mirror of
https://github.com/torvalds/linux.git
synced 2025-01-01 15:51:46 +00:00
601e0cb165
On AR9285, the antenna switch configuration register uses more than just 16 bits. Because of an arbitrary mask applied to the EEPROM value that stores this configuration, diversity was broken in some cases, leading to a significant degradation in signal strength. Fix this by changing the callback to return a 32 bit value and remove the arbitrary mask. Signed-off-by: Felix Fietkau <nbd@openwrt.org> Cc: stable@kernel.org Signed-off-by: John W. Linville <linville@tuxdriver.com>
1846 lines
52 KiB
C
1846 lines
52 KiB
C
/*
|
|
* Copyright (c) 2010 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
#include "ar9003_phy.h"
|
|
#include "ar9003_eeprom.h"
|
|
|
|
#define COMP_HDR_LEN 4
|
|
#define COMP_CKSUM_LEN 2
|
|
|
|
#define AR_CH0_TOP (0x00016288)
|
|
#define AR_CH0_TOP_XPABIASLVL (0x3)
|
|
#define AR_CH0_TOP_XPABIASLVL_S (8)
|
|
|
|
#define AR_CH0_THERM (0x00016290)
|
|
#define AR_CH0_THERM_SPARE (0x3f)
|
|
#define AR_CH0_THERM_SPARE_S (0)
|
|
|
|
#define AR_SWITCH_TABLE_COM_ALL (0xffff)
|
|
#define AR_SWITCH_TABLE_COM_ALL_S (0)
|
|
|
|
#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
|
|
#define AR_SWITCH_TABLE_COM2_ALL_S (0)
|
|
|
|
#define AR_SWITCH_TABLE_ALL (0xfff)
|
|
#define AR_SWITCH_TABLE_ALL_S (0)
|
|
|
|
#define LE16(x) __constant_cpu_to_le16(x)
|
|
#define LE32(x) __constant_cpu_to_le32(x)
|
|
|
|
static const struct ar9300_eeprom ar9300_default = {
|
|
.eepromVersion = 2,
|
|
.templateVersion = 2,
|
|
.macAddr = {1, 2, 3, 4, 5, 6},
|
|
.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
.baseEepHeader = {
|
|
.regDmn = { LE16(0), LE16(0x1f) },
|
|
.txrxMask = 0x77, /* 4 bits tx and 4 bits rx */
|
|
.opCapFlags = {
|
|
.opFlags = AR9300_OPFLAGS_11G | AR9300_OPFLAGS_11A,
|
|
.eepMisc = 0,
|
|
},
|
|
.rfSilent = 0,
|
|
.blueToothOptions = 0,
|
|
.deviceCap = 0,
|
|
.deviceType = 5, /* takes lower byte in eeprom location */
|
|
.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
|
|
.params_for_tuning_caps = {0, 0},
|
|
.featureEnable = 0x0c,
|
|
/*
|
|
* bit0 - enable tx temp comp - disabled
|
|
* bit1 - enable tx volt comp - disabled
|
|
* bit2 - enable fastClock - enabled
|
|
* bit3 - enable doubling - enabled
|
|
* bit4 - enable internal regulator - disabled
|
|
* bit5 - enable pa predistortion - disabled
|
|
*/
|
|
.miscConfiguration = 0, /* bit0 - turn down drivestrength */
|
|
.eepromWriteEnableGpio = 3,
|
|
.wlanDisableGpio = 0,
|
|
.wlanLedGpio = 8,
|
|
.rxBandSelectGpio = 0xff,
|
|
.txrxgain = 0,
|
|
.swreg = 0,
|
|
},
|
|
.modalHeader2G = {
|
|
/* ar9300_modal_eep_header 2g */
|
|
/* 4 idle,t1,t2,b(4 bits per setting) */
|
|
.antCtrlCommon = LE32(0x110),
|
|
/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
|
|
.antCtrlCommon2 = LE32(0x22222),
|
|
|
|
/*
|
|
* antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
|
|
* rx1, rx12, b (2 bits each)
|
|
*/
|
|
.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
|
|
|
|
/*
|
|
* xatten1DB[AR9300_MAX_CHAINS]; 3 xatten1_db
|
|
* for ar9280 (0xa20c/b20c 5:0)
|
|
*/
|
|
.xatten1DB = {0, 0, 0},
|
|
|
|
/*
|
|
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
|
|
* for ar9280 (0xa20c/b20c 16:12
|
|
*/
|
|
.xatten1Margin = {0, 0, 0},
|
|
.tempSlope = 36,
|
|
.voltSlope = 0,
|
|
|
|
/*
|
|
* spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
|
|
* channels in usual fbin coding format
|
|
*/
|
|
.spurChans = {0, 0, 0, 0, 0},
|
|
|
|
/*
|
|
* noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
|
|
* if the register is per chain
|
|
*/
|
|
.noiseFloorThreshCh = {-1, 0, 0},
|
|
.ob = {1, 1, 1},/* 3 chain */
|
|
.db_stage2 = {1, 1, 1}, /* 3 chain */
|
|
.db_stage3 = {0, 0, 0},
|
|
.db_stage4 = {0, 0, 0},
|
|
.xpaBiasLvl = 0,
|
|
.txFrameToDataStart = 0x0e,
|
|
.txFrameToPaOn = 0x0e,
|
|
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
|
|
.antennaGain = 0,
|
|
.switchSettling = 0x2c,
|
|
.adcDesiredSize = -30,
|
|
.txEndToXpaOff = 0,
|
|
.txEndToRxOn = 0x2,
|
|
.txFrameToXpaOn = 0xe,
|
|
.thresh62 = 28,
|
|
.papdRateMaskHt20 = LE32(0x80c080),
|
|
.papdRateMaskHt40 = LE32(0x80c080),
|
|
.futureModal = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
},
|
|
.calFreqPier2G = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2437, 1),
|
|
FREQ2FBIN(2472, 1),
|
|
},
|
|
/* ar9300_cal_data_per_freq_op_loop 2g */
|
|
.calPierData2G = {
|
|
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
|
|
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
|
|
{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
|
|
},
|
|
.calTarget_freqbin_Cck = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2484, 1),
|
|
},
|
|
.calTarget_freqbin_2G = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2437, 1),
|
|
FREQ2FBIN(2472, 1)
|
|
},
|
|
.calTarget_freqbin_2GHT20 = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2437, 1),
|
|
FREQ2FBIN(2472, 1)
|
|
},
|
|
.calTarget_freqbin_2GHT40 = {
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2437, 1),
|
|
FREQ2FBIN(2472, 1)
|
|
},
|
|
.calTargetPowerCck = {
|
|
/* 1L-5L,5S,11L,11S */
|
|
{ {36, 36, 36, 36} },
|
|
{ {36, 36, 36, 36} },
|
|
},
|
|
.calTargetPower2G = {
|
|
/* 6-24,36,48,54 */
|
|
{ {32, 32, 28, 24} },
|
|
{ {32, 32, 28, 24} },
|
|
{ {32, 32, 28, 24} },
|
|
},
|
|
.calTargetPower2GHT20 = {
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
},
|
|
.calTargetPower2GHT40 = {
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
|
|
},
|
|
.ctlIndex_2G = {
|
|
0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
|
|
0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
|
|
},
|
