static struct of_device_id of_coherency_table[] = {
|
|
{.compatible = "marvell,coherency-fabric",
|
|
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_370_XP },
|
|
{.compatible = "marvell,armada-375-coherency-fabric",
|
|
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_375 },
|
|
{.compatible = "marvell,armada-380-coherency-fabric",
|
|
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_380 },
|
|
{ /* end of list */ },
|
|
};
|
|
|
|
/* Functions defined in coherency_ll.S */
|
|
int ll_enable_coherency(void);
|
|
void ll_add_cpu_to_smp_group(void);
|
|
|
|
int set_cpu_coherent(void)
|
|
{
|
|
if (!coherency_base) {
|
|
pr_warn("Can't make current CPU cache coherent.\n");
|
|
pr_warn("Coherency fabric is not initialized\n");
|
|
return 1;
|
|
}
|
|
|
|
ll_add_cpu_to_smp_group();
|
|
return ll_enable_coherency();
|
|
}
|
|
|
|
/*
|
|
* The below code implements the I/O coherency workaround on Armada
|
|
* 375. This workaround consists in using the two channels of the
|
|
* first XOR engine to trigger a XOR transaction that serves as the
|
|
* I/O coherency barrier.
|
|
*/
|
|
|
|
static void __iomem *xor_base, *xor_high_base;
|
|
static dma_addr_t coherency_wa_buf_phys[CONFIG_NR_CPUS];
|
|
static void *coherency_wa_buf[CONFIG_NR_CPUS];
|
|
static bool coherency_wa_enabled;
|
|
|
|
#define XOR_CONFIG(chan) (0x10 + (chan * 4))
|
|
#define XOR_ACTIVATION(chan) (0x20 + (chan * 4))
|
|
#define WINDOW_BAR_ENABLE(chan) (0x240 + ((chan) << 2))
|
|
#define WINDOW_BASE(w) (0x250 + ((w) << 2))
|
|
#define WINDOW_SIZE(w) (0x270 + ((w) << 2))
|
|
#define WINDOW_REMAP_HIGH(w) (0x290 + ((w) << 2))
|
|
#define WINDOW_OVERRIDE_CTRL(chan) (0x2A0 + ((chan) << 2))
|
|
#define XOR_DEST_POINTER(chan) (0x2B0 + (chan * 4))
|
|
#define XOR_BLOCK_SIZE(chan) (0x2C0 + (chan * 4))
|
|
#define XOR_INIT_VALUE_LOW 0x2E0
|
|
#define XOR_INIT_VALUE_HIGH 0x2E4
|
|
|
|
static inline void mvebu_hwcc_armada375_sync_io_barrier_wa(void)
|
|
{
|
|
int idx = smp_processor_id();
|
|
|
|
/* Write '1' to the first word of the buffer */
|
|
writel(0x1, coherency_wa_buf[idx]);
|
|
|
|
/* Wait until the engine is idle */
|
|
while ((readl(xor_base + XOR_ACTIVATION(idx)) >> 4) & 0x3)
|
|
;
|
|
|
|
dmb();
|
|
|
|
/* Trigger channel */
|
|
writel(0x1, xor_base + XOR_ACTIVATION(idx));
|
|
|
|
/* Poll the data until it is cleared by the XOR transaction */
|
|
while (readl(coherency_wa_buf[idx]))
|
|
;
|
|
}
|
|
|
|
static void __init armada_375_coherency_init_wa(void)
|
|
{
|
|
const struct mbus_dram_target_info *dram;
|
|
struct device_node *xor_node;
|
|
struct property *xor_status;
|
|
struct clk *xor_clk;
|
|
u32 win_enable = 0;
|
|
int i;
|
|
|
|
pr_warn("enabling coherency workaround for Armada 375 Z1, one XOR engine disabled\n");
|
|
|
|
/*
|
|
* Since the workaround uses one XOR engine, we grab a
|
|
* reference to its Device Tree node first.
