mirror of
https://github.com/torvalds/linux.git
synced 2024-11-22 20:22:09 +00:00
a50026bdb8
This flag is only set by one single user: the magical core dumping code that looks up user pages one by one, and then writes them out using their kernel addresses (by using a BVEC_ITER). That actually ends up being a huge problem, because while we do use copy_mc_to_kernel() for this case and it is able to handle the possible machine checks involved, nothing else is really ready to handle the failures caused by the machine check. In particular, as reported by Tong Tiangen, we don't actually support fault_in_iov_iter_readable() on a machine check area. As a result, the usual logic for writing things to a file under a filesystem lock, which involves doing a copy with page faults disabled and then if that fails trying to fault pages in without holding the locks with fault_in_iov_iter_readable() does not work at all. We could decide to always just make the MC copy "succeed" (and filling the destination with zeroes), and that would then create a core dump file that just ignores any machine checks. But honestly, this single special case has been problematic before, and means that all the normal iov_iter code ends up slightly more complex and slower. See for example commitc9eec08bac
("iov_iter: Don't deal with iter->copy_mc in memcpy_from_iter_mc()") where David Howells re-organized the code just to avoid having to check the 'copy_mc' flags inside the inner iov_iter loops. So considering that we have exactly one user, and that one user is a non-critical special case that doesn't actually ever trigger in real life (Tong found this with manual error injection), the sane solution is to just decide that the onus on handling the machine check lines on that user instead. Ergo, do the copy_mc_to_kernel() in the core dump logic itself, copying the user data to a stable kernel page before writing it out. Fixes:f1982740f5
("iov_iter: Convert iterate*() to inline funcs") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Tong Tiangen <tongtiangen@huawei.com> Link: https://lore.kernel.org/r/20240305133336.3804360-1-tongtiangen@huawei.com Link: https://lore.kernel.org/all/4e80924d-9c85-f13a-722a-6a5d2b1c225a@huawei.com/ Tested-by: David Howells <dhowells@redhat.com> Reviewed-by: David Howells <dhowells@redhat.com> Reviewed-by: Jens Axboe <axboe@kernel.dk> Reported-by: Tong Tiangen <tongtiangen@huawei.com> Signed-off-by: Christian Brauner <brauner@kernel.org>
1243 lines
30 KiB
C
1243 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/slab.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/key.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/coredump.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/module.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/tsacct_kern.h>
|
|
#include <linux/cn_proc.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/path.h>
|
|
#include <linux/timekeeping.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/elf.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/exec.h>
|
|
|
|
#include <trace/events/task.h>
|
|
#include "internal.h"
|
|
|
|
#include <trace/events/sched.h>
|
|
|
|
static bool dump_vma_snapshot(struct coredump_params *cprm);
|
|
static void free_vma_snapshot(struct coredump_params *cprm);
|
|
|
|
static int core_uses_pid;
|
|
static unsigned int core_pipe_limit;
|
|
static char core_pattern[CORENAME_MAX_SIZE] = "core";
|
|
static int core_name_size = CORENAME_MAX_SIZE;
|
|
|
|
struct core_name {
|
|
char *corename;
|
|
int used, size;
|
|
};
|
|
|
|
static int expand_corename(struct core_name *cn, int size)
|
|
{
|
|
char *corename;
|
|
|
|
size = kmalloc_size_roundup(size);
|
|
corename = krealloc(cn->corename, size, GFP_KERNEL);
|
|
|
|
if (!corename)
|
|
return -ENOMEM;
|
|
|
|
if (size > core_name_size) /* racy but harmless */
|
|
core_name_size = size;
|
|
|
|
cn->size = size;
|
|
cn->corename = corename;
|
|
return 0;
|
|
}
|
|
|
|
static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
|
|
va_list arg)
|
|
{
|
|
int free, need;
|
|
va_list arg_copy;
|
|
|
|
again:
|
|
free = cn->size - cn->used;
|
|
|
|
va_copy(arg_copy, arg);
|
|
need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
|
|
va_end(arg_copy);
|
|
|
|
if (need < free) {
|
|
cn->used += need;
|
|
return 0;
|
|
}
|
|
|
|
if (!expand_corename(cn, cn->size + need - free + 1))
|
|
goto again;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
|
|
{
|
|
va_list arg;
|
|
int ret;
|
|
|
|
va_start(arg, fmt);
|
|
ret = cn_vprintf(cn, fmt, arg);
|
|
va_end(arg);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __printf(2, 3)
|
|
int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
|
|
{
|
|
int cur = cn->used;
|
|
va_list arg;
|
|
int ret;
|
|
|
|
va_start(arg, fmt);
|
|
ret = cn_vprintf(cn, fmt, arg);
|
|
va_end(arg);
|
|
|
|
if (ret == 0) {
|
|
/*
|
|
* Ensure that this coredump name component can't cause the
|
|
* resulting corefile path to consist of a ".." or ".".
|
|
*/
|
|
if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
|
|
(cn->used - cur == 2 && cn->corename[cur] == '.'
|
|
&& cn->corename[cur+1] == '.'))
|
|
cn->corename[cur] = '!';
|
|
|
|
/*
|
|
* Empty names are fishy and could be used to create a "//" in a
|
|
* corefile name, causing the coredump to happen one directory
|
|
* level too high. Enforce that all components of the core
|
|
* pattern are at least one character long.