|
.ctl_freqbin_2G = {
|
|
{
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2417, 1),
|
|
FREQ2FBIN(2457, 1),
|
|
FREQ2FBIN(2462, 1)
|
|
},
|
|
{
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2417, 1),
|
|
FREQ2FBIN(2462, 1),
|
|
0xFF,
|
|
},
|
|
|
|
{
|
|
FREQ2FBIN(2412, 1),
|
|
FREQ2FBIN(2417, 1),
|
|
FREQ2FBIN(2462, 1),
|
|
0xFF,
|
|
},
|
|
{
|
|
FREQ2FBIN(2422, 1),
|
|
FREQ2FBIN(2427, 1),
|
|
FREQ2FBIN(2447, 1),
|
|
FREQ2FBIN(2452, 1)
|
|
},
|
|
|
|
{
|
|
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
|
|
},
|
|
|
|
{
|
|
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
0,
|
|
},
|
|
|
|
{
|
|
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
FREQ2FBIN(2472, 1),
|
|
0,
|
|
},
|
|
|
|
{
|
|
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
|
|
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
|
|
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
|
|
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
|
|
},
|
|
|
|
{
|
|
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
},
|
|
|
|
{
|
|
/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
0
|
|
},
|
|
|
|
{
|
|
/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
|
|
/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
|
|
/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
|
|
0
|
|
},
|
|
|
|
{
|
|
/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
|
|
/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
|
|
/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
|
|
/* Data[11].ctlEdges[3].bChannel */
|
|
FREQ2FBIN(2462, 1),
|
|
}
|
|
},
|
|
.ctlPowerData_2G = {
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 1}, {60, 0}, {60, 0}, {60, 1} } },
|
|
|
|
{ { {60, 1}, {60, 0}, {0, 0}, {0, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
|
|
{ { {60, 0}, {60, 1}, {60, 1}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
|
|
{ { {60, 0}, {60, 1}, {60, 0}, {60, 0} } },
|
|
{ { {60, 0}, {60, 1}, {60, 1}, {60, 1} } },
|
|
},
|
|
.modalHeader5G = {
|
|
/* 4 idle,t1,t2,b (4 bits per setting) */
|
|
.antCtrlCommon = LE32(0x110),
|
|
/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
|
|
.antCtrlCommon2 = LE32(0x22222),
|
|
/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
|
|
.antCtrlChain = {
|
|
LE16(0x000), LE16(0x000), LE16(0x000),
|
|
},
|
|
/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
|
|
.xatten1DB = {0, 0, 0},
|
|
|
|
/*
|
|
* xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
|
|
* for merlin (0xa20c/b20c 16:12
|
|
*/
|
|
.xatten1Margin = {0, 0, 0},
|
|
.tempSlope = 68,
|
|
.voltSlope = 0,
|
|
/* spurChans spur channels in usual fbin coding format */
|
|
.spurChans = {0, 0, 0, 0, 0},
|
|
/* noiseFloorThreshCh Check if the register is per chain */
|
|
.noiseFloorThreshCh = {-1, 0, 0},
|
|
.ob = {3, 3, 3}, /* 3 chain */
|
|
.db_stage2 = {3, 3, 3}, /* 3 chain */
|
|
.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
|
|
.db_stage4 = {3, 3, 3}, /* don't exist for 2G */
|
|
.xpaBiasLvl = 0,
|
|
.txFrameToDataStart = 0x0e,
|
|
.txFrameToPaOn = 0x0e,
|
|
.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
|
|
.antennaGain = 0,
|
|
.switchSettling = 0x2d,
|
|
.adcDesiredSize = -30,
|
|
.txEndToXpaOff = 0,
|
|
.txEndToRxOn = 0x2,
|
|
.txFrameToXpaOn = 0xe,
|
|
.thresh62 = 28,
|
|
.papdRateMaskHt20 = LE32(0xf0e0e0),
|
|
.papdRateMaskHt40 = LE32(0xf0e0e0),
|
|
.futureModal = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
},
|
|
.calFreqPier5G = {
|
|
FREQ2FBIN(5180, 0),
|
|
FREQ2FBIN(5220, 0),
|
|
FREQ2FBIN(5320, 0),
|
|
FREQ2FBIN(5400, 0),
|
|
FREQ2FBIN(5500, 0),
|
|
FREQ2FBIN(5600, 0),
|
|
FREQ2FBIN(5725, 0),
|
|
FREQ2FBIN(5825, 0)
|
|
},
|
|
.calPierData5G = {
|
|
{
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
},
|
|
{
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
},
|
|
{
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0},
|
|
},
|
|
|
|
},
|
|
.calTarget_freqbin_5G = {
|
|
FREQ2FBIN(5180, 0),
|
|
FREQ2FBIN(5220, 0),
|
|
FREQ2FBIN(5320, 0),
|
|
FREQ2FBIN(5400, 0),
|
|
FREQ2FBIN(5500, 0),
|
|
FREQ2FBIN(5600, 0),
|
|
FREQ2FBIN(5725, 0),
|
|
FREQ2FBIN(5825, 0)
|
|
},
|
|
.calTarget_freqbin_5GHT20 = {
|
|
FREQ2FBIN(5180, 0),
|
|
FREQ2FBIN(5240, 0),
|
|
FREQ2FBIN(5320, 0),
|
|
FREQ2FBIN(5500, 0),
|
|
FREQ2FBIN(5700, 0),
|
|
FREQ2FBIN(5745, 0),
|
|
FREQ2FBIN(5725, 0),
|
|
FREQ2FBIN(5825, 0)
|
|
},
|
|
.calTarget_freqbin_5GHT40 = {
|
|
FREQ2FBIN(5180, 0),
|
|
FREQ2FBIN(5240, 0),
|
|
FREQ2FBIN(5320, 0),
|
|
FREQ2FBIN(5500, 0),
|
|
FREQ2FBIN(5700, 0),
|
|
FREQ2FBIN(5745, 0),
|
|
FREQ2FBIN(5725, 0),
|
|
FREQ2FBIN(5825, 0)
|
|
},
|
|
.calTargetPower5G = {
|
|
/* 6-24,36,48,54 */
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
{ {20, 20, 20, 10} },
|
|
},
|
|
.calTargetPower5GHT20 = {
|
|
/*
|
|
* 0_8_16,1-3_9-11_17-19,
|
|
* 4,5,6,7,12,13,14,15,20,21,22,23
|
|
*/
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
},
|
|
.calTargetPower5GHT40 = {
|
|
/*
|
|
* 0_8_16,1-3_9-11_17-19,
|
|
* 4,5,6,7,12,13,14,15,20,21,22,23
|
|
*/
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
|
|
},
|
|
.ctlIndex_5G = {
|
|
0x10, 0x16, 0x18, 0x40, 0x46,
|
|
0x48, 0x30, 0x36, 0x38
|
|
},
|
|
.ctl_freqbin_5G = {
|
|
{
|
|
/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
|
|
/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
|
|
/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
|
|
/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
|
|
},
|
|
{
|
|
/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
|
|
/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
|
|
/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
|
|
