mirror of
https://github.com/torvalds/linux.git
synced 2024-12-25 20:32:22 +00:00
248e742a39
The 2016 version of Hyper-V offers the option to operate the guest VM per-vcpu stimer's in Direct Mode, which means the timer interupts on its own vector rather than queueing a VMbus message. Direct Mode reduces timer processing overhead in both the hypervisor and the guest, and avoids having timer interrupts pollute the VMbus interrupt stream for the synthetic NIC and storage. This patch enables Direct Mode by default on stimer0 when running on a version of Hyper-V that supports it. In prep for coming support of Hyper-V on ARM64, the arch independent portion of the code contains calls to routines that will be populated on ARM64 but are not needed and do nothing on x86. Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1091 lines
26 KiB
ArmAsm
1091 lines
26 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Copyright (C) 1991,1992 Linus Torvalds
|
|
*
|
|
* entry_32.S contains the system-call and low-level fault and trap handling routines.
|
|
*
|
|
* Stack layout while running C code:
|
|
* ptrace needs to have all registers on the stack.
|
|
* If the order here is changed, it needs to be
|
|
* updated in fork.c:copy_process(), signal.c:do_signal(),
|
|
* ptrace.c and ptrace.h
|
|
*
|
|
* 0(%esp) - %ebx
|
|
* 4(%esp) - %ecx
|
|
* 8(%esp) - %edx
|
|
* C(%esp) - %esi
|
|
* 10(%esp) - %edi
|
|
* 14(%esp) - %ebp
|
|
* 18(%esp) - %eax
|
|
* 1C(%esp) - %ds
|
|
* 20(%esp) - %es
|
|
* 24(%esp) - %fs
|
|
* 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
|
|
* 2C(%esp) - orig_eax
|
|
* 30(%esp) - %eip
|
|
* 34(%esp) - %cs
|
|
* 38(%esp) - %eflags
|
|
* 3C(%esp) - %oldesp
|
|
* 40(%esp) - %oldss
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
#include <linux/err.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/irq_vectors.h>
|
|
#include <asm/cpufeatures.h>
|
|
#include <asm/alternative-asm.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/smap.h>
|
|
#include <asm/frame.h>
|
|
#include <asm/nospec-branch.h>
|
|
|
|
.section .entry.text, "ax"
|
|
|
|
/*
|
|
* We use macros for low-level operations which need to be overridden
|
|
* for paravirtualization. The following will never clobber any registers:
|
|
* INTERRUPT_RETURN (aka. "iret")
|
|
* GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
|
|
* ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
|
|
*
|
|
* For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
|
|
* specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
|
|
* Allowing a register to be clobbered can shrink the paravirt replacement
|
|
* enough to patch inline, increasing performance.
|
|
*/
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
# define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
|
|
#else
|
|
# define preempt_stop(clobbers)
|
|
# define resume_kernel restore_all
|
|
#endif
|
|
|
|
.macro TRACE_IRQS_IRET
|
|
#ifdef CONFIG_TRACE_IRQFLAGS
|
|
testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off?
|
|
jz 1f
|
|
TRACE_IRQS_ON
|
|
1:
|
|
#endif
|
|
.endm
|
|
|
|
/*
|
|
* User gs save/restore
|
|
*
|
|
* %gs is used for userland TLS and kernel only uses it for stack
|
|
* canary which is required to be at %gs:20 by gcc. Read the comment
|
|
* at the top of stackprotector.h for more info.
|
|
*
|
|
* Local labels 98 and 99 are used.
|
|
*/
|
|
#ifdef CONFIG_X86_32_LAZY_GS
|
|
|
|
/* unfortunately push/pop can't be no-op */
|
|
.macro PUSH_GS
|
|
pushl $0
|
|
.endm
|
|
.macro POP_GS pop=0
|
|
addl $(4 + \pop), %esp
|
|
.endm
|
|
.macro POP_GS_EX
|
|
.endm
|
|
|
|
/* all the rest are no-op */
|
|
.macro PTGS_TO_GS
|
|
.endm
|
|
.macro PTGS_TO_GS_EX
|
|
.endm
|
|
.macro GS_TO_REG reg
|
|
.endm
|
|
.macro REG_TO_PTGS reg
|
|
.endm
|
|
.macro SET_KERNEL_GS reg
|
|
.endm
|
|
|
|
#else /* CONFIG_X86_32_LAZY_GS */
|
|
|
|
.macro PUSH_GS
|
|
pushl %gs