|
|
*/
|
|
if (cn->used == cur)
|
|
ret = cn_printf(cn, "!");
|
|
}
|
|
|
|
for (; cur < cn->used; ++cur) {
|
|
if (cn->corename[cur] == '/')
|
|
cn->corename[cur] = '!';
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int cn_print_exe_file(struct core_name *cn, bool name_only)
|
|
{
|
|
struct file *exe_file;
|
|
char *pathbuf, *path, *ptr;
|
|
int ret;
|
|
|
|
exe_file = get_mm_exe_file(current->mm);
|
|
if (!exe_file)
|
|
return cn_esc_printf(cn, "%s (path unknown)", current->comm);
|
|
|
|
pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
|
|
if (!pathbuf) {
|
|
ret = -ENOMEM;
|
|
goto put_exe_file;
|
|
}
|
|
|
|
path = file_path(exe_file, pathbuf, PATH_MAX);
|
|
if (IS_ERR(path)) {
|
|
ret = PTR_ERR(path);
|
|
goto free_buf;
|
|
}
|
|
|
|
if (name_only) {
|
|
ptr = strrchr(path, '/');
|
|
if (ptr)
|
|
path = ptr + 1;
|
|
}
|
|
ret = cn_esc_printf(cn, "%s", path);
|
|
|
|
free_buf:
|
|
kfree(pathbuf);
|
|
put_exe_file:
|
|
fput(exe_file);
|
|
return ret;
|
|
}
|
|
|
|
/* format_corename will inspect the pattern parameter, and output a
|
|
* name into corename, which must have space for at least
|
|
* CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
|
|
*/
|
|
static int format_corename(struct core_name *cn, struct coredump_params *cprm,
|
|
size_t **argv, int *argc)
|
|
{
|
|
const struct cred *cred = current_cred();
|
|
const char *pat_ptr = core_pattern;
|
|
int ispipe = (*pat_ptr == '|');
|
|
bool was_space = false;
|
|
int pid_in_pattern = 0;
|
|
int err = 0;
|
|
|
|
cn->used = 0;
|
|
cn->corename = NULL;
|
|
if (expand_corename(cn, core_name_size))
|
|
return -ENOMEM;
|
|
cn->corename[0] = '\0';
|
|
|
|
if (ispipe) {
|
|
int argvs = sizeof(core_pattern) / 2;
|
|
(*argv) = kmalloc_array(argvs, sizeof(**argv), GFP_KERNEL);
|
|
if (!(*argv))
|
|
return -ENOMEM;
|
|
(*argv)[(*argc)++] = 0;
|
|
++pat_ptr;
|
|
if (!(*pat_ptr))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Repeat as long as we have more pattern to process and more output
|
|
space */
|
|
while (*pat_ptr) {
|
|
/*
|
|
* Split on spaces before doing template expansion so that
|
|
* %e and %E don't get split if they have spaces in them
|
|
*/
|
|
if (ispipe) {
|
|
if (isspace(*pat_ptr)) {
|
|
if (cn->used != 0)
|
|
was_space = true;
|
|
pat_ptr++;
|
|
continue;
|
|
} else if (was_space) {
|
|
was_space = false;
|
|
err = cn_printf(cn, "%c", '\0');
|
|
if (err)
|
|
return err;
|
|
(*argv)[(*argc)++] = cn->used;
|
|
}
|
|
}
|
|
if (*pat_ptr != '%') {
|
|
err = cn_printf(cn, "%c", *pat_ptr++);
|
|
} else {
|
|
switch (*++pat_ptr) {
|
|
/* single % at the end, drop that */
|
|
case 0:
|
|
goto out;
|
|
/* Double percent, output one percent */
|
|
case '%':
|
|
err = cn_printf(cn, "%c", '%');
|
|
break;
|
|
/* pid */
|
|
case 'p':
|
|
pid_in_pattern = 1;
|
|
err = cn_printf(cn, "%d",
|
|
task_tgid_vnr(current));
|
|
break;
|
|
/* global pid */
|
|
case 'P':
|
|
err = cn_printf(cn, "%d",
|
|
task_tgid_nr(current));
|
|
break;
|
|
case 'i':
|
|
err = cn_printf(cn, "%d",
|
|
task_pid_vnr(current));
|
|
break;
|
|
case 'I':
|
|
err = cn_printf(cn, "%d",
|
|
task_pid_nr(current));
|
|
break;
|
|
/* uid */
|
|
case 'u':
|
|
err = cn_printf(cn, "%u",
|
|
from_kuid(&init_user_ns,
|
|
cred->uid));
|
|
break;
|
|
/* gid */
|
|
case 'g':
|
|
err = cn_printf(cn, "%u",
|
|
from_kgid(&init_user_ns,
|
|
cred->gid));
|
|
break;
|
|
case 'd':
|
|
err = cn_printf(cn, "%d",
|
|
__get_dumpable(cprm->mm_flags));
|
|
break;
|
|
/* signal that caused the coredump */
|
|
case 's':
|
|
err = cn_printf(cn, "%d",
|
|
cprm->siginfo->si_signo);
|
|
break;
|
|
/* UNIX time of coredump */
|
|
case 't': {
|
|
time64_t time;
|
|
|
|
time = ktime_get_real_seconds();
|
|
err = cn_printf(cn, "%lld", time);
|
|
break;
|
|
}
|
|
/* hostname */
|
|
case 'h':
|
|
down_read(&uts_sem);
|
|
err = cn_esc_printf(cn, "%s",
|
|
utsname()->nodename);
|
|
up_read(&uts_sem);
|
|
break;
|
|
/* executable, could be changed by prctl PR_SET_NAME etc */
|
|
case 'e':
|
|
err = cn_esc_printf(cn, "%s", current->comm);
|
|
break;
|
|
/* file name of executable */
|
|
case 'f':
|
|
err = cn_print_exe_file(cn, true);
|
|
break;
|
|
case 'E':
|
|
err = cn_print_exe_file(cn, false);
|
|
break;
|
|
/* core limit size */
|
|
case 'c':
|
|
err = cn_printf(cn, "%lu",
|
|
rlimit(RLIMIT_CORE));
|