/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
|
|
},
|
|
|
|
{
|
|
/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
|
|
/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
|
|
/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
|
|
/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
|
|
/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
|
|
/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
|
|
/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
|
|
/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
|
|
},
|
|
|
|
{
|
|
/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
|
|
/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
|
|
/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[3].ctlEdges[6].bChannel */ 0xFF,
|
|
/* Data[3].ctlEdges[7].bChannel */ 0xFF,
|
|
},
|
|
|
|
{
|
|
/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[4].ctlEdges[4].bChannel */ 0xFF,
|
|
/* Data[4].ctlEdges[5].bChannel */ 0xFF,
|
|
/* Data[4].ctlEdges[6].bChannel */ 0xFF,
|
|
/* Data[4].ctlEdges[7].bChannel */ 0xFF,
|
|
},
|
|
|
|
{
|
|
/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
|
|
/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
|
|
/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
|
|
/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
|
|
/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
|
|
/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
|
|
/* Data[5].ctlEdges[6].bChannel */ 0xFF,
|
|
/* Data[5].ctlEdges[7].bChannel */ 0xFF
|
|
},
|
|
|
|
{
|
|
/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
|
|
/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
|
|
/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
|
|
/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
|
|
},
|
|
|
|
{
|
|
/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
|
|
/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
|
|
/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
|
|
/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
|
|
/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
|
|
/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
|
|
/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
|
|
/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
|
|
},
|
|
|
|
{
|
|
/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
|
|
/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
|
|
/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
|
|
/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
|
|
/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
|
|
/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
|
|
/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
|
|
/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
|
|
}
|
|
},
|
|
.ctlPowerData_5G = {
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 0}, {60, 1}, {60, 0}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 0}, {60, 1}, {60, 1}, {60, 0},
|
|
{60, 1}, {60, 0}, {60, 0}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 0},
|
|
{60, 0}, {60, 0}, {60, 0}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 0}, {60, 0}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 1},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 1}, {60, 0}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 1}, {60, 0},
|
|
}
|
|
},
|
|
{
|
|
{
|
|
{60, 1}, {60, 0}, {60, 1}, {60, 1},
|
|
{60, 1}, {60, 1}, {60, 0}, {60, 1},
|
|
}
|
|
},
|
|
}
|
|
};
|
|
|
|
static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
|
|
enum eeprom_param param)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
|
|
|
|
switch (param) {
|
|
case EEP_MAC_LSW:
|
|
return eep->macAddr[0] << 8 | eep->macAddr[1];
|
|
case EEP_MAC_MID:
|
|
return eep->macAddr[2] << 8 | eep->macAddr[3];
|
|
case EEP_MAC_MSW:
|
|
return eep->macAddr[4] << 8 | eep->macAddr[5];
|
|
case EEP_REG_0:
|
|
return le16_to_cpu(pBase->regDmn[0]);
|
|
case EEP_REG_1:
|
|
return le16_to_cpu(pBase->regDmn[1]);
|
|
case EEP_OP_CAP:
|
|
return pBase->deviceCap;
|
|
case EEP_OP_MODE:
|
|
return pBase->opCapFlags.opFlags;
|
|
case EEP_RF_SILENT:
|
|
return pBase->rfSilent;
|
|
case EEP_TX_MASK:
|
|
return (pBase->txrxMask >> 4) & 0xf;
|
|
case EEP_RX_MASK:
|
|
return pBase->txrxMask & 0xf;
|
|
case EEP_DRIVE_STRENGTH:
|
|
#define AR9300_EEP_BASE_DRIV_STRENGTH 0x1
|
|
return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
|
|
case EEP_INTERNAL_REGULATOR:
|
|
/* Bit 4 is internal regulator flag */
|
|
return (pBase->featureEnable & 0x10) >> 4;
|
|
case EEP_SWREG:
|
|
return le32_to_cpu(pBase->swreg);
|
|
case EEP_PAPRD:
|
|
return !!(pBase->featureEnable & BIT(5));
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
|
|
u8 *buffer)
|
|
{
|
|
u16 val;
|
|
|
|
if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
|
|
return false;
|
|
|
|
*buffer = (val >> (8 * (address % 2))) & 0xff;
|
|
return true;
|
|
}
|
|
|
|
static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
|
|
u8 *buffer)
|
|
{
|
|
u16 val;
|
|
|
|
if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
|
|
return false;
|
|
|
|
buffer[0] = val >> 8;
|
|
buffer[1] = val & 0xff;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
|
|
int count)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
int i;
|
|
|
|
if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"eeprom address not in range\n");
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Since we're reading the bytes in reverse order from a little-endian
|
|
* word stream, an even address means we only use the lower half of
|
|
* the 16-bit word at that address
|
|
*/
|
|
if (address % 2 == 0) {
|
|
