mirror of
https://github.com/torvalds/linux.git
synced 2024-11-23 20:51:44 +00:00
a98889f3d8
Adding the ability to get a physical address from point() in addition to virtual address. This physical address is required for XIP of userspace code from flash. Signed-off-by: Jared Hulbert <jaredeh@gmail.com> Reviewed-by: Jörn Engel <joern@logfs.org> Acked-by: Nicolas Pitre <nico@cam.org> Acked-by: Greg Ungerer <gerg@uclinux.org> Signed-off-by: David Woodhouse <dwmw2@infradead.org>
1439 lines
43 KiB
C
1439 lines
43 KiB
C
/*
|
|
* JFFS2 -- Journalling Flash File System, Version 2.
|
|
*
|
|
* Copyright © 2001-2007 Red Hat, Inc.
|
|
*
|
|
* Created by David Woodhouse <dwmw2@infradead.org>
|
|
*
|
|
* For licensing information, see the file 'LICENCE' in this directory.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/compiler.h>
|
|
#include "nodelist.h"
|
|
|
|
/*
|
|
* Check the data CRC of the node.
|
|
*
|
|
* Returns: 0 if the data CRC is correct;
|
|
* 1 - if incorrect;
|
|
* error code if an error occured.
|
|
*/
|
|
static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
|
|
{
|
|
struct jffs2_raw_node_ref *ref = tn->fn->raw;
|
|
int err = 0, pointed = 0;
|
|
struct jffs2_eraseblock *jeb;
|
|
unsigned char *buffer;
|
|
uint32_t crc, ofs, len;
|
|
size_t retlen;
|
|
|
|
BUG_ON(tn->csize == 0);
|
|
|
|
/* Calculate how many bytes were already checked */
|
|
ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
|
|
len = tn->csize;
|
|
|
|
if (jffs2_is_writebuffered(c)) {
|
|
int adj = ofs % c->wbuf_pagesize;
|
|
if (likely(adj))
|
|
adj = c->wbuf_pagesize - adj;
|
|
|
|
if (adj >= tn->csize) {
|
|
dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
|
|
ref_offset(ref), tn->csize, ofs);
|
|
goto adj_acc;
|
|
}
|
|
|
|
ofs += adj;
|
|
len -= adj;
|
|
}
|
|
|
|
dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
|
|
ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);
|
|
|
|
#ifndef __ECOS
|
|
/* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
|
|
* adding and jffs2_flash_read_end() interface. */
|
|
if (c->mtd->point) {
|
|
err = c->mtd->point(c->mtd, ofs, len, &retlen,
|
|
(void **)&buffer, NULL);
|
|
if (!err && retlen < len) {
|
|
JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
|
|
c->mtd->unpoint(c->mtd, ofs, retlen);
|
|
} else if (err)
|
|
JFFS2_WARNING("MTD point failed: error code %d.\n", err);
|
|
else
|
|
pointed = 1; /* succefully pointed to device */
|
|
}
|
|
#endif
|
|
|
|
if (!pointed) {
|
|
buffer = kmalloc(len, GFP_KERNEL);
|
|
if (unlikely(!buffer))
|
|
return -ENOMEM;
|
|
|
|
/* TODO: this is very frequent pattern, make it a separate
|
|
* routine */
|
|
err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
|
|
if (err) {
|
|
JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
|
|
goto free_out;
|
|
}
|
|
|
|
if (retlen != len) {
|
|
JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
|
|
err = -EIO;
|
|
goto free_out;
|
|
}
|
|
}
|
|
|
|
/* Continue calculating CRC */
|
|
crc = crc32(tn->partial_crc, buffer, len);
|
|
if(!pointed)
|
|
kfree(buffer);
|
|
#ifndef __ECOS
|
|
else
|
|
c->mtd->unpoint(c->mtd, ofs, len);
|
|
#endif
|
|
|
|
if (crc != tn->data_crc) {
|
|
JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
|
|
ref_offset(ref), tn->data_crc, crc);
|
|
return 1;
|
|
}
|
|
|
|
adj_acc:
|
|
jeb = &c->blocks[ref->flash_offset / c->sector_size];
|
|
len = ref_totlen(c, jeb, ref);
|
|
/* If it should be REF_NORMAL, it'll get marked as such when
|
|
we build the fragtree, shortly. No need to worry about GC
|
|
moving it while it's marked REF_PRISTINE -- GC won't happen
|
|
till we've finished checking every inode anyway. */
|
|
ref->flash_offset |= REF_PRISTINE;
|
|
/*
|
|
* Mark the node as having been checked and fix the
|
|
* accounting accordingly.
|
|
*/
|
|
spin_lock(&c->erase_completion_lock);
|
|
jeb->used_size += len;
|
|
jeb->unchecked_size -= len;
|
|
c->used_size += len;
|
|
c->unchecked_size -= len;
|
|
jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
return 0;
|
|
|
|
free_out:
|
|
if(!pointed)
|
|
kfree(buffer);
|
|
#ifndef __ECOS
|
|
else
|
|
c->mtd->unpoint(c->mtd, ofs, len);
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Helper function for jffs2_add_older_frag_to_fragtree().
|
|
*
|
|
* Checks the node if we are in the checking stage.