|
|
.endm
|
|
|
|
.macro POP_GS pop=0
|
|
98: popl %gs
|
|
.if \pop <> 0
|
|
add $\pop, %esp
|
|
.endif
|
|
.endm
|
|
.macro POP_GS_EX
|
|
.pushsection .fixup, "ax"
|
|
99: movl $0, (%esp)
|
|
jmp 98b
|
|
.popsection
|
|
_ASM_EXTABLE(98b, 99b)
|
|
.endm
|
|
|
|
.macro PTGS_TO_GS
|
|
98: mov PT_GS(%esp), %gs
|
|
.endm
|
|
.macro PTGS_TO_GS_EX
|
|
.pushsection .fixup, "ax"
|
|
99: movl $0, PT_GS(%esp)
|
|
jmp 98b
|
|
.popsection
|
|
_ASM_EXTABLE(98b, 99b)
|
|
.endm
|
|
|
|
.macro GS_TO_REG reg
|
|
movl %gs, \reg
|
|
.endm
|
|
.macro REG_TO_PTGS reg
|
|
movl \reg, PT_GS(%esp)
|
|
.endm
|
|
.macro SET_KERNEL_GS reg
|
|
movl $(__KERNEL_STACK_CANARY), \reg
|
|
movl \reg, %gs
|
|
.endm
|
|
|
|
#endif /* CONFIG_X86_32_LAZY_GS */
|
|
|
|
.macro SAVE_ALL pt_regs_ax=%eax
|
|
cld
|
|
PUSH_GS
|
|
pushl %fs
|
|
pushl %es
|
|
pushl %ds
|
|
pushl \pt_regs_ax
|
|
pushl %ebp
|
|
pushl %edi
|
|
pushl %esi
|
|
pushl %edx
|
|
pushl %ecx
|
|
pushl %ebx
|
|
movl $(__USER_DS), %edx
|
|
movl %edx, %ds
|
|
movl %edx, %es
|
|
movl $(__KERNEL_PERCPU), %edx
|
|
movl %edx, %fs
|
|
SET_KERNEL_GS %edx
|
|
.endm
|
|
|
|
/*
|
|
* This is a sneaky trick to help the unwinder find pt_regs on the stack. The
|
|
* frame pointer is replaced with an encoded pointer to pt_regs. The encoding
|
|
* is just clearing the MSB, which makes it an invalid stack address and is also
|
|
* a signal to the unwinder that it's a pt_regs pointer in disguise.
|
|
*
|
|
* NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
|
|
* original rbp.
|
|
*/
|
|
.macro ENCODE_FRAME_POINTER
|
|
#ifdef CONFIG_FRAME_POINTER
|
|
mov %esp, %ebp
|
|
andl $0x7fffffff, %ebp
|
|
#endif
|
|
.endm
|
|
|
|
.macro RESTORE_INT_REGS
|
|
popl %ebx
|
|
popl %ecx
|
|
popl %edx
|
|
popl %esi
|
|
popl %edi
|
|
popl %ebp
|
|
popl %eax
|
|
.endm
|
|
|
|
.macro RESTORE_REGS pop=0
|
|
RESTORE_INT_REGS
|
|
1: popl %ds
|
|
2: popl %es
|
|
3: popl %fs
|
|
POP_GS \pop
|
|
.pushsection .fixup, "ax"
|
|
4: movl $0, (%esp)
|
|
jmp 1b
|
|
5: movl $0, (%esp)
|
|
jmp 2b
|
|
6: movl $0, (%esp)
|
|
jmp 3b
|
|
.popsection
|
|
_ASM_EXTABLE(1b, 4b)
|
|
_ASM_EXTABLE(2b, 5b)
|
|
_ASM_EXTABLE(3b, 6b)
|
|
POP_GS_EX
|
|
.endm
|
|
|
|
/*
|
|
* %eax: prev task
|
|
* %edx: next task
|
|
*/
|
|
ENTRY(__switch_to_asm)
|
|
/*
|
|
* Save callee-saved registers
|
|
* This must match the order in struct inactive_task_frame
|
|
*/
|
|
pushl %ebp
|
|
pushl %ebx
|
|
pushl %edi
|
|
pushl %esi
|
|
|
|
/* switch stack */
|
|
movl %esp, TASK_threadsp(%eax)
|
|
movl TASK_threadsp(%edx), %esp
|
|
|
|
#ifdef CONFIG_CC_STACKPROTECTOR
|
|
movl TASK_stack_canary(%edx), %ebx
|
|
movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
|
|
#endif
|
|
|
|
#ifdef CONFIG_RETPOLINE
|
|
/*
|
|
* When switching from a shallower to a deeper call stack
|
|
* the RSB may either underflow or use entries populated
|
|
* with userspace addresses. On CPUs where those concerns
|
|
* exist, overwrite the RSB with entries which capture
|
|
* speculative execution to prevent attack.
|
|
*/
|
|
FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
|
|
#endif
|
|
|
|
/* restore callee-saved registers */
|
|
popl %esi
|
|
popl %edi
|
|
popl %ebx
|
|
popl %ebp
|
|
|
|
jmp __switch_to
|
|
END(__switch_to_asm)
|
|
|
|
/*
|
|
* The unwinder expects the last frame on the stack to always be at the same
|
|
* offset from the end of the page, which allows it to validate the stack.
|
|
* Calling schedule_tail() directly would break that convention because its an
|
|
* asmlinkage function so its argument has to be pushed on the stack. This
|
|
* wrapper creates a proper "end of stack" frame header before the call.
|
|
*/
|
|
ENTRY(schedule_tail_wrapper)
|
|
FRAME_BEGIN
|
|
|
|
pushl %eax
|
|
call schedule_tail
|
|
popl %eax
|
|
|
|
FRAME_END
|
|
ret
|
|
ENDPROC(schedule_tail_wrapper)
|
|
/*
|
|
* A newly forked process directly context switches into this address.