if (!ar9300_eeprom_read_byte(common, address--, buffer++))
|
|
goto error;
|
|
|
|
count--;
|
|
}
|
|
|
|
for (i = 0; i < count / 2; i++) {
|
|
if (!ar9300_eeprom_read_word(common, address, buffer))
|
|
goto error;
|
|
|
|
address -= 2;
|
|
buffer += 2;
|
|
}
|
|
|
|
if (count % 2)
|
|
if (!ar9300_eeprom_read_byte(common, address, buffer))
|
|
goto error;
|
|
|
|
return true;
|
|
|
|
error:
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"unable to read eeprom region at offset %d\n", address);
|
|
return false;
|
|
}
|
|
|
|
static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
|
|
int *length, int *major, int *minor)
|
|
{
|
|
unsigned long value[4];
|
|
|
|
value[0] = best[0];
|
|
value[1] = best[1];
|
|
value[2] = best[2];
|
|
value[3] = best[3];
|
|
*code = ((value[0] >> 5) & 0x0007);
|
|
*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
|
|
*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
|
|
*major = (value[2] & 0x000f);
|
|
*minor = (value[3] & 0x00ff);
|
|
}
|
|
|
|
static u16 ar9300_comp_cksum(u8 *data, int dsize)
|
|
{
|
|
int it, checksum = 0;
|
|
|
|
for (it = 0; it < dsize; it++) {
|
|
checksum += data[it];
|
|
checksum &= 0xffff;
|
|
}
|
|
|
|
return checksum;
|
|
}
|
|
|
|
static bool ar9300_uncompress_block(struct ath_hw *ah,
|
|
u8 *mptr,
|
|
int mdataSize,
|
|
u8 *block,
|
|
int size)
|
|
{
|
|
int it;
|
|
int spot;
|
|
int offset;
|
|
int length;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
spot = 0;
|
|
|
|
for (it = 0; it < size; it += (length+2)) {
|
|
offset = block[it];
|
|
offset &= 0xff;
|
|
spot += offset;
|
|
length = block[it+1];
|
|
length &= 0xff;
|
|
|
|
if (length > 0 && spot >= 0 && spot+length < mdataSize) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Restore at %d: spot=%d "
|
|
"offset=%d length=%d\n",
|
|
it, spot, offset, length);
|
|
memcpy(&mptr[spot], &block[it+2], length);
|
|
spot += length;
|
|
} else if (length > 0) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Bad restore at %d: spot=%d "
|
|
"offset=%d length=%d\n",
|
|
it, spot, offset, length);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int ar9300_compress_decision(struct ath_hw *ah,
|
|
int it,
|
|
int code,
|
|
int reference,
|
|
u8 *mptr,
|
|
u8 *word, int length, int mdata_size)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u8 *dptr;
|
|
|
|
switch (code) {
|
|
case _CompressNone:
|
|
if (length != mdata_size) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"EEPROM structure size mismatch"
|
|
"memory=%d eeprom=%d\n", mdata_size, length);
|
|
return -1;
|
|
}
|
|
memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
|
|
ath_print(common, ATH_DBG_EEPROM, "restored eeprom %d:"
|
|
" uncompressed, length %d\n", it, length);
|
|
break;
|
|
case _CompressBlock:
|
|
if (reference == 0) {
|
|
dptr = mptr;
|
|
} else {
|
|
if (reference != 2) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"cant find reference eeprom"
|
|
"struct %d\n", reference);
|
|
return -1;
|
|
}
|
|
memcpy(mptr, &ar9300_default, mdata_size);
|
|
}
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"restore eeprom %d: block, reference %d,"
|
|
" length %d\n", it, reference, length);
|
|
ar9300_uncompress_block(ah, mptr, mdata_size,
|
|
(u8 *) (word + COMP_HDR_LEN), length);
|
|
break;
|
|
default:
|
|
ath_print(common, ATH_DBG_EEPROM, "unknown compression"
|
|
" code %d\n", code);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the configuration data from the eeprom.
|
|
* The data can be put in any specified memory buffer.
|
|
*
|
|
* Returns -1 on error.
|
|
* Returns address of next memory location on success.
|
|
*/
|
|
static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
|
|
u8 *mptr, int mdata_size)
|
|
{
|
|
#define MDEFAULT 15
|
|
#define MSTATE 100
|
|
int cptr;
|
|
u8 *word;
|
|
int code;
|
|
int reference, length, major, minor;
|
|
int osize;
|
|
int it;
|
|
u16 checksum, mchecksum;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
word = kzalloc(2048, GFP_KERNEL);
|
|
if (!word)
|
|
return -1;
|
|
|
|
memcpy(mptr, &ar9300_default, mdata_size);
|
|
|
|
cptr = AR9300_BASE_ADDR;
|
|
for (it = 0; it < MSTATE; it++) {
|
|
if (!ar9300_read_eeprom(ah, cptr, word, COMP_HDR_LEN))
|
|
goto fail;
|
|
|
|
if ((word[0] == 0 && word[1] == 0 && word[2] == 0 &&
|
|
word[3] == 0) || (word[0] == 0xff && word[1] == 0xff
|
|
&& word[2] == 0xff && word[3] == 0xff))
|
|
break;
|
|
|
|
ar9300_comp_hdr_unpack(word, &code, &reference,
|
|
&length, &major, &minor);
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Found block at %x: code=%d ref=%d"
|
|
"length=%d major=%d minor=%d\n", cptr, code,
|
|
reference, length, major, minor);
|
|
if (length >= 1024) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Skipping bad header\n");
|
|
cptr -= COMP_HDR_LEN;
|
|
continue;
|
|
}
|
|
|
|
osize = length;
|
|
ar9300_read_eeprom(ah, cptr, word,
|
|
COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
|
|
checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
|
|
mchecksum = word[COMP_HDR_LEN + osize] |
|
|
(word[COMP_HDR_LEN + osize + 1] << 8);
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"checksum %x %x\n", checksum, mchecksum);
|
|
if (checksum == mchecksum) {
|
|
ar9300_compress_decision(ah, it, code, reference, mptr,
|
|
word, length, mdata_size);
|
|
} else {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"skipping block with bad checksum\n");
|
|
}
|
|
cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
|
|
}
|
|
|
|
kfree(word);
|
|
return cptr;
|
|
|
|
fail:
|
|
kfree(word);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Restore the configuration structure by reading the eeprom.