|
|
*/
|
|
static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(ref_obsolete(tn->fn->raw));
|
|
|
|
/* We only check the data CRC of unchecked nodes */
|
|
if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
|
|
return 0;
|
|
|
|
dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
|
|
tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));
|
|
|
|
ret = check_node_data(c, tn);
|
|
if (unlikely(ret < 0)) {
|
|
JFFS2_ERROR("check_node_data() returned error: %d.\n",
|
|
ret);
|
|
} else if (unlikely(ret > 0)) {
|
|
dbg_readinode("CRC error, mark it obsolete.\n");
|
|
jffs2_mark_node_obsolete(c, tn->fn->raw);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
|
|
{
|
|
struct rb_node *next;
|
|
struct jffs2_tmp_dnode_info *tn = NULL;
|
|
|
|
dbg_readinode("root %p, offset %d\n", tn_root, offset);
|
|
|
|
next = tn_root->rb_node;
|
|
|
|
while (next) {
|
|
tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);
|
|
|
|
if (tn->fn->ofs < offset)
|
|
next = tn->rb.rb_right;
|
|
else if (tn->fn->ofs >= offset)
|
|
next = tn->rb.rb_left;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return tn;
|
|
}
|
|
|
|
|
|
static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
|
|
{
|
|
jffs2_mark_node_obsolete(c, tn->fn->raw);
|
|
jffs2_free_full_dnode(tn->fn);
|
|
jffs2_free_tmp_dnode_info(tn);
|
|
}
|
|
/*
|
|
* This function is used when we read an inode. Data nodes arrive in
|
|
* arbitrary order -- they may be older or newer than the nodes which
|
|
* are already in the tree. Where overlaps occur, the older node can
|
|
* be discarded as long as the newer passes the CRC check. We don't
|
|
* bother to keep track of holes in this rbtree, and neither do we deal
|
|
* with frags -- we can have multiple entries starting at the same
|
|
* offset, and the one with the smallest length will come first in the
|
|
* ordering.
|
|
*
|
|
* Returns 0 if the node was handled (including marking it obsolete)
|
|
* < 0 an if error occurred
|
|
*/
|
|
static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
|
|
struct jffs2_readinode_info *rii,
|
|
struct jffs2_tmp_dnode_info *tn)
|
|
{
|
|
uint32_t fn_end = tn->fn->ofs + tn->fn->size;
|
|
struct jffs2_tmp_dnode_info *this;
|
|
|
|
dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));
|
|
|
|
/* If a node has zero dsize, we only have to keep if it if it might be the
|
|
node with highest version -- i.e. the one which will end up as f->metadata.
|
|
Note that such nodes won't be REF_UNCHECKED since there are no data to
|
|
check anyway. */
|
|
if (!tn->fn->size) {
|
|
if (rii->mdata_tn) {
|
|
if (rii->mdata_tn->version < tn->version) {
|
|
/* We had a candidate mdata node already */
|
|
dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
|
|
jffs2_kill_tn(c, rii->mdata_tn);
|
|
} else {
|
|
dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
|
|
tn->version, rii->mdata_tn->version);
|
|
jffs2_kill_tn(c, tn);
|
|
return 0;
|
|
}
|
|
}
|
|
rii->mdata_tn = tn;
|
|
dbg_readinode("keep new mdata with ver %d\n", tn->version);
|
|
return 0;
|
|
}
|
|
|
|
/* Find the earliest node which _may_ be relevant to this one */
|
|
this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
|
|
if (this) {
|
|
/* If the node is coincident with another at a lower address,
|
|
back up until the other node is found. It may be relevant */
|
|
while (this->overlapped)
|
|
this = tn_prev(this);
|
|
|
|
/* First node should never be marked overlapped */
|
|
BUG_ON(!this);
|
|
dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
|
|
}
|
|
|
|
while (this) {
|
|
if (this->fn->ofs > fn_end)
|
|
break;
|
|
dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
|
|
this->version, this->fn->ofs, this->fn->size);
|
|
|
|
if (this->version == tn->version) {
|
|
/* Version number collision means REF_PRISTINE GC. Accept either of them
|
|
as long as the CRC is correct. Check the one we have already... */
|
|
if (!check_tn_node(c, this)) {
|
|
/* The one we already had was OK. Keep it and throw away the new one */
|
|
dbg_readinode("Like old node. Throw away new\n");
|
|
jffs2_kill_tn(c, tn);
|
|
return 0;
|
|
} else {
|
|
/* Who cares if the new one is good; keep it for now anyway. */
|
|
dbg_readinode("Like new node. Throw away old\n");
|
|
rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
|
|
jffs2_kill_tn(c, this);
|
|
/* Same overlapping from in front and behind */
|
|
return 0;
|
|
}
|
|
}
|
|
if (this->version < tn->version &&
|
|
this->fn->ofs >= tn->fn->ofs &&
|
|
this->fn->ofs + this->fn->size <= fn_end) {
|
|
/* New node entirely overlaps 'this' */
|
|
if (check_tn_node(c, tn)) {
|
|
dbg_readinode("new node bad CRC\n");
|
|
jffs2_kill_tn(c, tn);
|
|
return 0;
|
|
}
|
|
/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
|
|
while (this && this->fn->ofs + this->fn->size <= fn_end) {
|
|
struct jffs2_tmp_dnode_info *next = tn_next(this);
|
|
if (this->version < tn->version) {
|
|
tn_erase(this, &rii->tn_root);
|
|
dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
|
|
this->version, this->fn->ofs,
|
|
this->fn->ofs+this->fn->size);
|
|
jffs2_kill_tn(c, this);
|
|
}
|
|
this = next;
|
|
}
|
|
dbg_readinode("Done killing overlapped nodes\n");
|
|
continue;
|
|
}
|
|
if (this->version > tn->version &&
|
|
this->fn->ofs <= tn->fn->ofs &&
|
|
this->fn->ofs+this->fn->size >= fn_end) {
|
|
/* New node entirely overlapped by 'this' */
|
|
if (!check_tn_node(c, this)) {
|
|