|
break;
|
|
/* CPU the task ran on */
|
|
case 'C':
|
|
err = cn_printf(cn, "%d", cprm->cpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
++pat_ptr;
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
out:
|
|
/* Backward compatibility with core_uses_pid:
|
|
*
|
|
* If core_pattern does not include a %p (as is the default)
|
|
* and core_uses_pid is set, then .%pid will be appended to
|
|
* the filename. Do not do this for piped commands. */
|
|
if (!ispipe && !pid_in_pattern && core_uses_pid) {
|
|
err = cn_printf(cn, ".%d", task_tgid_vnr(current));
|
|
if (err)
|
|
return err;
|
|
}
|
|
return ispipe;
|
|
}
|
|
|
|
static int zap_process(struct task_struct *start, int exit_code)
|
|
{
|
|
struct task_struct *t;
|
|
int nr = 0;
|
|
|
|
/* Allow SIGKILL, see prepare_signal() */
|
|
start->signal->flags = SIGNAL_GROUP_EXIT;
|
|
start->signal->group_exit_code = exit_code;
|
|
start->signal->group_stop_count = 0;
|
|
|
|
for_each_thread(start, t) {
|
|
task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
|
|
if (t != current && !(t->flags & PF_POSTCOREDUMP)) {
|
|
sigaddset(&t->pending.signal, SIGKILL);
|
|
signal_wake_up(t, 1);
|
|
/* The vhost_worker does not particpate in coredumps */
|
|
if ((t->flags & (PF_USER_WORKER | PF_IO_WORKER)) != PF_USER_WORKER)
|
|
nr++;
|
|
}
|
|
}
|
|
|
|
return nr;
|
|
}
|
|
|
|
static int zap_threads(struct task_struct *tsk,
|
|
struct core_state *core_state, int exit_code)
|
|
{
|
|
struct signal_struct *signal = tsk->signal;
|
|
int nr = -EAGAIN;
|
|
|
|
spin_lock_irq(&tsk->sighand->siglock);
|
|
if (!(signal->flags & SIGNAL_GROUP_EXIT) && !signal->group_exec_task) {
|
|
signal->core_state = core_state;
|
|
nr = zap_process(tsk, exit_code);
|
|
clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
|
|
tsk->flags |= PF_DUMPCORE;
|
|
atomic_set(&core_state->nr_threads, nr);
|
|
}
|
|
spin_unlock_irq(&tsk->sighand->siglock);
|
|
return nr;
|
|
}
|
|
|
|
static int coredump_wait(int exit_code, struct core_state *core_state)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
int core_waiters = -EBUSY;
|
|
|
|
init_completion(&core_state->startup);
|
|
core_state->dumper.task = tsk;
|
|
core_state->dumper.next = NULL;
|
|
|
|
core_waiters = zap_threads(tsk, core_state, exit_code);
|
|
if (core_waiters > 0) {
|
|
struct core_thread *ptr;
|
|
|
|
wait_for_completion_state(&core_state->startup,
|
|
TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
|
|
/*
|
|
* Wait for all the threads to become inactive, so that
|
|
* all the thread context (extended register state, like
|
|
* fpu etc) gets copied to the memory.
|
|
*/
|
|
ptr = core_state->dumper.next;
|
|
while (ptr != NULL) {
|
|
wait_task_inactive(ptr->task, TASK_ANY);
|
|
ptr = ptr->next;
|
|
}
|
|
}
|
|
|
|
return core_waiters;
|
|
}
|
|
|
|
static void coredump_finish(bool core_dumped)
|
|
{
|
|
struct core_thread *curr, *next;
|
|
struct task_struct *task;
|
|
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
if (core_dumped && !__fatal_signal_pending(current))
|
|
current->signal->group_exit_code |= 0x80;
|
|
next = current->signal->core_state->dumper.next;
|
|
current->signal->core_state = NULL;
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
while ((curr = next) != NULL) {
|
|
next = curr->next;
|
|
task = curr->task;
|
|
/*
|
|
* see coredump_task_exit(), curr->task must not see
|
|
* ->task == NULL before we read ->next.
|
|
*/
|
|
smp_mb();
|
|
curr->task = NULL;
|
|
wake_up_process(task);
|
|
}
|
|
}
|
|
|
|
static bool dump_interrupted(void)
|
|
{
|
|
/*
|
|
* SIGKILL or freezing() interrupt the coredumping. Perhaps we
|
|
* can do try_to_freeze() and check __fatal_signal_pending(),
|
|
* but then we need to teach dump_write() to restart and clear
|
|
* TIF_SIGPENDING.
|
|
*/
|
|
return fatal_signal_pending(current) || freezing(current);
|
|
}
|
|
|
|
static void wait_for_dump_helpers(struct file *file)
|
|
{
|
|
struct pipe_inode_info *pipe = file->private_data;
|
|
|
|
pipe_lock(pipe);
|
|
pipe->readers++;
|
|
pipe->writers--;
|
|
wake_up_interruptible_sync(&pipe->rd_wait);
|
|
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
|
|
pipe_unlock(pipe);
|
|
|
|
/*
|
|
* We actually want wait_event_freezable() but then we need
|
|
* to clear TIF_SIGPENDING and improve dump_interrupted().