|
|
* This function destroys any existing in-memory structure
|
|
* content.
|
|
*/
|
|
static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
|
|
|
|
if (ar9300_eeprom_restore_internal(ah, mptr,
|
|
sizeof(struct ar9300_eeprom)) < 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* XXX: review hardware docs */
|
|
static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
|
|
{
|
|
return ah->eeprom.ar9300_eep.eepromVersion;
|
|
}
|
|
|
|
/* XXX: could be read from the eepromVersion, not sure yet */
|
|
static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static u8 ath9k_hw_ar9300_get_num_ant_config(struct ath_hw *ah,
|
|
enum ieee80211_band freq_band)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static u32 ath9k_hw_ar9300_get_eeprom_antenna_cfg(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
if (is2ghz)
|
|
return eep->modalHeader2G.xpaBiasLvl;
|
|
else
|
|
return eep->modalHeader5G.xpaBiasLvl;
|
|
}
|
|
|
|
static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, (bias & 0x3));
|
|
REG_RMW_FIELD(ah, AR_CH0_THERM, AR_CH0_THERM_SPARE,
|
|
((bias >> 2) & 0x3));
|
|
}
|
|
|
|
static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
__le32 val;
|
|
|
|
if (is2ghz)
|
|
val = eep->modalHeader2G.antCtrlCommon;
|
|
else
|
|
val = eep->modalHeader5G.antCtrlCommon;
|
|
return le32_to_cpu(val);
|
|
}
|
|
|
|
static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
__le32 val;
|
|
|
|
if (is2ghz)
|
|
val = eep->modalHeader2G.antCtrlCommon2;
|
|
else
|
|
val = eep->modalHeader5G.antCtrlCommon2;
|
|
return le32_to_cpu(val);
|
|
}
|
|
|
|
static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
|
|
int chain,
|
|
bool is2ghz)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
__le16 val = 0;
|
|
|
|
if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
|
|
if (is2ghz)
|
|
val = eep->modalHeader2G.antCtrlChain[chain];
|
|
else
|
|
val = eep->modalHeader5G.antCtrlChain[chain];
|
|
}
|
|
|
|
return le16_to_cpu(val);
|
|
}
|
|
|
|
static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
|
|
{
|
|
u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value);
|
|
|
|
value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
|
|
|
|
value = ar9003_hw_ant_ctrl_chain_get(ah, 0, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
|
|
|
|
value = ar9003_hw_ant_ctrl_chain_get(ah, 1, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
|
|
|
|
value = ar9003_hw_ant_ctrl_chain_get(ah, 2, is2ghz);
|
|
REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
|
|
}
|
|
|
|
static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
|
|
{
|
|
int drive_strength;
|
|
unsigned long reg;
|
|
|
|
drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
|
|
|
|
if (!drive_strength)
|
|
return;
|
|
|
|
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
|
|
reg &= ~0x00ffffc0;
|
|
reg |= 0x5 << 21;
|
|
reg |= 0x5 << 18;
|
|
reg |= 0x5 << 15;
|
|
reg |= 0x5 << 12;
|
|
reg |= 0x5 << 9;
|
|
reg |= 0x5 << 6;
|
|
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
|
|
|
|
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
|
|
reg &= ~0xffffffe0;
|
|
reg |= 0x5 << 29;
|
|
reg |= 0x5 << 26;
|
|
reg |= 0x5 << 23;
|
|
reg |= 0x5 << 20;
|
|
reg |= 0x5 << 17;
|
|
reg |= 0x5 << 14;
|
|
reg |= 0x5 << 11;
|
|
reg |= 0x5 << 8;
|
|
reg |= 0x5 << 5;
|
|
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
|
|
|
|
reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
|
|
reg &= ~0xff800000;
|
|
reg |= 0x5 << 29;
|
|
reg |= 0x5 << 26;
|
|
reg |= 0x5 << 23;
|
|
REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
|
|
}
|
|
|
|
static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
|
|
{
|
|
int internal_regulator =
|
|
ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
|
|
|
|
if (internal_regulator) {
|
|
/* Internal regulator is ON. Write swreg register. */
|
|
int swreg = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
|
|
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
|
|
REG_READ(ah, AR_RTC_REG_CONTROL1) &
|
|
(~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
|
|
REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
|
|
/* Set REG_CONTROL1.SWREG_PROGRAM */
|
|
REG_WRITE(ah, AR_RTC_REG_CONTROL1,
|
|
REG_READ(ah,
|
|
AR_RTC_REG_CONTROL1) |
|
|
AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
|
|
} else {
|
|
REG_WRITE(ah, AR_RTC_SLEEP_CLK,
|
|
(REG_READ(ah,
|
|
AR_RTC_SLEEP_CLK) |
|
|
AR_RTC_FORCE_SWREG_PRD));
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
|
|
ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
|
|
ar9003_hw_drive_strength_apply(ah);
|
|
ar9003_hw_internal_regulator_apply(ah);
|
|
}
|
|
|
|
static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Returns the interpolated y value corresponding to the specified x value
|
|
* from the np ordered pairs of data (px,py).
|
|
* The pairs do not have to be in any order.
|
|
* If the specified x value is less than any of the px,
|
|
* the returned y value is equal to the py for the lowest px.
|
|
* If the specified x value is greater than any of the px,
|
|
* the returned y value is equal to the py for the highest px.