dbg_readinode("Good CRC on old node. Kill new\n");
|
|
jffs2_kill_tn(c, tn);
|
|
return 0;
|
|
}
|
|
/* ... but 'this' was bad. Replace it... */
|
|
dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
|
|
tn_erase(this, &rii->tn_root);
|
|
jffs2_kill_tn(c, this);
|
|
break;
|
|
}
|
|
|
|
this = tn_next(this);
|
|
}
|
|
|
|
/* We neither completely obsoleted nor were completely
|
|
obsoleted by an earlier node. Insert into the tree */
|
|
{
|
|
struct rb_node *parent;
|
|
struct rb_node **link = &rii->tn_root.rb_node;
|
|
struct jffs2_tmp_dnode_info *insert_point = NULL;
|
|
|
|
while (*link) {
|
|
parent = *link;
|
|
insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
|
|
if (tn->fn->ofs > insert_point->fn->ofs)
|
|
link = &insert_point->rb.rb_right;
|
|
else if (tn->fn->ofs < insert_point->fn->ofs ||
|
|
tn->fn->size < insert_point->fn->size)
|
|
link = &insert_point->rb.rb_left;
|
|
else
|
|
link = &insert_point->rb.rb_right;
|
|
}
|
|
rb_link_node(&tn->rb, &insert_point->rb, link);
|
|
rb_insert_color(&tn->rb, &rii->tn_root);
|
|
}
|
|
|
|
/* If there's anything behind that overlaps us, note it */
|
|
this = tn_prev(tn);
|
|
if (this) {
|
|
while (1) {
|
|
if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
|
|
dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
|
|
this, this->version, this->fn->ofs,
|
|
this->fn->ofs+this->fn->size);
|
|
tn->overlapped = 1;
|
|
break;
|
|
}
|
|
if (!this->overlapped)
|
|
break;
|
|
this = tn_prev(this);
|
|
}
|
|
}
|
|
|
|
/* If the new node overlaps anything ahead, note it */
|
|
this = tn_next(tn);
|
|
while (this && this->fn->ofs < fn_end) {
|
|
this->overlapped = 1;
|
|
dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
|
|
this->version, this->fn->ofs,
|
|
this->fn->ofs+this->fn->size);
|
|
this = tn_next(this);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Trivial function to remove the last node in the tree. Which by definition
|
|
has no right-hand -- so can be removed just by making its only child (if
|
|
any) take its place under its parent. */
|
|
static void eat_last(struct rb_root *root, struct rb_node *node)
|
|
{
|
|
struct rb_node *parent = rb_parent(node);
|
|
struct rb_node **link;
|
|
|
|
/* LAST! */
|
|
BUG_ON(node->rb_right);
|
|
|
|
if (!parent)
|
|
link = &root->rb_node;
|
|
else if (node == parent->rb_left)
|
|
link = &parent->rb_left;
|
|
else
|
|
link = &parent->rb_right;
|
|
|
|
*link = node->rb_left;
|
|
/* Colour doesn't matter now. Only the parent pointer. */
|
|
if (node->rb_left)
|
|
node->rb_left->rb_parent_color = node->rb_parent_color;
|
|
}
|
|
|
|
/* We put this in reverse order, so we can just use eat_last */
|
|
static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
|
|
{
|
|
struct rb_node **link = &ver_root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct jffs2_tmp_dnode_info *this_tn;
|
|
|
|
while (*link) {
|
|
parent = *link;
|
|
this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
|
|
|
|
if (tn->version > this_tn->version)
|
|
link = &parent->rb_left;
|
|
else
|
|
link = &parent->rb_right;
|
|
}
|
|
dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
|
|
rb_link_node(&tn->rb, parent, link);
|
|
rb_insert_color(&tn->rb, ver_root);
|
|
}
|
|
|
|
/* Build final, normal fragtree from tn tree. It doesn't matter which order
|
|
we add nodes to the real fragtree, as long as they don't overlap. And
|
|
having thrown away the majority of overlapped nodes as we went, there
|
|
really shouldn't be many sets of nodes which do overlap. If we start at
|
|
the end, we can use the overlap markers -- we can just eat nodes which
|
|
aren't overlapped, and when we encounter nodes which _do_ overlap we
|
|
sort them all into a temporary tree in version order before replaying them. */
|
|
static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
|
|
struct jffs2_inode_info *f,
|
|
struct jffs2_readinode_info *rii)
|
|
{
|
|
struct jffs2_tmp_dnode_info *pen, *last, *this;
|
|
struct rb_root ver_root = RB_ROOT;
|
|
uint32_t high_ver = 0;
|
|
|
|
if (rii->mdata_tn) {
|
|
dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
|
|
high_ver = rii->mdata_tn->version;
|
|
rii->latest_ref = rii->mdata_tn->fn->raw;
|
|
}
|
|
#ifdef JFFS2_DBG_READINODE_MESSAGES
|
|
this = tn_last(&rii->tn_root);
|
|
while (this) {
|
|
dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
|
|
this->fn->ofs+this->fn->size, this->overlapped);
|
|
this = tn_prev(this);
|
|
}
|
|
#endif
|
|
pen = tn_last(&rii->tn_root);
|
|
while ((last = pen)) {
|
|
pen = tn_prev(last);
|
|
|
|
eat_last(&rii->tn_root, &last->rb);
|
|
ver_insert(&ver_root, last);
|
|
|
|
if (unlikely(last->overlapped))
|
|
continue;
|
|
|
|
/* Now we have a bunch of nodes in reverse version
|
|
order, in the tree at ver_root. Most of the time,
|
|
there'll actually be only one node in the 'tree',
|
|
in fact. */
|
|
this = tn_last(&ver_root);
|
|
|
|
while (this) {
|
|
struct jffs2_tmp_dnode_info *vers_next;
|
|
int ret;
|
|
vers_next = tn_prev(this);
|
|
eat_last(&ver_root, &this->rb);
|
|
if (check_tn_node(c, this)) {
|
|
dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
|
|
this->version, this->fn->ofs,
|
|
this->fn->ofs+this->fn->size);
|
|
jffs2_kill_tn(c, this);
|
|
} else {
|
|
if (this->version > high_ver) {
|
|
/* Note that this is different from the other
|
|
highest_version, because this one is only
|
|
counting _valid_ nodes which could give the
|
|
latest inode metadata */
|
|
high_ver = this->version;