|
|
*
|
|
* eax: prev task we switched from
|
|
* ebx: kernel thread func (NULL for user thread)
|
|
* edi: kernel thread arg
|
|
*/
|
|
ENTRY(ret_from_fork)
|
|
call schedule_tail_wrapper
|
|
|
|
testl %ebx, %ebx
|
|
jnz 1f /* kernel threads are uncommon */
|
|
|
|
2:
|
|
/* When we fork, we trace the syscall return in the child, too. */
|
|
movl %esp, %eax
|
|
call syscall_return_slowpath
|
|
jmp restore_all
|
|
|
|
/* kernel thread */
|
|
1: movl %edi, %eax
|
|
CALL_NOSPEC %ebx
|
|
/*
|
|
* A kernel thread is allowed to return here after successfully
|
|
* calling do_execve(). Exit to userspace to complete the execve()
|
|
* syscall.
|
|
*/
|
|
movl $0, PT_EAX(%esp)
|
|
jmp 2b
|
|
END(ret_from_fork)
|
|
|
|
/*
|
|
* Return to user mode is not as complex as all this looks,
|
|
* but we want the default path for a system call return to
|
|
* go as quickly as possible which is why some of this is
|
|
* less clear than it otherwise should be.
|
|
*/
|
|
|
|
# userspace resumption stub bypassing syscall exit tracing
|
|
ALIGN
|
|
ret_from_exception:
|
|
preempt_stop(CLBR_ANY)
|
|
ret_from_intr:
|
|
#ifdef CONFIG_VM86
|
|
movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
|
|
movb PT_CS(%esp), %al
|
|
andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
|
|
#else
|
|
/*
|
|
* We can be coming here from child spawned by kernel_thread().
|
|
*/
|
|
movl PT_CS(%esp), %eax
|
|
andl $SEGMENT_RPL_MASK, %eax
|
|
#endif
|
|
cmpl $USER_RPL, %eax
|
|
jb resume_kernel # not returning to v8086 or userspace
|
|
|
|
ENTRY(resume_userspace)
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
TRACE_IRQS_OFF
|
|
movl %esp, %eax
|
|
call prepare_exit_to_usermode
|
|
jmp restore_all
|
|
END(ret_from_exception)
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
ENTRY(resume_kernel)
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
.Lneed_resched:
|
|
cmpl $0, PER_CPU_VAR(__preempt_count)
|
|
jnz restore_all
|
|
testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ?
|
|
jz restore_all
|
|
call preempt_schedule_irq
|
|
jmp .Lneed_resched
|
|
END(resume_kernel)
|
|
#endif
|
|
|
|
GLOBAL(__begin_SYSENTER_singlestep_region)
|
|
/*
|
|
* All code from here through __end_SYSENTER_singlestep_region is subject
|
|
* to being single-stepped if a user program sets TF and executes SYSENTER.
|
|
* There is absolutely nothing that we can do to prevent this from happening
|
|
* (thanks Intel!). To keep our handling of this situation as simple as
|
|
* possible, we handle TF just like AC and NT, except that our #DB handler
|
|
* will ignore all of the single-step traps generated in this range.
|
|
*/
|
|
|
|
#ifdef CONFIG_XEN
|
|
/*
|
|
* Xen doesn't set %esp to be precisely what the normal SYSENTER
|
|
* entry point expects, so fix it up before using the normal path.
|
|
*/
|
|
ENTRY(xen_sysenter_target)
|
|
addl $5*4, %esp /* remove xen-provided frame */
|
|
jmp .Lsysenter_past_esp
|
|
#endif
|
|
|
|
/*
|
|
* 32-bit SYSENTER entry.
|
|
*
|
|
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
|
|
* if X86_FEATURE_SEP is available. This is the preferred system call
|
|
* entry on 32-bit systems.
|
|
*
|
|
* The SYSENTER instruction, in principle, should *only* occur in the
|
|
* vDSO. In practice, a small number of Android devices were shipped
|
|
* with a copy of Bionic that inlined a SYSENTER instruction. This
|
|
* never happened in any of Google's Bionic versions -- it only happened
|
|
* in a narrow range of Intel-provided versions.
|
|
*
|
|
* SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
|
|
* IF and VM in RFLAGS are cleared (IOW: interrupts are off).
|
|
* SYSENTER does not save anything on the stack,
|
|
* and does not save old EIP (!!!), ESP, or EFLAGS.
|
|
*
|
|
* To avoid losing track of EFLAGS.VM (and thus potentially corrupting
|
|
* user and/or vm86 state), we explicitly disable the SYSENTER
|
|
* instruction in vm86 mode by reprogramming the MSRs.