|
|
*/
|
|
static int ar9003_hw_power_interpolate(int32_t x,
|
|
int32_t *px, int32_t *py, u_int16_t np)
|
|
{
|
|
int ip = 0;
|
|
int lx = 0, ly = 0, lhave = 0;
|
|
int hx = 0, hy = 0, hhave = 0;
|
|
int dx = 0;
|
|
int y = 0;
|
|
|
|
lhave = 0;
|
|
hhave = 0;
|
|
|
|
/* identify best lower and higher x calibration measurement */
|
|
for (ip = 0; ip < np; ip++) {
|
|
dx = x - px[ip];
|
|
|
|
/* this measurement is higher than our desired x */
|
|
if (dx <= 0) {
|
|
if (!hhave || dx > (x - hx)) {
|
|
/* new best higher x measurement */
|
|
hx = px[ip];
|
|
hy = py[ip];
|
|
hhave = 1;
|
|
}
|
|
}
|
|
/* this measurement is lower than our desired x */
|
|
if (dx >= 0) {
|
|
if (!lhave || dx < (x - lx)) {
|
|
/* new best lower x measurement */
|
|
lx = px[ip];
|
|
ly = py[ip];
|
|
lhave = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* the low x is good */
|
|
if (lhave) {
|
|
/* so is the high x */
|
|
if (hhave) {
|
|
/* they're the same, so just pick one */
|
|
if (hx == lx)
|
|
y = ly;
|
|
else /* interpolate */
|
|
y = ly + (((x - lx) * (hy - ly)) / (hx - lx));
|
|
} else /* only low is good, use it */
|
|
y = ly;
|
|
} else if (hhave) /* only high is good, use it */
|
|
y = hy;
|
|
else /* nothing is good,this should never happen unless np=0, ???? */
|
|
y = -(1 << 30);
|
|
return y;
|
|
}
|
|
|
|
static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
|
|
u16 rateIndex, u16 freq, bool is2GHz)
|
|
{
|
|
u16 numPiers, i;
|
|
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
|
|
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct cal_tgt_pow_legacy *pEepromTargetPwr;
|
|
u8 *pFreqBin;
|
|
|
|
if (is2GHz) {
|
|
numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower2G;
|
|
pFreqBin = eep->calTarget_freqbin_2G;
|
|
} else {
|
|
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower5G;
|
|
pFreqBin = eep->calTarget_freqbin_5G;
|
|
}
|
|
|
|
/*
|
|
* create array of channels and targetpower from
|
|
* targetpower piers stored on eeprom
|
|
*/
|
|
for (i = 0; i < numPiers; i++) {
|
|
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
|
|
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
|
|
}
|
|
|
|
/* interpolate to get target power for given frequency */
|
|
return (u8) ar9003_hw_power_interpolate((s32) freq,
|
|
freqArray,
|
|
targetPowerArray, numPiers);
|
|
}
|
|
|
|
static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
|
|
u16 rateIndex,
|
|
u16 freq, bool is2GHz)
|
|
{
|
|
u16 numPiers, i;
|
|
s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
|
|
s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct cal_tgt_pow_ht *pEepromTargetPwr;
|
|
u8 *pFreqBin;
|
|
|
|
if (is2GHz) {
|
|
numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower2GHT20;
|
|
pFreqBin = eep->calTarget_freqbin_2GHT20;
|
|
} else {
|
|
numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower5GHT20;
|
|
pFreqBin = eep->calTarget_freqbin_5GHT20;
|
|
}
|
|
|
|
/*
|
|
* create array of channels and targetpower
|
|
* from targetpower piers stored on eeprom
|
|
*/
|
|
for (i = 0; i < numPiers; i++) {
|
|
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
|
|
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
|
|
}
|
|
|
|
/* interpolate to get target power for given frequency */
|
|
return (u8) ar9003_hw_power_interpolate((s32) freq,
|
|
freqArray,
|
|
targetPowerArray, numPiers);
|
|
}
|
|
|
|
static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
|
|
u16 rateIndex,
|
|
u16 freq, bool is2GHz)
|
|
{
|
|
u16 numPiers, i;
|
|
s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
|
|
s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct cal_tgt_pow_ht *pEepromTargetPwr;
|
|
u8 *pFreqBin;
|
|
|
|
if (is2GHz) {
|
|
numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower2GHT40;
|
|
pFreqBin = eep->calTarget_freqbin_2GHT40;
|
|
} else {
|
|
numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
|
|
pEepromTargetPwr = eep->calTargetPower5GHT40;
|
|
pFreqBin = eep->calTarget_freqbin_5GHT40;
|
|
}
|
|
|
|
/*
|
|
* create array of channels and targetpower from
|
|
* targetpower piers stored on eeprom
|
|
*/
|
|
for (i = 0; i < numPiers; i++) {
|
|
freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
|
|
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
|
|
}
|
|
|
|
/* interpolate to get target power for given frequency */
|
|
return (u8) ar9003_hw_power_interpolate((s32) freq,
|
|
freqArray,
|
|
targetPowerArray, numPiers);
|
|
}
|
|
|
|
static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
|
|
u16 rateIndex, u16 freq)
|
|
{
|
|
u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
|
|
s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
|
|
s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
|
|
u8 *pFreqBin = eep->calTarget_freqbin_Cck;
|
|
|
|
/*
|
|
* create array of channels and targetpower from
|
|
* targetpower piers stored on eeprom
|
|
*/
|
|
for (i = 0; i < numPiers; i++) {
|
|
freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
|
|
targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
|
|
}
|
|
|
|
/* interpolate to get target power for given frequency */
|
|
return (u8) ar9003_hw_power_interpolate((s32) freq,
|
|
freqArray,
|
|
targetPowerArray, numPiers);
|
|
}
|
|
|
|
/* Set tx power registers to array of values passed in */
|
|
static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
|
|
{
|
|
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
|
|
/* make sure forced gain is not set */
|
|
REG_WRITE(ah, 0xa458, 0);
|
|
|
|
/* Write the OFDM power per rate set */
|
|
|
|
/* 6 (LSB), 9, 12, 18 (MSB) */
|
|
REG_WRITE(ah, 0xa3c0,
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
|
|
|
|
/* 24 (LSB), 36, 48, 54 (MSB) */
|
|
REG_WRITE(ah, 0xa3c4,
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
|
|
|
|
/* Write the CCK power per rate set */
|
|
|
|
/* 1L (LSB), reserved, 2L, 2S (MSB) */
|
|
REG_WRITE(ah, 0xa3c8,
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
|
|
/* POW_SM(txPowerTimes2, 8) | this is reserved for AR9003 */
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
|
|
|
|
/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
|
|
REG_WRITE(ah, 0xa3cc,
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
|
|
);
|
|
|
|
/* Write the HT20 power per rate set */
|
|
|
|
/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