|
|
rii->latest_ref = this->fn->raw;
|
|
}
|
|
dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
|
|
this, this->version, this->fn->ofs,
|
|
this->fn->ofs+this->fn->size, this->overlapped);
|
|
|
|
ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
|
|
if (ret) {
|
|
/* Free the nodes in vers_root; let the caller
|
|
deal with the rest */
|
|
JFFS2_ERROR("Add node to tree failed %d\n", ret);
|
|
while (1) {
|
|
vers_next = tn_prev(this);
|
|
if (check_tn_node(c, this))
|
|
jffs2_mark_node_obsolete(c, this->fn->raw);
|
|
jffs2_free_full_dnode(this->fn);
|
|
jffs2_free_tmp_dnode_info(this);
|
|
this = vers_next;
|
|
if (!this)
|
|
break;
|
|
eat_last(&ver_root, &vers_next->rb);
|
|
}
|
|
return ret;
|
|
}
|
|
jffs2_free_tmp_dnode_info(this);
|
|
}
|
|
this = vers_next;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
|
|
{
|
|
struct rb_node *this;
|
|
struct jffs2_tmp_dnode_info *tn;
|
|
|
|
this = list->rb_node;
|
|
|
|
/* Now at bottom of tree */
|
|
while (this) {
|
|
if (this->rb_left)
|
|
this = this->rb_left;
|
|
else if (this->rb_right)
|
|
this = this->rb_right;
|
|
else {
|
|
tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb);
|
|
jffs2_free_full_dnode(tn->fn);
|
|
jffs2_free_tmp_dnode_info(tn);
|
|
|
|
this = rb_parent(this);
|
|
if (!this)
|
|
break;
|
|
|
|
if (this->rb_left == &tn->rb)
|
|
this->rb_left = NULL;
|
|
else if (this->rb_right == &tn->rb)
|
|
this->rb_right = NULL;
|
|
else BUG();
|
|
}
|
|
}
|
|
list->rb_node = NULL;
|
|
}
|
|
|
|
static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
|
|
{
|
|
struct jffs2_full_dirent *next;
|
|
|
|
while (fd) {
|
|
next = fd->next;
|
|
jffs2_free_full_dirent(fd);
|
|
fd = next;
|
|
}
|
|
}
|
|
|
|
/* Returns first valid node after 'ref'. May return 'ref' */
|
|
static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
|
|
{
|
|
while (ref && ref->next_in_ino) {
|
|
if (!ref_obsolete(ref))
|
|
return ref;
|
|
dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
|
|
ref = ref->next_in_ino;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Helper function for jffs2_get_inode_nodes().
|
|
* It is called every time an directory entry node is found.
|
|
*
|
|
* Returns: 0 on success;
|
|
* negative error code on failure.
|
|
*/
|
|
static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
|
|
struct jffs2_raw_dirent *rd, size_t read,
|
|
struct jffs2_readinode_info *rii)
|
|
{
|
|
struct jffs2_full_dirent *fd;
|
|
uint32_t crc;
|
|
|
|
/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
|
|
BUG_ON(ref_obsolete(ref));
|
|
|
|
crc = crc32(0, rd, sizeof(*rd) - 8);
|
|
if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
|
|
JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
|
|
ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
return 0;
|
|
}
|
|
|
|
/* If we've never checked the CRCs on this node, check them now */
|
|
if (ref_flags(ref) == REF_UNCHECKED) {
|
|
struct jffs2_eraseblock *jeb;
|
|
int len;
|
|
|
|
/* Sanity check */
|
|
if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
|
|
JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
|
|
ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
return 0;
|
|
}
|
|
|
|
jeb = &c->blocks[ref->flash_offset / c->sector_size];
|
|
len = ref_totlen(c, jeb, ref);
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
jeb->used_size += len;
|
|
jeb->unchecked_size -= len;
|
|
c->used_size += len;
|
|
c->unchecked_size -= len;
|
|
ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
|
|
spin_unlock(&c->erase_completion_lock);
|
|
}
|
|
|
|
fd = jffs2_alloc_full_dirent(rd->nsize + 1);
|
|
if (unlikely(!fd))
|
|
return -ENOMEM;
|
|
|
|
fd->raw = ref;
|
|
fd->version = je32_to_cpu(rd->version);
|
|
fd->ino = je32_to_cpu(rd->ino);
|
|
fd->type = rd->type;
|
|
|
|
if (fd->version > rii->highest_version)
|
|
rii->highest_version = fd->version;
|
|
|
|
/* Pick out the mctime of the latest dirent */
|
|
if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
|
|
rii->mctime_ver = fd->version;
|
|
rii->latest_mctime = je32_to_cpu(rd->mctime);
|
|
}
|
|
|
|
/*
|
|
* Copy as much of the name as possible from the raw
|
|
* dirent we've already read from the flash.
|
|
*/
|
|
if (read > sizeof(*rd))
|
|
memcpy(&fd->name[0], &rd->name[0],
|
|
min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));
|
|
|
|
/* Do we need to copy any more of the name directly from the flash? */
|
|
if (rd->nsize + sizeof(*rd) > read) {
|
|
/* FIXME: point() */
|
|
int err;
|
|
int already = read - sizeof(*rd);
|
|
|
|
err = jffs2_flash_read(c, (ref_offset(ref)) + read,
|
|
rd->nsize - already, &read, &fd->name[already]);
|
|
if (unlikely(read != rd->nsize - already) && likely(!err))
|
|
return -EIO;
|
|
|
|
if (unlikely(err)) {
|
|
JFFS2_ERROR("read remainder of name: error %d\n", err);
|
|
jffs2_free_full_dirent(fd);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
fd->nhash = full_name_hash(fd->name, rd->nsize);
|
|
fd->next = NULL;
|
|
fd->name[rd->nsize] = '\0';
|
|
|
|
/*
|
|
* Wheee. We now have a complete jffs2_full_dirent structure, with
|
|
* the name in it and everything. Link it into the list
|
|
*/
|
|
jffs2_add_fd_to_list(c, fd, &rii->fds);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function for jffs2_get_inode_nodes().
|
|
* It is called every time an inode node is found.
|
|
*
|
|
* Returns: 0 on success (possibly after marking a bad node obsolete);
|
|
* negative error code on failure.