|
|
*
|
|
* Arguments:
|
|
* eax system call number
|
|
* ebx arg1
|
|
* ecx arg2
|
|
* edx arg3
|
|
* esi arg4
|
|
* edi arg5
|
|
* ebp user stack
|
|
* 0(%ebp) arg6
|
|
*/
|
|
ENTRY(entry_SYSENTER_32)
|
|
movl TSS_sysenter_sp0(%esp), %esp
|
|
.Lsysenter_past_esp:
|
|
pushl $__USER_DS /* pt_regs->ss */
|
|
pushl %ebp /* pt_regs->sp (stashed in bp) */
|
|
pushfl /* pt_regs->flags (except IF = 0) */
|
|
orl $X86_EFLAGS_IF, (%esp) /* Fix IF */
|
|
pushl $__USER_CS /* pt_regs->cs */
|
|
pushl $0 /* pt_regs->ip = 0 (placeholder) */
|
|
pushl %eax /* pt_regs->orig_ax */
|
|
SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest */
|
|
|
|
/*
|
|
* SYSENTER doesn't filter flags, so we need to clear NT, AC
|
|
* and TF ourselves. To save a few cycles, we can check whether
|
|
* either was set instead of doing an unconditional popfq.
|
|
* This needs to happen before enabling interrupts so that
|
|
* we don't get preempted with NT set.
|
|
*
|
|
* If TF is set, we will single-step all the way to here -- do_debug
|
|
* will ignore all the traps. (Yes, this is slow, but so is
|
|
* single-stepping in general. This allows us to avoid having
|
|
* a more complicated code to handle the case where a user program
|
|
* forces us to single-step through the SYSENTER entry code.)
|
|
*
|
|
* NB.: .Lsysenter_fix_flags is a label with the code under it moved
|
|
* out-of-line as an optimization: NT is unlikely to be set in the
|
|
* majority of the cases and instead of polluting the I$ unnecessarily,
|
|
* we're keeping that code behind a branch which will predict as
|
|
* not-taken and therefore its instructions won't be fetched.
|
|
*/
|
|
testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
|
|
jnz .Lsysenter_fix_flags
|
|
.Lsysenter_flags_fixed:
|
|
|
|
/*
|
|
* User mode is traced as though IRQs are on, and SYSENTER
|
|
* turned them off.
|
|
*/
|
|
TRACE_IRQS_OFF
|
|
|
|
movl %esp, %eax
|
|
call do_fast_syscall_32
|
|
/* XEN PV guests always use IRET path */
|
|
ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
|
|
"jmp .Lsyscall_32_done", X86_FEATURE_XENPV
|
|
|
|
/* Opportunistic SYSEXIT */
|
|
TRACE_IRQS_ON /* User mode traces as IRQs on. */
|
|
movl PT_EIP(%esp), %edx /* pt_regs->ip */
|
|
movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
|
|
1: mov PT_FS(%esp), %fs
|
|
PTGS_TO_GS
|
|
popl %ebx /* pt_regs->bx */
|
|
addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
|
|
popl %esi /* pt_regs->si */
|
|
popl %edi /* pt_regs->di */
|
|
popl %ebp /* pt_regs->bp */
|
|
popl %eax /* pt_regs->ax */
|
|
|
|
/*
|
|
* Restore all flags except IF. (We restore IF separately because
|
|
* STI gives a one-instruction window in which we won't be interrupted,
|
|
* whereas POPF does not.)
|
|
*/
|
|
addl $PT_EFLAGS-PT_DS, %esp /* point esp at pt_regs->flags */
|
|
btr $X86_EFLAGS_IF_BIT, (%esp)
|
|
popfl
|
|
|
|
/*
|
|
* Return back to the vDSO, which will pop ecx and edx.
|
|
* Don't bother with DS and ES (they already contain __USER_DS).
|
|
*/
|
|
sti
|
|
sysexit
|
|
|
|
.pushsection .fixup, "ax"
|
|
2: movl $0, PT_FS(%esp)
|
|
jmp 1b
|
|
.popsection
|
|
_ASM_EXTABLE(1b, 2b)
|
|
PTGS_TO_GS_EX
|
|
|
|
.Lsysenter_fix_flags:
|
|
pushl $X86_EFLAGS_FIXED
|
|
popfl
|
|
jmp .Lsysenter_flags_fixed
|
|
GLOBAL(__end_SYSENTER_singlestep_region)
|
|
ENDPROC(entry_SYSENTER_32)
|
|
|
|
/*
|
|
* 32-bit legacy system call entry.
|
|
*
|
|
* 32-bit x86 Linux system calls traditionally used the INT $0x80
|
|
* instruction. INT $0x80 lands here.
|
|
*
|
|
* This entry point can be used by any 32-bit perform system calls.
|
|
* Instances of INT $0x80 can be found inline in various programs and
|
|
* libraries. It is also used by the vDSO's __kernel_vsyscall
|
|
* fallback for hardware that doesn't support a faster entry method.
|
|
* Restarted 32-bit system calls also fall back to INT $0x80
|
|
* regardless of what instruction was originally used to do the system
|
|
* call. (64-bit programs can use INT $0x80 as well, but they can
|
|
* only run on 64-bit kernels and therefore land in
|
|
* entry_INT80_compat.)
|
|
*
|
|
* This is considered a slow path. It is not used by most libc
|
|
* implementations on modern hardware except during process startup.