|
|
*/
|
|
wait_event_interruptible(pipe->rd_wait, pipe->readers == 1);
|
|
|
|
pipe_lock(pipe);
|
|
pipe->readers--;
|
|
pipe->writers++;
|
|
pipe_unlock(pipe);
|
|
}
|
|
|
|
/*
|
|
* umh_pipe_setup
|
|
* helper function to customize the process used
|
|
* to collect the core in userspace. Specifically
|
|
* it sets up a pipe and installs it as fd 0 (stdin)
|
|
* for the process. Returns 0 on success, or
|
|
* PTR_ERR on failure.
|
|
* Note that it also sets the core limit to 1. This
|
|
* is a special value that we use to trap recursive
|
|
* core dumps
|
|
*/
|
|
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
|
|
{
|
|
struct file *files[2];
|
|
struct coredump_params *cp = (struct coredump_params *)info->data;
|
|
int err = create_pipe_files(files, 0);
|
|
if (err)
|
|
return err;
|
|
|
|
cp->file = files[1];
|
|
|
|
err = replace_fd(0, files[0], 0);
|
|
fput(files[0]);
|
|
/* and disallow core files too */
|
|
current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
|
|
|
|
return err;
|
|
}
|
|
|
|
void do_coredump(const kernel_siginfo_t *siginfo)
|
|
{
|
|
struct core_state core_state;
|
|
struct core_name cn;
|
|
struct mm_struct *mm = current->mm;
|
|
struct linux_binfmt * binfmt;
|
|
const struct cred *old_cred;
|
|
struct cred *cred;
|
|
int retval = 0;
|
|
int ispipe;
|
|
size_t *argv = NULL;
|
|
int argc = 0;
|
|
/* require nonrelative corefile path and be extra careful */
|
|
bool need_suid_safe = false;
|
|
bool core_dumped = false;
|
|
static atomic_t core_dump_count = ATOMIC_INIT(0);
|
|
struct coredump_params cprm = {
|
|
.siginfo = siginfo,
|
|
.limit = rlimit(RLIMIT_CORE),
|
|
/*
|
|
* We must use the same mm->flags while dumping core to avoid
|
|
* inconsistency of bit flags, since this flag is not protected
|
|
* by any locks.
|
|
*/
|
|
.mm_flags = mm->flags,
|
|
.vma_meta = NULL,
|
|
.cpu = raw_smp_processor_id(),
|
|
};
|
|
|
|
audit_core_dumps(siginfo->si_signo);
|
|
|
|
binfmt = mm->binfmt;
|
|
if (!binfmt || !binfmt->core_dump)
|
|
goto fail;
|
|
if (!__get_dumpable(cprm.mm_flags))
|
|
goto fail;
|
|
|
|
cred = prepare_creds();
|
|
if (!cred)
|
|
goto fail;
|
|
/*
|
|
* We cannot trust fsuid as being the "true" uid of the process
|
|
* nor do we know its entire history. We only know it was tainted
|
|
* so we dump it as root in mode 2, and only into a controlled
|
|
* environment (pipe handler or fully qualified path).
|
|
*/
|
|
if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
|
|
/* Setuid core dump mode */
|
|
cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
|
|
need_suid_safe = true;
|
|
}
|
|
|
|
retval = coredump_wait(siginfo->si_signo, &core_state);
|
|
if (retval < 0)
|
|
goto fail_creds;
|
|
|
|
old_cred = override_creds(cred);
|
|
|
|
ispipe = format_corename(&cn, &cprm, &argv, &argc);
|
|
|
|
if (ispipe) {
|
|
int argi;
|
|
int dump_count;
|
|
char **helper_argv;
|
|
struct subprocess_info *sub_info;
|
|
|
|
if (ispipe < 0) {
|
|
printk(KERN_WARNING "format_corename failed\n");
|
|
printk(KERN_WARNING "Aborting core\n");
|
|
goto fail_unlock;
|
|
}
|
|
|
|
if (cprm.limit == 1) {
|
|
/* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
|
|
*
|
|
* Normally core limits are irrelevant to pipes, since
|
|
* we're not writing to the file system, but we use
|
|
* cprm.limit of 1 here as a special value, this is a
|
|
* consistent way to catch recursive crashes.
|
|
* We can still crash if the core_pattern binary sets
|
|
* RLIM_CORE = !1, but it runs as root, and can do
|
|
* lots of stupid things.
|
|
*
|
|
* Note that we use task_tgid_vnr here to grab the pid
|
|
* of the process group leader. That way we get the
|
|
* right pid if a thread in a multi-threaded
|
|
* core_pattern process dies.