|
|
*/
|
|
xor_node = of_find_compatible_node(NULL, NULL, "marvell,orion-xor");
|
|
BUG_ON(!xor_node);
|
|
|
|
/*
|
|
* Then we mark it as disabled so that the real XOR driver
|
|
* will not use it.
|
|
*/
|
|
xor_status = kzalloc(sizeof(struct property), GFP_KERNEL);
|
|
BUG_ON(!xor_status);
|
|
|
|
xor_status->value = kstrdup("disabled", GFP_KERNEL);
|
|
BUG_ON(!xor_status->value);
|
|
|
|
xor_status->length = 8;
|
|
xor_status->name = kstrdup("status", GFP_KERNEL);
|
|
BUG_ON(!xor_status->name);
|
|
|
|
of_update_property(xor_node, xor_status);
|
|
|
|
/*
|
|
* And we remap the registers, get the clock, and do the
|
|
* initial configuration of the XOR engine.
|
|
*/
|
|
xor_base = of_iomap(xor_node, 0);
|
|
xor_high_base = of_iomap(xor_node, 1);
|
|
|
|
xor_clk = of_clk_get_by_name(xor_node, NULL);
|
|
BUG_ON(!xor_clk);
|
|
|
|
clk_prepare_enable(xor_clk);
|
|
|
|
dram = mv_mbus_dram_info();
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
writel(0, xor_base + WINDOW_BASE(i));
|
|
writel(0, xor_base + WINDOW_SIZE(i));
|
|
if (i < 4)
|
|
writel(0, xor_base + WINDOW_REMAP_HIGH(i));
|
|
}
|
|
|
|
for (i = 0; i < dram->num_cs; i++) {
|
|
const struct mbus_dram_window *cs = dram->cs + i;
|
|
writel((cs->base & 0xffff0000) |
|
|
(cs->mbus_attr << 8) |
|
|
dram->mbus_dram_target_id, xor_base + WINDOW_BASE(i));
|
|
writel((cs->size - 1) & 0xffff0000, xor_base + WINDOW_SIZE(i));
|
|
|
|
win_enable |= (1 << i);
|
|
win_enable |= 3 << (16 + (2 * i));
|
|
}
|
|
|
|
writel(win_enable, xor_base + WINDOW_BAR_ENABLE(0));
|
|
writel(win_enable, xor_base + WINDOW_BAR_ENABLE(1));
|
|
writel(0, xor_base + WINDOW_OVERRIDE_CTRL(0));
|
|
writel(0, xor_base + WINDOW_OVERRIDE_CTRL(1));
|
|
|
|
for (i = 0; i < CONFIG_NR_CPUS; i++) {
|
|
coherency_wa_buf[i] = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
|
BUG_ON(!coherency_wa_buf[i]);
|
|
|
|
/*
|
|
* We can't use the DMA mapping API, since we don't
|
|
* have a valid 'struct device' pointer
|
|
*/
|
|
coherency_wa_buf_phys[i] =
|
|
virt_to_phys(coherency_wa_buf[i]);
|
|
BUG_ON(!coherency_wa_buf_phys[i]);
|
|
|
|
/*
|
|
* Configure the XOR engine for memset operation, with
|
|
* a 128 bytes block size
|
|
*/
|
|
writel(0x444, xor_base + XOR_CONFIG(i));
|
|
writel(128, xor_base + XOR_BLOCK_SIZE(i));
|
|
writel(coherency_wa_buf_phys[i],
|
|
xor_base + XOR_DEST_POINTER(i));
|
|
}
|
|
|
|
writel(0x0, xor_base + XOR_INIT_VALUE_LOW);
|
|
writel(0x0, xor_base + XOR_INIT_VALUE_HIGH);
|
|
|
|
coherency_wa_enabled = true;
|
|
}
|
|
|
|
static inline void mvebu_hwcc_sync_io_barrier(void)
|
|
{
|
|
if (coherency_wa_enabled) {
|
|
mvebu_hwcc_armada375_sync_io_barrier_wa();
|
|
return;
|
|
}
|
|
|
|