|
|
*
|
|
* Arguments:
|
|
* eax system call number
|
|
* ebx arg1
|
|
* ecx arg2
|
|
* edx arg3
|
|
* esi arg4
|
|
* edi arg5
|
|
* ebp arg6
|
|
*/
|
|
ENTRY(entry_INT80_32)
|
|
ASM_CLAC
|
|
pushl %eax /* pt_regs->orig_ax */
|
|
SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest */
|
|
|
|
/*
|
|
* User mode is traced as though IRQs are on, and the interrupt gate
|
|
* turned them off.
|
|
*/
|
|
TRACE_IRQS_OFF
|
|
|
|
movl %esp, %eax
|
|
call do_int80_syscall_32
|
|
.Lsyscall_32_done:
|
|
|
|
restore_all:
|
|
TRACE_IRQS_IRET
|
|
.Lrestore_all_notrace:
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
ALTERNATIVE "jmp .Lrestore_nocheck", "", X86_BUG_ESPFIX
|
|
|
|
movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
|
|
/*
|
|
* Warning: PT_OLDSS(%esp) contains the wrong/random values if we
|
|
* are returning to the kernel.
|
|
* See comments in process.c:copy_thread() for details.
|
|
*/
|
|
movb PT_OLDSS(%esp), %ah
|
|
movb PT_CS(%esp), %al
|
|
andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
|
|
cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
|
|
je .Lldt_ss # returning to user-space with LDT SS
|
|
#endif
|
|
.Lrestore_nocheck:
|
|
RESTORE_REGS 4 # skip orig_eax/error_code
|
|
.Lirq_return:
|
|
/*
|
|
* ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
|
|
* when returning from IPI handler and when returning from
|
|
* scheduler to user-space.
|
|
*/
|
|
INTERRUPT_RETURN
|
|
|
|
.section .fixup, "ax"
|
|
ENTRY(iret_exc )
|
|
pushl $0 # no error code
|
|
pushl $do_iret_error
|
|
jmp common_exception
|
|
.previous
|
|
_ASM_EXTABLE(.Lirq_return, iret_exc)
|
|
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
.Lldt_ss:
|
|
/*
|
|
* Setup and switch to ESPFIX stack
|
|
*
|
|
* We're returning to userspace with a 16 bit stack. The CPU will not
|
|
* restore the high word of ESP for us on executing iret... This is an
|
|
* "official" bug of all the x86-compatible CPUs, which we can work
|
|
* around to make dosemu and wine happy. We do this by preloading the
|
|
* high word of ESP with the high word of the userspace ESP while
|
|
* compensating for the offset by changing to the ESPFIX segment with
|
|
* a base address that matches for the difference.
|
|
*/
|
|
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
|
|
mov %esp, %edx /* load kernel esp */
|
|
mov PT_OLDESP(%esp), %eax /* load userspace esp */
|
|
mov %dx, %ax /* eax: new kernel esp */
|
|
sub %eax, %edx /* offset (low word is 0) */
|
|
shr $16, %edx
|
|
mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
|
|
mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
|
|
pushl $__ESPFIX_SS
|
|
pushl %eax /* new kernel esp */
|
|
/*
|
|
* Disable interrupts, but do not irqtrace this section: we
|
|
* will soon execute iret and the tracer was already set to
|
|
* the irqstate after the IRET:
|
|
*/
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
lss (%esp), %esp /* switch to espfix segment */
|
|
jmp .Lrestore_nocheck
|
|
#endif
|
|
ENDPROC(entry_INT80_32)
|
|
|
|
.macro FIXUP_ESPFIX_STACK
|
|
/*
|
|
* Switch back for ESPFIX stack to the normal zerobased stack
|
|
*
|
|
* We can't call C functions using the ESPFIX stack. This code reads
|
|
* the high word of the segment base from the GDT and swiches to the
|
|
* normal stack and adjusts ESP with the matching offset.
|
|
*/
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
/* fixup the stack */
|
|
mov GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
|
|
mov GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
|
|
shl $16, %eax
|
|
addl %esp, %eax /* the adjusted stack pointer */
|
|
pushl $__KERNEL_DS
|
|
pushl %eax
|
|
lss (%esp), %esp /* switch to the normal stack segment */
|
|
#endif
|
|
.endm
|
|
.macro UNWIND_ESPFIX_STACK
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
movl %ss, %eax
|
|
/* see if on espfix stack */
|
|
cmpw $__ESPFIX_SS, %ax
|
|
jne 27f
|
|
movl $__KERNEL_DS, %eax
|
|
movl %eax, %ds
|
|
movl %eax, %es
|
|
/* switch to normal stack */
|
|
FIXUP_ESPFIX_STACK
|
|
27:
|
|
#endif
|
|
.endm
|
|
|
|
/*
|
|
* Build the entry stubs with some assembler magic.
|
|
* We pack 1 stub into every 8-byte block.