|
|
*/
|
|
printk(KERN_WARNING
|
|
"Process %d(%s) has RLIMIT_CORE set to 1\n",
|
|
task_tgid_vnr(current), current->comm);
|
|
printk(KERN_WARNING "Aborting core\n");
|
|
goto fail_unlock;
|
|
}
|
|
cprm.limit = RLIM_INFINITY;
|
|
|
|
dump_count = atomic_inc_return(&core_dump_count);
|
|
if (core_pipe_limit && (core_pipe_limit < dump_count)) {
|
|
printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
|
|
task_tgid_vnr(current), current->comm);
|
|
printk(KERN_WARNING "Skipping core dump\n");
|
|
goto fail_dropcount;
|
|
}
|
|
|
|
helper_argv = kmalloc_array(argc + 1, sizeof(*helper_argv),
|
|
GFP_KERNEL);
|
|
if (!helper_argv) {
|
|
printk(KERN_WARNING "%s failed to allocate memory\n",
|
|
__func__);
|
|
goto fail_dropcount;
|
|
}
|
|
for (argi = 0; argi < argc; argi++)
|
|
helper_argv[argi] = cn.corename + argv[argi];
|
|
helper_argv[argi] = NULL;
|
|
|
|
retval = -ENOMEM;
|
|
sub_info = call_usermodehelper_setup(helper_argv[0],
|
|
helper_argv, NULL, GFP_KERNEL,
|
|
umh_pipe_setup, NULL, &cprm);
|
|
if (sub_info)
|
|
retval = call_usermodehelper_exec(sub_info,
|
|
UMH_WAIT_EXEC);
|
|
|
|
kfree(helper_argv);
|
|
if (retval) {
|
|
printk(KERN_INFO "Core dump to |%s pipe failed\n",
|
|
cn.corename);
|
|
goto close_fail;
|
|
}
|
|
} else {
|
|
struct mnt_idmap *idmap;
|
|
struct inode *inode;
|
|
int open_flags = O_CREAT | O_WRONLY | O_NOFOLLOW |
|
|
O_LARGEFILE | O_EXCL;
|
|
|
|
if (cprm.limit < binfmt->min_coredump)
|
|
goto fail_unlock;
|
|
|
|
if (need_suid_safe && cn.corename[0] != '/') {
|
|
printk(KERN_WARNING "Pid %d(%s) can only dump core "\
|
|
"to fully qualified path!\n",
|
|
task_tgid_vnr(current), current->comm);
|
|
printk(KERN_WARNING "Skipping core dump\n");
|
|
goto fail_unlock;
|
|
}
|
|
|
|
/*
|
|
* Unlink the file if it exists unless this is a SUID
|
|
* binary - in that case, we're running around with root
|
|
* privs and don't want to unlink another user's coredump.
|
|
*/
|
|
if (!need_suid_safe) {
|
|
/*
|
|
* If it doesn't exist, that's fine. If there's some
|
|
* other problem, we'll catch it at the filp_open().
|
|
*/
|
|
do_unlinkat(AT_FDCWD, getname_kernel(cn.corename));
|
|
}
|
|
|
|
/*
|
|
* There is a race between unlinking and creating the
|
|
* file, but if that causes an EEXIST here, that's
|
|
* fine - another process raced with us while creating
|
|
* the corefile, and the other process won. To userspace,
|
|
* what matters is that at least one of the two processes
|
|
* writes its coredump successfully, not which one.
|
|
*/
|
|
if (need_suid_safe) {
|
|
/*
|
|
* Using user namespaces, normal user tasks can change
|
|
* their current->fs->root to point to arbitrary
|
|
* directories. Since the intention of the "only dump
|
|
* with a fully qualified path" rule is to control where
|
|
* coredumps may be placed using root privileges,
|
|
* current->fs->root must not be used. Instead, use the
|
|
* root directory of init_task.
|
|
*/
|
|
struct path root;
|
|
|
|
task_lock(&init_task);
|
|
get_fs_root(init_task.fs, &root);
|
|
task_unlock(&init_task);
|
|
cprm.file = file_open_root(&root, cn.corename,
|
|
open_flags, 0600);
|
|
path_put(&root);
|
|
} else {
|
|
cprm.file = filp_open(cn.corename, open_flags, 0600);
|
|
}
|
|
if (IS_ERR(cprm.file))
|
|
goto fail_unlock;
|
|
|
|
inode = file_inode(cprm.file);
|
|
if (inode->i_nlink > 1)
|
|
goto close_fail;
|
|
if (d_unhashed(cprm.file->f_path.dentry))
|
|
goto close_fail;
|
|
/*
|
|
* AK: actually i see no reason to not allow this for named
|
|
* pipes etc, but keep the previous behaviour for now.
|
|
*/
|
|
if (!S_ISREG(inode->i_mode))
|
|
goto close_fail;
|
|
/*
|
|
* Don't dump core if the filesystem changed owner or mode
|
|
* of the file during file creation. This is an issue when
|
|
* a process dumps core while its cwd is e.g. on a vfat
|
|
* filesystem.
|
|
*/
|
|
idmap = file_mnt_idmap(cprm.file);
|
|
if (!vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode),
|
|
current_fsuid())) {
|
|
pr_info_ratelimited("Core dump to %s aborted: cannot preserve file owner\n",
|
|
cn.corename);
|
|
goto close_fail;
|
|
}
|
|
if ((inode->i_mode & 0677) != 0600) {
|
|
pr_info_ratelimited("Core dump to %s aborted: cannot preserve file permissions\n",
|
|
cn.corename);
|
|
goto close_fail;
|
|
}
|
|
if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
|
|
goto close_fail;
|
|
if (do_truncate(idmap, cprm.file->f_path.dentry,
|
|
0, 0, cprm.file))
|
|
goto close_fail;
|
|
}
|
|
|
|
/* get us an unshared descriptor table; almost always a no-op */
|
|
/* The cell spufs coredump code reads the file descriptor tables */
|
|
retval = unshare_files();
|
|
if (retval)
|
|
goto close_fail;
|
|
if (!dump_interrupted()) {
|
|
/*
|
|
* umh disabled with CONFIG_STATIC_USERMODEHELPER_PATH="" would
|
|
* have this set to NULL.