writel(0x1, coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET);
|
|
while (readl(coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET) & 0x1);
|
|
}
|
|
|
|
static dma_addr_t mvebu_hwcc_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
if (dir != DMA_TO_DEVICE)
|
|
mvebu_hwcc_sync_io_barrier();
|
|
return pfn_to_dma(dev, page_to_pfn(page)) + offset;
|
|
}
|
|
|
|
|
|
static void mvebu_hwcc_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
|
|
size_t size, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
if (dir != DMA_TO_DEVICE)
|
|
mvebu_hwcc_sync_io_barrier();
|
|
}
|
|
|
|
static void mvebu_hwcc_dma_sync(struct device *dev, dma_addr_t dma_handle,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (dir != DMA_TO_DEVICE)
|
|
mvebu_hwcc_sync_io_barrier();
|
|
}
|
|
|
|
static struct dma_map_ops mvebu_hwcc_dma_ops = {
|
|
.alloc = arm_dma_alloc,
|
|
.free = arm_dma_free,
|
|
.mmap = arm_dma_mmap,
|
|
.map_page = mvebu_hwcc_dma_map_page,
|
|
.unmap_page = mvebu_hwcc_dma_unmap_page,
|
|
.get_sgtable = arm_dma_get_sgtable,
|
|
.map_sg = arm_dma_map_sg,
|
|
.unmap_sg = arm_dma_unmap_sg,
|
|
.sync_single_for_cpu = mvebu_hwcc_dma_sync,
|
|
.sync_single_for_device = mvebu_hwcc_dma_sync,
|
|
.sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
|
|
.sync_sg_for_device = arm_dma_sync_sg_for_device,
|
|
.set_dma_mask = arm_dma_set_mask,
|
|
};
|
|
|
|
static int mvebu_hwcc_notifier(struct notifier_block *nb,
|
|
unsigned long event, void *__dev)
|
|
{
|
|
struct device *dev = __dev;
|
|
|
|
if (event != BUS_NOTIFY_ADD_DEVICE)
|
|
return NOTIFY_DONE;
|
|
set_dma_ops(dev, &mvebu_hwcc_dma_ops);
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block mvebu_hwcc_nb = {
|
|
.notifier_call = mvebu_hwcc_notifier,
|
|
};
|
|
|
|
static struct notifier_block mvebu_hwcc_pci_nb = {
|
|
.notifier_call = mvebu_hwcc_notifier,
|
|
};
|
|
|
|
static void __init armada_370_coherency_init(struct device_node *np)
|
|
{
|
|
struct resource res;
|
|
|
|
of_address_to_resource(np, 0, &res);
|
|
coherency_phys_base = res.start;
|
|
/*
|
|
* Ensure secondary CPUs will see the updated value,
|
|
* which they read before they join the coherency
|
|
* fabric, and therefore before they are coherent with
|
|
* the boot CPU cache.
|
|
*/
|
|
sync_cache_w(&coherency_phys_base);
|
|
coherency_base = of_iomap(np, 0);
|
|
coherency_cpu_base = of_iomap(np, 1);
|
|
set_cpu_coherent();
|
|
}
|
|
|
|
/*
|
|
* This ioremap hook is used on Armada 375/38x to ensure that PCIe
|
|
* memory areas are mapped as MT_UNCACHED instead of MT_DEVICE. This
|
|
* is needed as a workaround for a deadlock issue between the PCIe
|
|
* interface and the cache controller.