|
|
*/
|
|
static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
|
|
struct jffs2_raw_inode *rd, int rdlen,
|
|
struct jffs2_readinode_info *rii)
|
|
{
|
|
struct jffs2_tmp_dnode_info *tn;
|
|
uint32_t len, csize;
|
|
int ret = 0;
|
|
uint32_t crc;
|
|
|
|
/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
|
|
BUG_ON(ref_obsolete(ref));
|
|
|
|
crc = crc32(0, rd, sizeof(*rd) - 8);
|
|
if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
|
|
JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
|
|
ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
return 0;
|
|
}
|
|
|
|
tn = jffs2_alloc_tmp_dnode_info();
|
|
if (!tn) {
|
|
JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
tn->partial_crc = 0;
|
|
csize = je32_to_cpu(rd->csize);
|
|
|
|
/* If we've never checked the CRCs on this node, check them now */
|
|
if (ref_flags(ref) == REF_UNCHECKED) {
|
|
|
|
/* Sanity checks */
|
|
if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
|
|
unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
|
|
JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
|
|
jffs2_dbg_dump_node(c, ref_offset(ref));
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
goto free_out;
|
|
}
|
|
|
|
if (jffs2_is_writebuffered(c) && csize != 0) {
|
|
/* At this point we are supposed to check the data CRC
|
|
* of our unchecked node. But thus far, we do not
|
|
* know whether the node is valid or obsolete. To
|
|
* figure this out, we need to walk all the nodes of
|
|
* the inode and build the inode fragtree. We don't
|
|
* want to spend time checking data of nodes which may
|
|
* later be found to be obsolete. So we put off the full
|
|
* data CRC checking until we have read all the inode
|
|
* nodes and have started building the fragtree.
|
|
*
|
|
* The fragtree is being built starting with nodes
|
|
* having the highest version number, so we'll be able
|
|
* to detect whether a node is valid (i.e., it is not
|
|
* overlapped by a node with higher version) or not.
|
|
* And we'll be able to check only those nodes, which
|
|
* are not obsolete.
|
|
*
|
|
* Of course, this optimization only makes sense in case
|
|
* of NAND flashes (or other flashes with
|
|
* !jffs2_can_mark_obsolete()), since on NOR flashes
|
|
* nodes are marked obsolete physically.
|
|
*
|
|
* Since NAND flashes (or other flashes with
|
|
* jffs2_is_writebuffered(c)) are anyway read by
|
|
* fractions of c->wbuf_pagesize, and we have just read
|
|
* the node header, it is likely that the starting part
|
|
* of the node data is also read when we read the
|
|
* header. So we don't mind to check the CRC of the
|
|
* starting part of the data of the node now, and check
|
|
* the second part later (in jffs2_check_node_data()).
|
|
* Of course, we will not need to re-read and re-check
|
|
* the NAND page which we have just read. This is why we
|
|
* read the whole NAND page at jffs2_get_inode_nodes(),
|
|
* while we needed only the node header.
|
|
*/
|
|
unsigned char *buf;
|
|
|
|
/* 'buf' will point to the start of data */
|
|
buf = (unsigned char *)rd + sizeof(*rd);
|
|
/* len will be the read data length */
|
|
len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
|
|
tn->partial_crc = crc32(0, buf, len);
|
|
|
|
dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);
|
|
|
|
/* If we actually calculated the whole data CRC
|
|
* and it is wrong, drop the node. */
|
|
if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
|
|
JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
|
|
ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
goto free_out;
|
|
}
|
|
|
|
} else if (csize == 0) {
|
|
/*
|
|
* We checked the header CRC. If the node has no data, adjust
|
|
* the space accounting now. For other nodes this will be done
|
|
* later either when the node is marked obsolete or when its
|
|
* data is checked.
|
|
*/
|
|
struct jffs2_eraseblock *jeb;
|
|
|
|
dbg_readinode("the node has no data.\n");
|
|
jeb = &c->blocks[ref->flash_offset / c->sector_size];
|
|
len = ref_totlen(c, jeb, ref);
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
jeb->used_size += len;
|
|
jeb->unchecked_size -= len;
|
|
c->used_size += len;
|
|
c->unchecked_size -= len;
|
|
ref->flash_offset = ref_offset(ref) | REF_NORMAL;
|
|
spin_unlock(&c->erase_completion_lock);
|
|
}
|
|
}
|
|
|
|
tn->fn = jffs2_alloc_full_dnode();
|
|
if (!tn->fn) {
|
|
JFFS2_ERROR("alloc fn failed\n");
|
|
ret = -ENOMEM;
|
|
goto free_out;
|
|
}
|
|
|
|
tn->version = je32_to_cpu(rd->version);
|
|
tn->fn->ofs = je32_to_cpu(rd->offset);
|
|
tn->data_crc = je32_to_cpu(rd->data_crc);
|
|
tn->csize = csize;
|
|
tn->fn->raw = ref;
|
|
tn->overlapped = 0;
|
|
|
|
if (tn->version > rii->highest_version)
|
|
rii->highest_version = tn->version;
|
|
|
|
/* There was a bug where we wrote hole nodes out with
|
|
csize/dsize swapped. Deal with it */
|
|
if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
|
|
tn->fn->size = csize;
|
|
else // normal case...
|
|
tn->fn->size = je32_to_cpu(rd->dsize);
|
|
|
|
dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
|
|
ref_offset(ref), je32_to_cpu(rd->version),
|
|
je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);
|
|
|
|
ret = jffs2_add_tn_to_tree(c, rii, tn);
|
|
|
|
if (ret) {
|
|
jffs2_free_full_dnode(tn->fn);
|
|
free_out:
|
|
jffs2_free_tmp_dnode_info(tn);
|
|
return ret;
|
|
}
|
|
#ifdef JFFS2_DBG_READINODE2_MESSAGES
|
|
dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version));
|
|
tn = tn_first(&rii->tn_root);
|
|
while (tn) {
|
|
dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n",
|
|
tn, tn->version, tn->fn->ofs,
|
|
tn->fn->ofs+tn->fn->size, tn->overlapped);
|
|
tn = tn_next(tn);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function for jffs2_get_inode_nodes().
|
|
* It is called every time an unknown node is found.
|
|
*
|
|
* Returns: 0 on success;
|
|
* negative error code on failure.