|
|
*/
|
|
if (!cprm.file) {
|
|
pr_info("Core dump to |%s disabled\n", cn.corename);
|
|
goto close_fail;
|
|
}
|
|
if (!dump_vma_snapshot(&cprm))
|
|
goto close_fail;
|
|
|
|
file_start_write(cprm.file);
|
|
core_dumped = binfmt->core_dump(&cprm);
|
|
/*
|
|
* Ensures that file size is big enough to contain the current
|
|
* file postion. This prevents gdb from complaining about
|
|
* a truncated file if the last "write" to the file was
|
|
* dump_skip.
|
|
*/
|
|
if (cprm.to_skip) {
|
|
cprm.to_skip--;
|
|
dump_emit(&cprm, "", 1);
|
|
}
|
|
file_end_write(cprm.file);
|
|
free_vma_snapshot(&cprm);
|
|
}
|
|
if (ispipe && core_pipe_limit)
|
|
wait_for_dump_helpers(cprm.file);
|
|
close_fail:
|
|
if (cprm.file)
|
|
filp_close(cprm.file, NULL);
|
|
fail_dropcount:
|
|
if (ispipe)
|
|
atomic_dec(&core_dump_count);
|
|
fail_unlock:
|
|
kfree(argv);
|
|
kfree(cn.corename);
|
|
coredump_finish(core_dumped);
|
|
revert_creds(old_cred);
|
|
fail_creds:
|
|
put_cred(cred);
|
|
fail:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Core dumping helper functions. These are the only things you should
|
|
* do on a core-file: use only these functions to write out all the
|
|
* necessary info.
|
|
*/
|
|
static int __dump_emit(struct coredump_params *cprm, const void *addr, int nr)
|
|
{
|
|
struct file *file = cprm->file;
|
|
loff_t pos = file->f_pos;
|
|
ssize_t n;
|
|
if (cprm->written + nr > cprm->limit)
|
|
return 0;
|
|
|
|
|
|
if (dump_interrupted())
|
|
return 0;
|
|
n = __kernel_write(file, addr, nr, &pos);
|
|
if (n != nr)
|
|
return 0;
|
|
file->f_pos = pos;
|
|
cprm->written += n;
|
|
cprm->pos += n;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __dump_skip(struct coredump_params *cprm, size_t nr)
|
|
{
|
|
static char zeroes[PAGE_SIZE];
|
|
struct file *file = cprm->file;
|
|
if (file->f_mode & FMODE_LSEEK) {
|
|
if (dump_interrupted() ||
|
|
vfs_llseek(file, nr, SEEK_CUR) < 0)
|
|
return 0;
|
|
cprm->pos += nr;
|
|
return 1;
|
|
} else {
|
|
while (nr > PAGE_SIZE) {
|
|
if (!__dump_emit(cprm, zeroes, PAGE_SIZE))
|
|
return 0;
|
|
nr -= PAGE_SIZE;
|
|
}
|
|
return __dump_emit(cprm, zeroes, nr);
|
|
}
|
|
}
|
|
|
|
int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
|
|
{
|
|
if (cprm->to_skip) {
|
|
if (!__dump_skip(cprm, cprm->to_skip))
|
|
return 0;
|
|
cprm->to_skip = 0;
|
|
}
|
|
return __dump_emit(cprm, addr, nr);
|
|
}
|
|
EXPORT_SYMBOL(dump_emit);
|
|
|
|
void dump_skip_to(struct coredump_params *cprm, unsigned long pos)
|
|
{
|
|
cprm->to_skip = pos - cprm->pos;
|
|
}
|
|
EXPORT_SYMBOL(dump_skip_to);
|
|
|
|
void dump_skip(struct coredump_params *cprm, size_t nr)
|
|
{
|
|
cprm->to_skip += nr;
|
|
}
|
|
EXPORT_SYMBOL(dump_skip);
|
|
|
|
#ifdef CONFIG_ELF_CORE
|
|
static int dump_emit_page(struct coredump_params *cprm, struct page *page)
|
|
{
|
|
struct bio_vec bvec;
|
|
struct iov_iter iter;
|
|
struct file *file = cprm->file;
|
|
loff_t pos;
|
|
ssize_t n;
|
|
|
|
if (!page)
|
|
return 0;
|
|
|
|
if (cprm->to_skip) {
|
|
if (!__dump_skip(cprm, cprm->to_skip))
|
|
return 0;
|
|
cprm->to_skip = 0;
|
|
}
|
|
if (cprm->written + PAGE_SIZE > cprm->limit)
|
|
return 0;
|
|
if (dump_interrupted())
|
|
return 0;
|
|
pos = file->f_pos;
|
|
bvec_set_page(&bvec, page, PAGE_SIZE, 0);
|
|
iov_iter_bvec(&iter, ITER_SOURCE, &bvec, 1, PAGE_SIZE);
|
|
n = __kernel_write_iter(cprm->file, &iter, &pos);
|
|
if (n != PAGE_SIZE)
|
|
return 0;
|
|
file->f_pos = pos;
|
|
cprm->written += PAGE_SIZE;
|
|
cprm->pos += PAGE_SIZE;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If we might get machine checks from kernel accesses during the
|
|
* core dump, let's get those errors early rather than during the
|
|
* IO. This is not performance-critical enough to warrant having
|
|
* all the machine check logic in the iovec paths.