|
|
*/
|
|
static void __iomem *
|
|
armada_pcie_wa_ioremap_caller(phys_addr_t phys_addr, size_t size,
|
|
unsigned int mtype, void *caller)
|
|
{
|
|
struct resource pcie_mem;
|
|
|
|
mvebu_mbus_get_pcie_mem_aperture(&pcie_mem);
|
|
|
|
if (pcie_mem.start <= phys_addr && (phys_addr + size) <= pcie_mem.end)
|
|
mtype = MT_UNCACHED;
|
|
|
|
return __arm_ioremap_caller(phys_addr, size, mtype, caller);
|
|
}
|
|
|
|
static void __init armada_375_380_coherency_init(struct device_node *np)
|
|
{
|
|
struct device_node *cache_dn;
|
|
|
|
coherency_cpu_base = of_iomap(np, 0);
|
|
arch_ioremap_caller = armada_pcie_wa_ioremap_caller;
|
|
|
|
/*
|
|
* Add the PL310 property "arm,io-coherent". This makes sure the
|
|
* outer sync operation is not used, which allows to
|
|
* workaround the system erratum that causes deadlocks when
|
|
* doing PCIe in an SMP situation on Armada 375 and Armada
|
|
* 38x.
|
|
*/
|
|
for_each_compatible_node(cache_dn, NULL, "arm,pl310-cache") {
|
|
struct property *p;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
p->name = kstrdup("arm,io-coherent", GFP_KERNEL);
|
|
of_add_property(cache_dn, p);
|
|
}
|
|
}
|
|
|
|
static int coherency_type(void)
|
|
{
|
|
struct device_node *np;
|
|
const struct of_device_id *match;
|
|
|
|
np = of_find_matching_node_and_match(NULL, of_coherency_table, &match);
|
|
if (np) {
|
|
int type = (int) match->data;
|
|
|
|
/* Armada 370/XP coherency works in both UP and SMP */
|
|
if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP)
|
|
return type;
|
|
|
|
/* Armada 375 coherency works only on SMP */
|
|
else if (type == COHERENCY_FABRIC_TYPE_ARMADA_375 && is_smp())
|
|
return type;
|
|
|
|
/* Armada 380 coherency works only on SMP */
|
|
else if (type == COHERENCY_FABRIC_TYPE_ARMADA_380 && is_smp())
|
|
return type;
|
|
}
|
|
|
|
return COHERENCY_FABRIC_TYPE_NONE;
|
|
}
|
|
|
|
int coherency_available(void)
|
|
{
|
|
return coherency_type() != COHERENCY_FABRIC_TYPE_NONE;
|
|
}
|
|
|
|
int __init coherency_init(void)
|
|
{
|
|
int type = coherency_type();
|
|
struct device_node *np;
|
|
|
|
np = of_find_matching_node(NULL, of_coherency_table);
|
|
|
|
if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP)
|
|
armada_370_coherency_init(np);
|
|
else if (type == COHERENCY_FABRIC_TYPE_ARMADA_375 ||
|
|
type == COHERENCY_FABRIC_TYPE_ARMADA_380)
|
|
armada_375_380_coherency_init(np);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init coherency_late_init(void)
|
|
{
|
|
int type = coherency_type();
|
|
|
|
if (type == COHERENCY_FABRIC_TYPE_NONE)
|
|
return 0;
|
|
|
|
if (type == COHERENCY_FABRIC_TYPE_ARMADA_375) {
|
|
u32 dev, rev;
|
|
|
|
if (mvebu_get_soc_id(&dev, &rev) == 0 &&
|
|
rev == ARMADA_375_Z1_REV)
|
|
armada_375_coherency_init_wa();
|
|
}
|
|
|
|
bus_register_notifier(&platform_bus_type,
|
|
&mvebu_hwcc_nb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
postcore_initcall(coherency_late_init);
|
|
|
|
#if IS_ENABLED(CONFIG_PCI)
|
|
static int __init coherency_pci_init(void)
|
|
{
|
|
if (coherency_available())
|
|
bus_register_notifier(&pci_bus_type,
|
|
&mvebu_hwcc_pci_nb);
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(coherency_pci_init);
|
|
#endif
|