|
|
*/
|
|
.align 8
|
|
ENTRY(irq_entries_start)
|
|
vector=FIRST_EXTERNAL_VECTOR
|
|
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
|
|
pushl $(~vector+0x80) /* Note: always in signed byte range */
|
|
vector=vector+1
|
|
jmp common_interrupt
|
|
.align 8
|
|
.endr
|
|
END(irq_entries_start)
|
|
|
|
/*
|
|
* the CPU automatically disables interrupts when executing an IRQ vector,
|
|
* so IRQ-flags tracing has to follow that:
|
|
*/
|
|
.p2align CONFIG_X86_L1_CACHE_SHIFT
|
|
common_interrupt:
|
|
ASM_CLAC
|
|
addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
|
|
SAVE_ALL
|
|
ENCODE_FRAME_POINTER
|
|
TRACE_IRQS_OFF
|
|
movl %esp, %eax
|
|
call do_IRQ
|
|
jmp ret_from_intr
|
|
ENDPROC(common_interrupt)
|
|
|
|
#define BUILD_INTERRUPT3(name, nr, fn) \
|
|
ENTRY(name) \
|
|
ASM_CLAC; \
|
|
pushl $~(nr); \
|
|
SAVE_ALL; \
|
|
ENCODE_FRAME_POINTER; \
|
|
TRACE_IRQS_OFF \
|
|
movl %esp, %eax; \
|
|
call fn; \
|
|
jmp ret_from_intr; \
|
|
ENDPROC(name)
|
|
|
|
#define BUILD_INTERRUPT(name, nr) \
|
|
BUILD_INTERRUPT3(name, nr, smp_##name); \
|
|
|
|
/* The include is where all of the SMP etc. interrupts come from */
|
|
#include <asm/entry_arch.h>
|
|
|
|
ENTRY(coprocessor_error)
|
|
ASM_CLAC
|
|
pushl $0
|
|
pushl $do_coprocessor_error
|
|
jmp common_exception
|
|
END(coprocessor_error)
|
|
|
|
ENTRY(simd_coprocessor_error)
|
|
ASM_CLAC
|
|
pushl $0
|
|
#ifdef CONFIG_X86_INVD_BUG
|
|
/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
|
|
ALTERNATIVE "pushl $do_general_protection", \
|
|
"pushl $do_simd_coprocessor_error", \
|
|
X86_FEATURE_XMM
|
|
#else
|
|
pushl $do_simd_coprocessor_error
|
|
#endif
|
|
jmp common_exception
|
|
END(simd_coprocessor_error)
|
|
|
|
ENTRY(device_not_available)
|
|
ASM_CLAC
|
|
pushl $-1 # mark this as an int
|
|
pushl $do_device_not_available
|
|
jmp common_exception
|
|
END(device_not_available)
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
ENTRY(native_iret)
|
|
iret
|
|
_ASM_EXTABLE(native_iret, iret_exc)
|
|
END(native_iret)
|
|
#endif
|
|
|
|
ENTRY(overflow)
|
|
ASM_CLAC
|
|
pushl $0
|
|
pushl $do_overflow
|
|
jmp common_exception
|
|
END(overflow)
|
|
|
|
ENTRY(bounds)
|
|
ASM_CLAC
|
|
pushl $0
|
|
pushl $do_bounds
|
|
jmp common_exception
|
|
END(bounds)
|
|
|
|
ENTRY(invalid_op)
|
|
ASM_CLAC
|
|
pushl $0
|
|
pushl $do_invalid_op
|
|
jmp common_exception
|
|
END(invalid_op)
|
|
|
|
ENTRY(coprocessor_segment_overrun)
|
|
ASM_CLAC
|
|
pushl $0
|
|
pushl $do_coprocessor_segment_overrun
|
|
jmp common_exception
|
|
END(coprocessor_segment_overrun)
|
|
|
|
ENTRY(invalid_TSS)
|
|
ASM_CLAC
|
|
pushl $do_invalid_TSS
|
|
jmp common_exception
|
|
END(invalid_TSS)
|
|
|
|
ENTRY(segment_not_present)
|
|
ASM_CLAC
|
|
pushl $do_segment_not_present
|
|
jmp common_exception
|
|
END(segment_not_present)
|
|
|
|
ENTRY(stack_segment)
|
|
ASM_CLAC
|
|
pushl $do_stack_segment
|
|
jmp common_exception
|
|
END(stack_segment)
|
|
|
|
ENTRY(alignment_check)
|
|
ASM_CLAC
|
|
pushl $do_alignment_check
|
|
jmp common_exception
|
|
END(alignment_check)
|
|
|
|
ENTRY(divide_error)
|
|
ASM_CLAC
|
|
pushl $0 # no error code
|
|
pushl $do_divide_error
|
|
jmp common_exception
|
|
END(divide_error)
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
ENTRY(machine_check)
|
|
ASM_CLAC
|
|
pushl $0
|
|
pushl machine_check_vector
|
|
jmp common_exception
|
|
END(machine_check)
|
|
#endif
|
|
|
|
ENTRY(spurious_interrupt_bug)
|
|
ASM_CLAC
|
|
pushl $0
|
|
pushl $do_spurious_interrupt_bug
|
|
jmp common_exception
|
|
END(spurious_interrupt_bug)
|
|
|
|
#ifdef CONFIG_XEN
|
|
ENTRY(xen_hypervisor_callback)
|
|
pushl $-1 /* orig_ax = -1 => not a system call */
|
|
SAVE_ALL
|
|
ENCODE_FRAME_POINTER
|
|
TRACE_IRQS_OFF
|
|
|
|
/*
|
|
* Check to see if we got the event in the critical
|
|
* region in xen_iret_direct, after we've reenabled
|
|
* events and checked for pending events. This simulates
|
|
* iret instruction's behaviour where it delivers a
|
|
* pending interrupt when enabling interrupts:
|
|
*/
|
|
movl PT_EIP(%esp), %eax
|
|
cmpl $xen_iret_start_crit, %eax
|
|
jb 1f
|
|
cmpl $xen_iret_end_crit, %eax
|
|
jae 1f
|
|
|
|
jmp xen_iret_crit_fixup
|
|
|
|
ENTRY(xen_do_upcall)
|
|
1: mov %esp, %eax
|
|
call xen_evtchn_do_upcall
|
|
#ifndef CONFIG_PREEMPT
|
|
call xen_maybe_preempt_hcall
|
|
#endif
|
|
jmp ret_from_intr
|
|
ENDPROC(xen_hypervisor_callback)
|
|
|
|
/*
|
|
* Hypervisor uses this for application faults while it executes.