|
|
*/
|
|
#ifdef copy_mc_to_kernel
|
|
|
|
#define dump_page_alloc() alloc_page(GFP_KERNEL)
|
|
#define dump_page_free(x) __free_page(x)
|
|
static struct page *dump_page_copy(struct page *src, struct page *dst)
|
|
{
|
|
void *buf = kmap_local_page(src);
|
|
size_t left = copy_mc_to_kernel(page_address(dst), buf, PAGE_SIZE);
|
|
kunmap_local(buf);
|
|
return left ? NULL : dst;
|
|
}
|
|
|
|
#else
|
|
|
|
/* We just want to return non-NULL; it's never used. */
|
|
#define dump_page_alloc() ERR_PTR(-EINVAL)
|
|
#define dump_page_free(x) ((void)(x))
|
|
static inline struct page *dump_page_copy(struct page *src, struct page *dst)
|
|
{
|
|
return src;
|
|
}
|
|
#endif
|
|
|
|
int dump_user_range(struct coredump_params *cprm, unsigned long start,
|
|
unsigned long len)
|
|
{
|
|
unsigned long addr;
|
|
struct page *dump_page;
|
|
|
|
dump_page = dump_page_alloc();
|
|
if (!dump_page)
|
|
return 0;
|
|
|
|
for (addr = start; addr < start + len; addr += PAGE_SIZE) {
|
|
struct page *page;
|
|
|
|
/*
|
|
* To avoid having to allocate page tables for virtual address
|
|
* ranges that have never been used yet, and also to make it
|
|
* easy to generate sparse core files, use a helper that returns
|
|
* NULL when encountering an empty page table entry that would
|
|
* otherwise have been filled with the zero page.
|
|
*/
|
|
page = get_dump_page(addr);
|
|
if (page) {
|
|
int stop = !dump_emit_page(cprm, dump_page_copy(page, dump_page));
|
|
put_page(page);
|
|
if (stop) {
|
|
dump_page_free(dump_page);
|
|
return 0;
|
|
}
|
|
} else {
|
|
dump_skip(cprm, PAGE_SIZE);
|
|
}
|
|
}
|
|
dump_page_free(dump_page);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
int dump_align(struct coredump_params *cprm, int align)
|
|
{
|
|
unsigned mod = (cprm->pos + cprm->to_skip) & (align - 1);
|
|
if (align & (align - 1))
|
|
return 0;
|
|
if (mod)
|
|
cprm->to_skip += align - mod;
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(dump_align);
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
|
|
void validate_coredump_safety(void)
|
|
{
|
|
if (suid_dumpable == SUID_DUMP_ROOT &&
|
|
core_pattern[0] != '/' && core_pattern[0] != '|') {
|
|
pr_warn(
|
|
"Unsafe core_pattern used with fs.suid_dumpable=2.\n"
|
|
"Pipe handler or fully qualified core dump path required.\n"
|
|
"Set kernel.core_pattern before fs.suid_dumpable.\n"
|
|
);
|
|
}
|
|
}
|
|
|
|
static int proc_dostring_coredump(struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
int error = proc_dostring(table, write, buffer, lenp, ppos);
|
|
|
|
if (!error)
|
|
validate_coredump_safety();
|
|
return error;
|
|
}
|
|
|
|
static struct ctl_table coredump_sysctls[] = {
|
|
{
|
|
.procname = "core_uses_pid",
|
|
.data = &core_uses_pid,
|
|
.maxlen = sizeof(int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
{
|
|
.procname = "core_pattern",
|
|
.data = core_pattern,
|
|
.maxlen = CORENAME_MAX_SIZE,
|
|
.mode = 0644,
|
|
.proc_handler = proc_dostring_coredump,
|
|
},
|
|
{
|
|
.procname = "core_pipe_limit",
|
|
.data = &core_pipe_limit,
|
|
.maxlen = sizeof(unsigned int),
|
|
.mode = 0644,
|
|
.proc_handler = proc_dointvec,
|
|
},
|
|
};
|
|
|
|
static int __init init_fs_coredump_sysctls(void)
|
|
{
|
|
register_sysctl_init("kernel", coredump_sysctls);
|
|
return 0;
|
|
}
|
|
fs_initcall(init_fs_coredump_sysctls);
|
|
#endif /* CONFIG_SYSCTL */
|
|
|
|
/*
|
|
* The purpose of always_dump_vma() is to make sure that special kernel mappings
|
|
* that are useful for post-mortem analysis are included in every core dump.
|
|
* In that way we ensure that the core dump is fully interpretable later
|
|
* without matching up the same kernel and hardware config to see what PC values
|
|
* meant. These special mappings include - vDSO, vsyscall, and other
|
|
* architecture specific mappings
|
|
*/
|
|
static bool always_dump_vma(struct vm_area_struct *vma)
|
|
{
|
|
/* Any vsyscall mappings? */
|
|
if (vma == get_gate_vma(vma->vm_mm))
|
|
return true;
|
|
|
|
/*
|
|
* Assume that all vmas with a .name op should always be dumped.
|
|
* If this changes, a new vm_ops field can easily be added.
|
|
*/
|
|
if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
|
|
return true;
|
|
|
|
/*
|
|
* arch_vma_name() returns non-NULL for special architecture mappings,
|
|
* such as vDSO sections.
|
|
*/
|
|
if (arch_vma_name(vma))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
#define DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER 1
|
|
|
|
/*
|
|
* Decide how much of @vma's contents should be included in a core dump.
|
|
*/
|
|
static unsigned long vma_dump_size(struct vm_area_struct *vma,
|
|
unsigned long mm_flags)
|
|
{
|
|
#define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
|
|
|
|
/* always dump the vdso and vsyscall sections */
|
|
if (always_dump_vma(vma))
|
|
goto whole;
|
|
|
|
if (vma->vm_flags & VM_DONTDUMP)
|
|
return 0;
|
|
|
|
/* support for DAX */
|
|
if (vma_is_dax(vma)) {
|
|
if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
|
|
goto whole;
|
|
if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
|
|
goto whole;
|
|
return 0;
|
|
}
|
|
|
|
/* Hugetlb memory check */
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
|
|
goto whole;
|
|
if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
|
|
goto whole;
|
|
return 0;
|
|
}
|
|
|
|
/* Do not dump I/O mapped devices or special mappings */
|
|
if (vma->vm_flags & VM_IO)
|
|
return 0;
|
|
|
|
/* By default, dump shared memory if mapped from an anonymous file. */
|
|
if (vma->vm_flags & VM_SHARED) {
|
|
if (file_inode(vma->vm_file)->i_nlink == 0 ?