|
|
*/
|
|
static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
|
|
{
|
|
/* We don't mark unknown nodes as REF_UNCHECKED */
|
|
if (ref_flags(ref) == REF_UNCHECKED) {
|
|
JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
|
|
ref_offset(ref));
|
|
JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
|
|
je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
|
|
je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
return 0;
|
|
}
|
|
|
|
un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));
|
|
|
|
switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {
|
|
|
|
case JFFS2_FEATURE_INCOMPAT:
|
|
JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
|
|
je16_to_cpu(un->nodetype), ref_offset(ref));
|
|
/* EEP */
|
|
BUG();
|
|
break;
|
|
|
|
case JFFS2_FEATURE_ROCOMPAT:
|
|
JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
|
|
je16_to_cpu(un->nodetype), ref_offset(ref));
|
|
BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
|
|
break;
|
|
|
|
case JFFS2_FEATURE_RWCOMPAT_COPY:
|
|
JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
|
|
je16_to_cpu(un->nodetype), ref_offset(ref));
|
|
break;
|
|
|
|
case JFFS2_FEATURE_RWCOMPAT_DELETE:
|
|
JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
|
|
je16_to_cpu(un->nodetype), ref_offset(ref));
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Helper function for jffs2_get_inode_nodes().
|
|
* The function detects whether more data should be read and reads it if yes.
|
|
*
|
|
* Returns: 0 on succes;
|
|
* negative error code on failure.
|
|
*/
|
|
static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
|
|
int needed_len, int *rdlen, unsigned char *buf)
|
|
{
|
|
int err, to_read = needed_len - *rdlen;
|
|
size_t retlen;
|
|
uint32_t offs;
|
|
|
|
if (jffs2_is_writebuffered(c)) {
|
|
int rem = to_read % c->wbuf_pagesize;
|
|
|
|
if (rem)
|
|
to_read += c->wbuf_pagesize - rem;
|
|
}
|
|
|
|
/* We need to read more data */
|
|
offs = ref_offset(ref) + *rdlen;
|
|
|
|
dbg_readinode("read more %d bytes\n", to_read);
|
|
|
|
err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
|
|
if (err) {
|
|
JFFS2_ERROR("can not read %d bytes from 0x%08x, "
|
|
"error code: %d.\n", to_read, offs, err);
|
|
return err;
|
|
}
|
|
|
|
if (retlen < to_read) {
|
|
JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
|
|
offs, retlen, to_read);
|
|
return -EIO;
|
|
}
|
|
|
|
*rdlen += to_read;
|
|
return 0;
|
|
}
|
|
|
|
/* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
|
|
with this ino. Perform a preliminary ordering on data nodes, throwing away
|
|
those which are completely obsoleted by newer ones. The naïve approach we
|
|
use to take of just returning them _all_ in version order will cause us to
|
|
run out of memory in certain degenerate cases. */
|
|
static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
|
|
struct jffs2_readinode_info *rii)
|
|
{
|
|
struct jffs2_raw_node_ref *ref, *valid_ref;
|
|
unsigned char *buf = NULL;
|
|
union jffs2_node_union *node;
|
|
size_t retlen;
|
|
int len, err;
|
|
|
|
rii->mctime_ver = 0;
|
|
|
|
dbg_readinode("ino #%u\n", f->inocache->ino);
|
|
|
|
/* FIXME: in case of NOR and available ->point() this
|
|
* needs to be fixed. */
|
|
len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
|
|
buf = kmalloc(len, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&c->erase_completion_lock);
|
|
valid_ref = jffs2_first_valid_node(f->inocache->nodes);
|
|
if (!valid_ref && f->inocache->ino != 1)
|
|
JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
|
|
while (valid_ref) {
|
|
/* We can hold a pointer to a non-obsolete node without the spinlock,
|
|
but _obsolete_ nodes may disappear at any time, if the block
|
|
they're in gets erased. So if we mark 'ref' obsolete while we're
|
|
not holding the lock, it can go away immediately. For that reason,
|
|
we find the next valid node first, before processing 'ref'.
|
|
*/
|
|
ref = valid_ref;
|
|
valid_ref = jffs2_first_valid_node(ref->next_in_ino);
|
|
spin_unlock(&c->erase_completion_lock);
|
|
|
|
cond_resched();
|
|
|
|
/*
|
|
* At this point we don't know the type of the node we're going
|
|
* to read, so we do not know the size of its header. In order
|
|
* to minimize the amount of flash IO we assume the header is
|
|
* of size = JFFS2_MIN_NODE_HEADER.
|
|
*/
|
|
len = JFFS2_MIN_NODE_HEADER;
|
|
if (jffs2_is_writebuffered(c)) {
|
|
int end, rem;
|
|
|
|
/*
|
|
* We are about to read JFFS2_MIN_NODE_HEADER bytes,
|
|
* but this flash has some minimal I/O unit. It is
|
|
* possible that we'll need to read more soon, so read
|
|
* up to the next min. I/O unit, in order not to
|
|
* re-read the same min. I/O unit twice.