|
|
REG_WRITE(ah, 0xa3d0,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
|
|
);
|
|
|
|
/* 6 (LSB), 7, 12, 13 (MSB) */
|
|
REG_WRITE(ah, 0xa3d4,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
|
|
);
|
|
|
|
/* 14 (LSB), 15, 20, 21 */
|
|
REG_WRITE(ah, 0xa3e4,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
|
|
);
|
|
|
|
/* Mixed HT20 and HT40 rates */
|
|
|
|
/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
|
|
REG_WRITE(ah, 0xa3e8,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
|
|
);
|
|
|
|
/*
|
|
* Write the HT40 power per rate set
|
|
* correct PAR difference between HT40 and HT20/LEGACY
|
|
* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
|
|
*/
|
|
REG_WRITE(ah, 0xa3d8,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
|
|
);
|
|
|
|
/* 6 (LSB), 7, 12, 13 (MSB) */
|
|
REG_WRITE(ah, 0xa3dc,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
|
|
);
|
|
|
|
/* 14 (LSB), 15, 20, 21 */
|
|
REG_WRITE(ah, 0xa3ec,
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
|
|
POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
|
|
);
|
|
|
|
return 0;
|
|
#undef POW_SM
|
|
}
|
|
|
|
static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq)
|
|
{
|
|
u8 targetPowerValT2[ar9300RateSize];
|
|
/* XXX: hard code for now, need to get from eeprom struct */
|
|
u8 ht40PowerIncForPdadc = 0;
|
|
bool is2GHz = false;
|
|
unsigned int i = 0;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (freq < 4000)
|
|
is2GHz = true;
|
|
|
|
targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
|
|
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_36] =
|
|
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_48] =
|
|
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_54] =
|
|
ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
|
|
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
|
|
freq);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_5S] =
|
|
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_11L] =
|
|
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
|
|
targetPowerValT2[ALL_TARGET_LEGACY_11S] =
|
|
ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
|
|
targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
|
|
freq, is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_4] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_5] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_6] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_7] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_12] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_13] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_14] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_15] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_20] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_21] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_22] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT20_23] =
|
|
ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
|
|
is2GHz);
|
|
targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
|
|
freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_4] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_5] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_6] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_7] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_12] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_13] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_14] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_15] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_20] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_21] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_22] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
targetPowerValT2[ALL_TARGET_HT40_23] =
|
|
ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
|
|
is2GHz) + ht40PowerIncForPdadc;
|
|
|
|
while (i < ar9300RateSize) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
|
|
i++;
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
|
|
i++;
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"TPC[%02d] 0x%08x ", i, targetPowerValT2[i]);
|
|
i++;
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
|
|
i++;
|
|
}
|
|
|
|
/* Write target power array to registers */
|
|
ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
|
|
}
|
|
|
|
static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
|
|
int mode,
|
|
int ipier,
|
|
int ichain,
|
|
int *pfrequency,
|
|
int *pcorrection,
|
|
int *ptemperature, int *pvoltage)
|
|
{
|
|
u8 *pCalPier;
|
|
struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
|
|
int is2GHz;
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (ichain >= AR9300_MAX_CHAINS) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Invalid chain index, must be less than %d\n",
|
|
AR9300_MAX_CHAINS);
|
|
return -1;
|
|
}
|
|
|
|
if (mode) { /* 5GHz */
|
|
if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Invalid 5GHz cal pier index, must "
|
|
"be less than %d\n",
|
|
AR9300_NUM_5G_CAL_PIERS);
|
|
return -1;
|
|
}
|
|
pCalPier = &(eep->calFreqPier5G[ipier]);
|
|
pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
|
|
is2GHz = 0;
|
|
} else {
|
|
if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Invalid 2GHz cal pier index, must "
|
|
"be less than %d\n", AR9300_NUM_2G_CAL_PIERS);
|
|
return -1;
|
|
}
|
|
|
|
pCalPier = &(eep->calFreqPier2G[ipier]);
|
|
pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
|
|
is2GHz = 1;
|
|
}
|
|
|
|
*pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
|
|
*pcorrection = pCalPierStruct->refPower;
|
|
*ptemperature = pCalPierStruct->tempMeas;
|
|
*pvoltage = pCalPierStruct->voltMeas;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ar9003_hw_power_control_override(struct ath_hw *ah,
|
|
int frequency,
|
|
int *correction,
|
|
int *voltage, int *temperature)
|
|
{
|
|
int tempSlope = 0;
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
REG_RMW(ah, AR_PHY_TPC_11_B0,
|
|
(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
|
|
AR_PHY_TPC_OLPC_GAIN_DELTA);
|
|
REG_RMW(ah, AR_PHY_TPC_11_B1,
|
|
(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
|
|
AR_PHY_TPC_OLPC_GAIN_DELTA);
|
|
REG_RMW(ah, AR_PHY_TPC_11_B2,
|
|
(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
|
|
AR_PHY_TPC_OLPC_GAIN_DELTA);
|
|