|
|
FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
|
|
goto whole;
|
|
return 0;
|
|
}
|
|
|
|
/* Dump segments that have been written to. */
|
|
if ((!IS_ENABLED(CONFIG_MMU) || vma->anon_vma) && FILTER(ANON_PRIVATE))
|
|
goto whole;
|
|
if (vma->vm_file == NULL)
|
|
return 0;
|
|
|
|
if (FILTER(MAPPED_PRIVATE))
|
|
goto whole;
|
|
|
|
/*
|
|
* If this is the beginning of an executable file mapping,
|
|
* dump the first page to aid in determining what was mapped here.
|
|
*/
|
|
if (FILTER(ELF_HEADERS) &&
|
|
vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
|
|
if ((READ_ONCE(file_inode(vma->vm_file)->i_mode) & 0111) != 0)
|
|
return PAGE_SIZE;
|
|
|
|
/*
|
|
* ELF libraries aren't always executable.
|
|
* We'll want to check whether the mapping starts with the ELF
|
|
* magic, but not now - we're holding the mmap lock,
|
|
* so copy_from_user() doesn't work here.
|
|
* Use a placeholder instead, and fix it up later in
|
|
* dump_vma_snapshot().
|
|
*/
|
|
return DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER;
|
|
}
|
|
|
|
#undef FILTER
|
|
|
|
return 0;
|
|
|
|
whole:
|
|
return vma->vm_end - vma->vm_start;
|
|
}
|
|
|
|
/*
|
|
* Helper function for iterating across a vma list. It ensures that the caller
|
|
* will visit `gate_vma' prior to terminating the search.
|
|
*/
|
|
static struct vm_area_struct *coredump_next_vma(struct vma_iterator *vmi,
|
|
struct vm_area_struct *vma,
|
|
struct vm_area_struct *gate_vma)
|
|
{
|
|
if (gate_vma && (vma == gate_vma))
|
|
return NULL;
|
|
|
|
vma = vma_next(vmi);
|
|
if (vma)
|
|
return vma;
|
|
return gate_vma;
|
|
}
|
|
|
|
static void free_vma_snapshot(struct coredump_params *cprm)
|
|
{
|
|
if (cprm->vma_meta) {
|
|
int i;
|
|
for (i = 0; i < cprm->vma_count; i++) {
|
|
struct file *file = cprm->vma_meta[i].file;
|
|
if (file)
|
|
fput(file);
|
|
}
|
|
kvfree(cprm->vma_meta);
|
|
cprm->vma_meta = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Under the mmap_lock, take a snapshot of relevant information about the task's
|
|
* VMAs.
|
|
*/
|
|
static bool dump_vma_snapshot(struct coredump_params *cprm)
|
|
{
|
|
struct vm_area_struct *gate_vma, *vma = NULL;
|
|
struct mm_struct *mm = current->mm;
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
int i = 0;
|
|
|
|
/*
|
|
* Once the stack expansion code is fixed to not change VMA bounds
|
|
* under mmap_lock in read mode, this can be changed to take the
|
|
* mmap_lock in read mode.
|
|
*/
|
|
if (mmap_write_lock_killable(mm))
|
|
return false;
|
|
|
|
cprm->vma_data_size = 0;
|
|
gate_vma = get_gate_vma(mm);
|
|
cprm->vma_count = mm->map_count + (gate_vma ? 1 : 0);
|
|
|
|
cprm->vma_meta = kvmalloc_array(cprm->vma_count, sizeof(*cprm->vma_meta), GFP_KERNEL);
|
|
if (!cprm->vma_meta) {
|
|
mmap_write_unlock(mm);
|
|
return false;
|
|
}
|
|
|
|
while ((vma = coredump_next_vma(&vmi, vma, gate_vma)) != NULL) {
|
|
struct core_vma_metadata *m = cprm->vma_meta + i;
|
|
|
|
m->start = vma->vm_start;
|
|
m->end = vma->vm_end;
|
|
m->flags = vma->vm_flags;
|
|
m->dump_size = vma_dump_size(vma, cprm->mm_flags);
|
|
m->pgoff = vma->vm_pgoff;
|
|
m->file = vma->vm_file;
|
|
if (m->file)
|
|
get_file(m->file);
|
|
i++;
|
|
}
|
|
|
|
mmap_write_unlock(mm);
|
|
|
|
for (i = 0; i < cprm->vma_count; i++) {
|
|
struct core_vma_metadata *m = cprm->vma_meta + i;
|
|
|
|
if (m->dump_size == DUMP_SIZE_MAYBE_ELFHDR_PLACEHOLDER) {
|
|
char elfmag[SELFMAG];
|
|
|
|
if (copy_from_user(elfmag, (void __user *)m->start, SELFMAG) ||
|
|
memcmp(elfmag, ELFMAG, SELFMAG) != 0) {
|
|
m->dump_size = 0;
|
|
} else {
|
|
m->dump_size = PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
cprm->vma_data_size += m->dump_size;
|
|
}
|
|
|
|
return true;
|
|
}
|