|
|
*/
|
|
end = ref_offset(ref) + len;
|
|
rem = end % c->wbuf_pagesize;
|
|
if (rem)
|
|
end += c->wbuf_pagesize - rem;
|
|
len = end - ref_offset(ref);
|
|
}
|
|
|
|
dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));
|
|
|
|
/* FIXME: point() */
|
|
err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
|
|
if (err) {
|
|
JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err);
|
|
goto free_out;
|
|
}
|
|
|
|
if (retlen < len) {
|
|
JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
|
|
err = -EIO;
|
|
goto free_out;
|
|
}
|
|
|
|
node = (union jffs2_node_union *)buf;
|
|
|
|
/* No need to mask in the valid bit; it shouldn't be invalid */
|
|
if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
|
|
JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
|
|
ref_offset(ref), je16_to_cpu(node->u.magic),
|
|
je16_to_cpu(node->u.nodetype),
|
|
je32_to_cpu(node->u.totlen),
|
|
je32_to_cpu(node->u.hdr_crc));
|
|
jffs2_dbg_dump_node(c, ref_offset(ref));
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
goto cont;
|
|
}
|
|
if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
|
|
/* Not a JFFS2 node, whinge and move on */
|
|
JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
|
|
je16_to_cpu(node->u.magic), ref_offset(ref));
|
|
jffs2_mark_node_obsolete(c, ref);
|
|
goto cont;
|
|
}
|
|
|
|
switch (je16_to_cpu(node->u.nodetype)) {
|
|
|
|
case JFFS2_NODETYPE_DIRENT:
|
|
|
|
if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
|
|
len < sizeof(struct jffs2_raw_dirent)) {
|
|
err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
|
|
if (unlikely(err))
|
|
goto free_out;
|
|
}
|
|
|
|
err = read_direntry(c, ref, &node->d, retlen, rii);
|
|
if (unlikely(err))
|
|
goto free_out;
|
|
|
|
break;
|
|
|
|
case JFFS2_NODETYPE_INODE:
|
|
|
|
if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
|
|
len < sizeof(struct jffs2_raw_inode)) {
|
|
err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
|
|
if (unlikely(err))
|
|
goto free_out;
|
|
}
|
|
|
|
err = read_dnode(c, ref, &node->i, len, rii);
|
|
if (unlikely(err))
|
|
goto free_out;
|
|
|
|
break;
|
|
|
|
default:
|
|
if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
|
|
len < sizeof(struct jffs2_unknown_node)) {
|
|
err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
|
|
if (unlikely(err))
|
|
goto free_out;
|
|
}
|
|
|
|
err = read_unknown(c, ref, &node->u);
|
|
if (unlikely(err))
|
|
goto free_out;
|
|
|
|
}
|
|
cont:
|
|
spin_lock(&c->erase_completion_lock);
|
|
}
|
|
|
|
spin_unlock(&c->erase_completion_lock);
|
|
kfree(buf);
|
|
|
|
f->highest_version = rii->highest_version;
|
|
|
|
dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
|
|
f->inocache->ino, rii->highest_version, rii->latest_mctime,
|
|
rii->mctime_ver);
|
|
return 0;
|
|
|
|
free_out:
|
|
jffs2_free_tmp_dnode_info_list(&rii->tn_root);
|
|
jffs2_free_full_dirent_list(rii->fds);
|
|
rii->fds = NULL;
|
|
kfree(buf);
|
|
return err;
|
|
}
|
|
|
|
static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
|
|
struct jffs2_inode_info *f,
|
|
struct jffs2_raw_inode *latest_node)
|
|
{
|
|
struct jffs2_readinode_info rii;
|
|
uint32_t crc, new_size;
|
|
size_t retlen;
|
|
int ret;
|
|
|
|
dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino,
|
|
f->inocache->pino_nlink);
|
|
|
|
memset(&rii, 0, sizeof(rii));
|
|
|
|
/* Grab all nodes relevant to this ino */
|
|
ret = jffs2_get_inode_nodes(c, f, &rii);
|
|
|
|
if (ret) {
|
|
JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
|
|
return ret;
|
|
}
|
|
|
|
ret = jffs2_build_inode_fragtree(c, f, &rii);
|
|
if (ret) {
|
|
JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
|
|
f->inocache->ino, ret);
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
|
|
jffs2_free_tmp_dnode_info_list(&rii.tn_root);
|
|
/* FIXME: We could at least crc-check them all */
|
|
if (rii.mdata_tn) {
|
|
jffs2_free_full_dnode(rii.mdata_tn->fn);
|
|
jffs2_free_tmp_dnode_info(rii.mdata_tn);
|
|
rii.mdata_tn = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
if (rii.mdata_tn) {
|
|
if (rii.mdata_tn->fn->raw == rii.latest_ref) {
|
|
f->metadata = rii.mdata_tn->fn;
|
|
jffs2_free_tmp_dnode_info(rii.mdata_tn);
|
|
} else {
|
|
jffs2_kill_tn(c, rii.mdata_tn);
|
|
}
|
|
rii.mdata_tn = NULL;
|
|
}
|
|
|
|
f->dents = rii.fds;
|
|
|
|
jffs2_dbg_fragtree_paranoia_check_nolock(f);
|
|
|
|
if (unlikely(!rii.latest_ref)) {
|
|
/* No data nodes for this inode. */
|
|
if (f->inocache->ino != 1) {
|
|
JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
|
|
if (!rii.fds) {
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
|
|
return -EIO;
|
|
}
|
|
JFFS2_NOTICE("but it has children so we fake some modes for it\n");
|
|
}
|
|
latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
|
|
latest_node->version = cpu_to_je32(0);
|
|
latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
|
|
latest_node->isize = cpu_to_je32(0);
|
|
latest_node->gid = cpu_to_je16(0);
|
|
latest_node->uid = cpu_to_je16(0);
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
|
|
return 0;
|
|
}
|
|
|
|
ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
|
|
if (ret || retlen != sizeof(*latest_node)) {
|
|
JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
|
|
ret, retlen, sizeof(*latest_node));
|
|
/* FIXME: If this fails, there seems to be a memory leak. Find it. */
|
|
mutex_unlock(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return ret?ret:-EIO;
|
|
}
|
|
|
|
crc = crc32(0, latest_node, sizeof(*latest_node)-8);
|
|
if (crc != je32_to_cpu(latest_node->node_crc)) {
|
|
JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
|
|
f->inocache->ino, ref_offset(rii.latest_ref));
|
|
mutex_unlock(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -EIO;
|
|
}
|
|
|
|
switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
|
|
case S_IFDIR:
|
|
if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
|
|
/* The times in the latest_node are actually older than
|
|
mctime in the latest dirent. Cheat. */
|
|
latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
|
|
}
|
|
break;
|
|
|
|
|
|
case S_IFREG:
|
|
/* If it was a regular file, truncate it to the latest node's isize */
|
|
new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
|
|
if (new_size != je32_to_cpu(latest_node->isize)) {
|
|
JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
|
|
f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
|
|
latest_node->isize = cpu_to_je32(new_size);
|
|
}
|
|
break;
|
|
|
|
case S_IFLNK:
|
|
/* Hack to work around broken isize in old symlink code.