|
|
/* enable open loop power control on chip */
|
|
REG_RMW(ah, AR_PHY_TPC_6_B0,
|
|
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
|
|
AR_PHY_TPC_6_ERROR_EST_MODE);
|
|
REG_RMW(ah, AR_PHY_TPC_6_B1,
|
|
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
|
|
AR_PHY_TPC_6_ERROR_EST_MODE);
|
|
REG_RMW(ah, AR_PHY_TPC_6_B2,
|
|
(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
|
|
AR_PHY_TPC_6_ERROR_EST_MODE);
|
|
|
|
/*
|
|
* enable temperature compensation
|
|
* Need to use register names
|
|
*/
|
|
if (frequency < 4000)
|
|
tempSlope = eep->modalHeader2G.tempSlope;
|
|
else
|
|
tempSlope = eep->modalHeader5G.tempSlope;
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
|
|
temperature[0]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Apply the recorded correction values. */
|
|
static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
|
|
{
|
|
int ichain, ipier, npier;
|
|
int mode;
|
|
int lfrequency[AR9300_MAX_CHAINS],
|
|
lcorrection[AR9300_MAX_CHAINS],
|
|
ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
|
|
int hfrequency[AR9300_MAX_CHAINS],
|
|
hcorrection[AR9300_MAX_CHAINS],
|
|
htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
|
|
int fdiff;
|
|
int correction[AR9300_MAX_CHAINS],
|
|
voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
|
|
int pfrequency, pcorrection, ptemperature, pvoltage;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
mode = (frequency >= 4000);
|
|
if (mode)
|
|
npier = AR9300_NUM_5G_CAL_PIERS;
|
|
else
|
|
npier = AR9300_NUM_2G_CAL_PIERS;
|
|
|
|
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
|
|
lfrequency[ichain] = 0;
|
|
hfrequency[ichain] = 100000;
|
|
}
|
|
/* identify best lower and higher frequency calibration measurement */
|
|
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
|
|
for (ipier = 0; ipier < npier; ipier++) {
|
|
if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
|
|
&pfrequency, &pcorrection,
|
|
&ptemperature, &pvoltage)) {
|
|
fdiff = frequency - pfrequency;
|
|
|
|
/*
|
|
* this measurement is higher than
|
|
* our desired frequency
|
|
*/
|
|
if (fdiff <= 0) {
|
|
if (hfrequency[ichain] <= 0 ||
|
|
hfrequency[ichain] >= 100000 ||
|
|
fdiff >
|
|
(frequency - hfrequency[ichain])) {
|
|
/*
|
|
* new best higher
|
|
* frequency measurement
|
|
*/
|
|
hfrequency[ichain] = pfrequency;
|
|
hcorrection[ichain] =
|
|
pcorrection;
|
|
htemperature[ichain] =
|
|
ptemperature;
|
|
hvoltage[ichain] = pvoltage;
|
|
}
|
|
}
|
|
if (fdiff >= 0) {
|
|
if (lfrequency[ichain] <= 0
|
|
|| fdiff <
|
|
(frequency - lfrequency[ichain])) {
|
|
/*
|
|
* new best lower
|
|
* frequency measurement
|
|
*/
|
|
lfrequency[ichain] = pfrequency;
|
|
lcorrection[ichain] =
|
|
pcorrection;
|
|
ltemperature[ichain] =
|
|
ptemperature;
|
|
lvoltage[ichain] = pvoltage;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* interpolate */
|
|
for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"ch=%d f=%d low=%d %d h=%d %d\n",
|
|
ichain, frequency, lfrequency[ichain],
|
|
lcorrection[ichain], hfrequency[ichain],
|
|
hcorrection[ichain]);
|
|
/* they're the same, so just pick one */
|
|
if (hfrequency[ichain] == lfrequency[ichain]) {
|
|
correction[ichain] = lcorrection[ichain];
|
|
voltage[ichain] = lvoltage[ichain];
|
|
temperature[ichain] = ltemperature[ichain];
|
|
}
|
|
/* the low frequency is good */
|
|
else if (frequency - lfrequency[ichain] < 1000) {
|
|
/* so is the high frequency, interpolate */
|
|
if (hfrequency[ichain] - frequency < 1000) {
|
|
|
|
correction[ichain] = lcorrection[ichain] +
|
|
(((frequency - lfrequency[ichain]) *
|
|
(hcorrection[ichain] -
|
|
lcorrection[ichain])) /
|
|
(hfrequency[ichain] - lfrequency[ichain]));
|
|
|
|
temperature[ichain] = ltemperature[ichain] +
|
|
(((frequency - lfrequency[ichain]) *
|
|
(htemperature[ichain] -
|
|
ltemperature[ichain])) /
|
|
(hfrequency[ichain] - lfrequency[ichain]));
|
|
|
|
voltage[ichain] =
|
|
lvoltage[ichain] +
|
|
(((frequency -
|
|
lfrequency[ichain]) * (hvoltage[ichain] -
|
|
lvoltage[ichain]))
|
|
/ (hfrequency[ichain] -
|
|
lfrequency[ichain]));
|
|
}
|
|
/* only low is good, use it */
|
|
else {
|
|
correction[ichain] = lcorrection[ichain];
|
|
temperature[ichain] = ltemperature[ichain];
|
|
voltage[ichain] = lvoltage[ichain];
|
|
}
|
|
}
|
|
/* only high is good, use it */
|
|
else if (hfrequency[ichain] - frequency < 1000) {
|
|
correction[ichain] = hcorrection[ichain];
|
|
temperature[ichain] = htemperature[ichain];
|
|
voltage[ichain] = hvoltage[ichain];
|
|
} else { /* nothing is good, presume 0???? */
|
|
correction[ichain] = 0;
|
|
temperature[ichain] = 0;
|
|
voltage[ichain] = 0;
|
|
}
|
|
}
|
|
|
|
ar9003_hw_power_control_override(ah, frequency, correction, voltage,
|
|
temperature);
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"for frequency=%d, calibration correction = %d %d %d\n",
|
|
frequency, correction[0], correction[1], correction[2]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
|
|
struct ath9k_channel *chan, u16 cfgCtl,
|
|
u8 twiceAntennaReduction,
|
|
u8 twiceMaxRegulatoryPower,
|
|
u8 powerLimit)
|
|
{
|
|
ah->txpower_limit = powerLimit;
|
|
ar9003_hw_set_target_power_eeprom(ah, chan->channel);
|
|
ar9003_hw_calibration_apply(ah, chan->channel);
|
|
}
|
|
|
|
static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
|
|
u16 i, bool is2GHz)
|
|
{
|
|
return AR_NO_SPUR;
|
|
}
|
|
|
|
s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
|
|
}
|
|
|
|
s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
|
|
{
|
|
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
|
|
|
|
return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
|
|
}
|
|
|
|
const struct eeprom_ops eep_ar9300_ops = {
|
|
.check_eeprom = ath9k_hw_ar9300_check_eeprom,
|
|
.get_eeprom = ath9k_hw_ar9300_get_eeprom,
|
|
.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
|
|
.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
|
|
.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
|
|
.get_num_ant_config = ath9k_hw_ar9300_get_num_ant_config,
|
|
.get_eeprom_antenna_cfg = ath9k_hw_ar9300_get_eeprom_antenna_cfg,
|
|
.set_board_values = ath9k_hw_ar9300_set_board_values,
|
|
.set_addac = ath9k_hw_ar9300_set_addac,
|
|
.set_txpower = ath9k_hw_ar9300_set_txpower,
|
|
.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
|
|
};
|