|
|
* We get here for two reasons:
|
|
* 1. Fault while reloading DS, ES, FS or GS
|
|
* 2. Fault while executing IRET
|
|
* Category 1 we fix up by reattempting the load, and zeroing the segment
|
|
* register if the load fails.
|
|
* Category 2 we fix up by jumping to do_iret_error. We cannot use the
|
|
* normal Linux return path in this case because if we use the IRET hypercall
|
|
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
|
|
* We distinguish between categories by maintaining a status value in EAX.
|
|
*/
|
|
ENTRY(xen_failsafe_callback)
|
|
pushl %eax
|
|
movl $1, %eax
|
|
1: mov 4(%esp), %ds
|
|
2: mov 8(%esp), %es
|
|
3: mov 12(%esp), %fs
|
|
4: mov 16(%esp), %gs
|
|
/* EAX == 0 => Category 1 (Bad segment)
|
|
EAX != 0 => Category 2 (Bad IRET) */
|
|
testl %eax, %eax
|
|
popl %eax
|
|
lea 16(%esp), %esp
|
|
jz 5f
|
|
jmp iret_exc
|
|
5: pushl $-1 /* orig_ax = -1 => not a system call */
|
|
SAVE_ALL
|
|
ENCODE_FRAME_POINTER
|
|
jmp ret_from_exception
|
|
|
|
.section .fixup, "ax"
|
|
6: xorl %eax, %eax
|
|
movl %eax, 4(%esp)
|
|
jmp 1b
|
|
7: xorl %eax, %eax
|
|
movl %eax, 8(%esp)
|
|
jmp 2b
|
|
8: xorl %eax, %eax
|
|
movl %eax, 12(%esp)
|
|
jmp 3b
|
|
9: xorl %eax, %eax
|
|
movl %eax, 16(%esp)
|
|
jmp 4b
|
|
.previous
|
|
_ASM_EXTABLE(1b, 6b)
|
|
_ASM_EXTABLE(2b, 7b)
|
|
_ASM_EXTABLE(3b, 8b)
|
|
_ASM_EXTABLE(4b, 9b)
|
|
ENDPROC(xen_failsafe_callback)
|
|
|
|
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
|
|
xen_evtchn_do_upcall)
|
|
|
|
#endif /* CONFIG_XEN */
|
|
|
|
#if IS_ENABLED(CONFIG_HYPERV)
|
|
|
|
BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
|
|
hyperv_vector_handler)
|
|
|
|
BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
|
|
hyperv_reenlightenment_intr)
|
|
|
|
BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
|
|
hv_stimer0_vector_handler)
|
|
|
|
#endif /* CONFIG_HYPERV */
|
|
|
|
ENTRY(page_fault)
|
|
ASM_CLAC
|
|
pushl $do_page_fault
|
|
ALIGN
|
|
jmp common_exception
|
|
END(page_fault)
|
|
|
|
common_exception:
|
|
/* the function address is in %gs's slot on the stack */
|
|
pushl %fs
|
|
pushl %es
|
|
pushl %ds
|
|
pushl %eax
|
|
pushl %ebp
|
|
pushl %edi
|
|
pushl %esi
|
|
pushl %edx
|
|
pushl %ecx
|
|
pushl %ebx
|
|
ENCODE_FRAME_POINTER
|
|
cld
|
|
movl $(__KERNEL_PERCPU), %ecx
|
|
movl %ecx, %fs
|
|
UNWIND_ESPFIX_STACK
|
|
GS_TO_REG %ecx
|
|
movl PT_GS(%esp), %edi # get the function address
|
|
movl PT_ORIG_EAX(%esp), %edx # get the error code
|
|
movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
|
|
REG_TO_PTGS %ecx
|
|
SET_KERNEL_GS %ecx
|
|
movl $(__USER_DS), %ecx
|
|
movl %ecx, %ds
|
|
movl %ecx, %es
|
|
TRACE_IRQS_OFF
|
|
movl %esp, %eax # pt_regs pointer
|
|
CALL_NOSPEC %edi
|
|
jmp ret_from_exception
|
|
END(common_exception)
|
|
|
|
ENTRY(debug)
|
|
/*
|
|
* #DB can happen at the first instruction of
|
|
* entry_SYSENTER_32 or in Xen's SYSENTER prologue. If this
|
|
* happens, then we will be running on a very small stack. We
|
|
* need to detect this condition and switch to the thread
|
|
* stack before calling any C code at all.