|
|
Remove this when dwmw2 comes to his senses and stops
|
|
symlinks from being an entirely gratuitous special
|
|
case. */
|
|
if (!je32_to_cpu(latest_node->isize))
|
|
latest_node->isize = latest_node->dsize;
|
|
|
|
if (f->inocache->state != INO_STATE_CHECKING) {
|
|
/* Symlink's inode data is the target path. Read it and
|
|
* keep in RAM to facilitate quick follow symlink
|
|
* operation. */
|
|
f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL);
|
|
if (!f->target) {
|
|
JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize));
|
|
mutex_unlock(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
|
|
je32_to_cpu(latest_node->csize), &retlen, (char *)f->target);
|
|
|
|
if (ret || retlen != je32_to_cpu(latest_node->csize)) {
|
|
if (retlen != je32_to_cpu(latest_node->csize))
|
|
ret = -EIO;
|
|
kfree(f->target);
|
|
f->target = NULL;
|
|
mutex_unlock(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -ret;
|
|
}
|
|
|
|
f->target[je32_to_cpu(latest_node->csize)] = '\0';
|
|
dbg_readinode("symlink's target '%s' cached\n", f->target);
|
|
}
|
|
|
|
/* fall through... */
|
|
|
|
case S_IFBLK:
|
|
case S_IFCHR:
|
|
/* Certain inode types should have only one data node, and it's
|
|
kept as the metadata node */
|
|
if (f->metadata) {
|
|
JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
|
|
f->inocache->ino, jemode_to_cpu(latest_node->mode));
|
|
mutex_unlock(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -EIO;
|
|
}
|
|
if (!frag_first(&f->fragtree)) {
|
|
JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
|
|
f->inocache->ino, jemode_to_cpu(latest_node->mode));
|
|
mutex_unlock(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -EIO;
|
|
}
|
|
/* ASSERT: f->fraglist != NULL */
|
|
if (frag_next(frag_first(&f->fragtree))) {
|
|
JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
|
|
f->inocache->ino, jemode_to_cpu(latest_node->mode));
|
|
/* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
|
|
mutex_unlock(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
return -EIO;
|
|
}
|
|
/* OK. We're happy */
|
|
f->metadata = frag_first(&f->fragtree)->node;
|
|
jffs2_free_node_frag(frag_first(&f->fragtree));
|
|
f->fragtree = RB_ROOT;
|
|
break;
|
|
}
|
|
if (f->inocache->state == INO_STATE_READING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Scan the list of all nodes present for this ino, build map of versions, etc. */
|
|
int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
|
|
uint32_t ino, struct jffs2_raw_inode *latest_node)
|
|
{
|
|
dbg_readinode("read inode #%u\n", ino);
|
|
|
|
retry_inocache:
|
|
spin_lock(&c->inocache_lock);
|
|
f->inocache = jffs2_get_ino_cache(c, ino);
|
|
|
|
if (f->inocache) {
|
|
/* Check its state. We may need to wait before we can use it */
|
|
switch(f->inocache->state) {
|
|
case INO_STATE_UNCHECKED:
|
|
case INO_STATE_CHECKEDABSENT:
|
|
f->inocache->state = INO_STATE_READING;
|
|
break;
|
|
|
|
case INO_STATE_CHECKING:
|
|
case INO_STATE_GC:
|
|
/* If it's in either of these states, we need
|
|
to wait for whoever's got it to finish and
|
|
put it back. */
|
|
dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
|
|
sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
|
|
goto retry_inocache;
|
|
|
|
case INO_STATE_READING:
|
|
case INO_STATE_PRESENT:
|
|
/* Eep. This should never happen. It can
|
|
happen if Linux calls read_inode() again
|
|
before clear_inode() has finished though. */
|
|
JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
|
|
/* Fail. That's probably better than allowing it to succeed */
|
|
f->inocache = NULL;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
spin_unlock(&c->inocache_lock);
|
|
|
|
if (!f->inocache && ino == 1) {
|
|
/* Special case - no root inode on medium */
|
|
f->inocache = jffs2_alloc_inode_cache();
|
|
if (!f->inocache) {
|
|
JFFS2_ERROR("cannot allocate inocache for root inode\n");
|
|
return -ENOMEM;
|
|
}
|
|
dbg_readinode("creating inocache for root inode\n");
|
|
memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
|
|
f->inocache->ino = f->inocache->pino_nlink = 1;
|
|
f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
|
|
f->inocache->state = INO_STATE_READING;
|
|
jffs2_add_ino_cache(c, f->inocache);
|
|
}
|
|
if (!f->inocache) {
|
|
JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino);
|
|
return -ENOENT;
|
|
}
|
|
|
|
return jffs2_do_read_inode_internal(c, f, latest_node);
|
|
}
|
|
|
|
int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
|
|
{
|
|
struct jffs2_raw_inode n;
|
|
struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
|
|
int ret;
|
|
|
|
if (!f)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&f->sem);
|
|
mutex_lock(&f->sem);
|
|
f->inocache = ic;
|
|
|
|
ret = jffs2_do_read_inode_internal(c, f, &n);
|
|
if (!ret) {
|
|
mutex_unlock(&f->sem);
|
|
jffs2_do_clear_inode(c, f);
|
|
}
|
|
kfree (f);
|
|
return ret;
|
|
}
|
|
|
|
void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
|
|
{
|
|
struct jffs2_full_dirent *fd, *fds;
|
|
int deleted;
|
|
|
|
jffs2_clear_acl(f);
|
|
jffs2_xattr_delete_inode(c, f->inocache);
|
|
mutex_lock(&f->sem);
|
|
deleted = f->inocache && !f->inocache->pino_nlink;
|
|
|
|
if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);
|
|
|
|
if (f->metadata) {
|
|
if (deleted)
|
|
jffs2_mark_node_obsolete(c, f->metadata->raw);
|
|
jffs2_free_full_dnode(f->metadata);
|
|
}
|
|
|
|
jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);
|
|
|
|
if (f->target) {
|
|
kfree(f->target);
|
|
f->target = NULL;
|
|
}
|
|
|
|
fds = f->dents;
|
|
while(fds) {
|
|
fd = fds;
|
|
fds = fd->next;
|
|
jffs2_free_full_dirent(fd);
|
|
}
|
|
|
|
if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
|
|
jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
|
|
if (f->inocache->nodes == (void *)f->inocache)
|
|
jffs2_del_ino_cache(c, f->inocache);
|
|
}
|
|
|
|
mutex_unlock(&f->sem);
|
|
}
|