|
|
*
|
|
* If you edit this code, keep in mind that NMIs can happen in here.
|
|
*/
|
|
ASM_CLAC
|
|
pushl $-1 # mark this as an int
|
|
SAVE_ALL
|
|
ENCODE_FRAME_POINTER
|
|
xorl %edx, %edx # error code 0
|
|
movl %esp, %eax # pt_regs pointer
|
|
|
|
/* Are we currently on the SYSENTER stack? */
|
|
movl PER_CPU_VAR(cpu_entry_area), %ecx
|
|
addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
|
|
subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
|
|
cmpl $SIZEOF_entry_stack, %ecx
|
|
jb .Ldebug_from_sysenter_stack
|
|
|
|
TRACE_IRQS_OFF
|
|
call do_debug
|
|
jmp ret_from_exception
|
|
|
|
.Ldebug_from_sysenter_stack:
|
|
/* We're on the SYSENTER stack. Switch off. */
|
|
movl %esp, %ebx
|
|
movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
|
|
TRACE_IRQS_OFF
|
|
call do_debug
|
|
movl %ebx, %esp
|
|
jmp ret_from_exception
|
|
END(debug)
|
|
|
|
/*
|
|
* NMI is doubly nasty. It can happen on the first instruction of
|
|
* entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
|
|
* of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
|
|
* switched stacks. We handle both conditions by simply checking whether we
|
|
* interrupted kernel code running on the SYSENTER stack.
|
|
*/
|
|
ENTRY(nmi)
|
|
ASM_CLAC
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
pushl %eax
|
|
movl %ss, %eax
|
|
cmpw $__ESPFIX_SS, %ax
|
|
popl %eax
|
|
je .Lnmi_espfix_stack
|
|
#endif
|
|
|
|
pushl %eax # pt_regs->orig_ax
|
|
SAVE_ALL
|
|
ENCODE_FRAME_POINTER
|
|
xorl %edx, %edx # zero error code
|
|
movl %esp, %eax # pt_regs pointer
|
|
|
|
/* Are we currently on the SYSENTER stack? */
|
|
movl PER_CPU_VAR(cpu_entry_area), %ecx
|
|
addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
|
|
subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
|
|
cmpl $SIZEOF_entry_stack, %ecx
|
|
jb .Lnmi_from_sysenter_stack
|
|
|
|
/* Not on SYSENTER stack. */
|
|
call do_nmi
|
|
jmp .Lrestore_all_notrace
|
|
|
|
.Lnmi_from_sysenter_stack:
|
|
/*
|
|
* We're on the SYSENTER stack. Switch off. No one (not even debug)
|
|
* is using the thread stack right now, so it's safe for us to use it.
|
|
*/
|
|
movl %esp, %ebx
|
|
movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
|
|
call do_nmi
|
|
movl %ebx, %esp
|
|
jmp .Lrestore_all_notrace
|
|
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
.Lnmi_espfix_stack:
|
|
/*
|
|
* create the pointer to lss back
|
|
*/
|
|
pushl %ss
|
|
pushl %esp
|
|
addl $4, (%esp)
|
|
/* copy the iret frame of 12 bytes */
|
|
.rept 3
|
|
pushl 16(%esp)
|
|
.endr
|
|
pushl %eax
|
|
SAVE_ALL
|
|
ENCODE_FRAME_POINTER
|
|
FIXUP_ESPFIX_STACK # %eax == %esp
|
|
xorl %edx, %edx # zero error code
|
|
call do_nmi
|
|
RESTORE_REGS
|
|
lss 12+4(%esp), %esp # back to espfix stack
|
|
jmp .Lirq_return
|
|
#endif
|
|
END(nmi)
|
|
|
|
ENTRY(int3)
|
|
ASM_CLAC
|
|
pushl $-1 # mark this as an int
|
|
SAVE_ALL
|
|
ENCODE_FRAME_POINTER
|
|
TRACE_IRQS_OFF
|
|
xorl %edx, %edx # zero error code
|
|
movl %esp, %eax # pt_regs pointer
|
|
call do_int3
|
|
jmp ret_from_exception
|
|
END(int3)
|
|
|
|
ENTRY(general_protection)
|
|
pushl $do_general_protection
|
|
jmp common_exception
|
|
END(general_protection)
|
|
|
|
#ifdef CONFIG_KVM_GUEST
|
|
ENTRY(async_page_fault)
|
|
ASM_CLAC
|
|
pushl $do_async_page_fault
|
|
jmp common_exception
|
|
END(async_page_fault)
|
|
#endif
|
|
|
|
ENTRY(rewind_stack_do_exit)
|
|
/* Prevent any naive code from trying to unwind to our caller. */
|
|
xorl %ebp, %ebp
|
|
|
|
movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
|
|
leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
|
|
|
|
call do_exit
|
|
1: jmp 1b
|
|
END(rewind_stack_do_exit)
|