mirror of
https://github.com/torvalds/linux.git
synced 2024-12-24 03:42:52 +00:00
0565c26de7
- Fix the array index value in ata_rwcmd_protocol() for the added FUA commands. - Filter out ATAPI packet command error messages in ata_pio_error() Signed-off-by: Albert Lee <albertcc@tw.ibm.com> Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
5196 lines
125 KiB
C
5196 lines
125 KiB
C
/*
|
|
* libata-core.c - helper library for ATA
|
|
*
|
|
* Maintained by: Jeff Garzik <jgarzik@pobox.com>
|
|
* Please ALWAYS copy linux-ide@vger.kernel.org
|
|
* on emails.
|
|
*
|
|
* Copyright 2003-2004 Red Hat, Inc. All rights reserved.
|
|
* Copyright 2003-2004 Jeff Garzik
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* libata documentation is available via 'make {ps|pdf}docs',
|
|
* as Documentation/DocBook/libata.*
|
|
*
|
|
* Hardware documentation available from http://www.t13.org/ and
|
|
* http://www.sata-io.org/
|
|
*
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <scsi/scsi.h>
|
|
#include "scsi_priv.h"
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <linux/libata.h>
|
|
#include <asm/io.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "libata.h"
|
|
|
|
static unsigned int ata_busy_sleep (struct ata_port *ap,
|
|
unsigned long tmout_pat,
|
|
unsigned long tmout);
|
|
static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
|
|
static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
|
|
static void ata_set_mode(struct ata_port *ap);
|
|
static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
|
|
static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
|
|
static int fgb(u32 bitmap);
|
|
static int ata_choose_xfer_mode(const struct ata_port *ap,
|
|
u8 *xfer_mode_out,
|
|
unsigned int *xfer_shift_out);
|
|
static void __ata_qc_complete(struct ata_queued_cmd *qc);
|
|
|
|
static unsigned int ata_unique_id = 1;
|
|
static struct workqueue_struct *ata_wq;
|
|
|
|
int atapi_enabled = 0;
|
|
module_param(atapi_enabled, int, 0444);
|
|
MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
|
|
|
|
MODULE_AUTHOR("Jeff Garzik");
|
|
MODULE_DESCRIPTION("Library module for ATA devices");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
/**
|
|
* ata_tf_load_pio - send taskfile registers to host controller
|
|
* @ap: Port to which output is sent
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Outputs ATA taskfile to standard ATA host controller.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
|
|
|
|
if (tf->ctl != ap->last_ctl) {
|
|
outb(tf->ctl, ioaddr->ctl_addr);
|
|
ap->last_ctl = tf->ctl;
|
|
ata_wait_idle(ap);
|
|
}
|
|
|
|
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
|
|
outb(tf->hob_feature, ioaddr->feature_addr);
|
|
outb(tf->hob_nsect, ioaddr->nsect_addr);
|
|
outb(tf->hob_lbal, ioaddr->lbal_addr);
|
|
outb(tf->hob_lbam, ioaddr->lbam_addr);
|
|
outb(tf->hob_lbah, ioaddr->lbah_addr);
|
|
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
|
|
tf->hob_feature,
|
|
tf->hob_nsect,
|
|
tf->hob_lbal,
|
|
tf->hob_lbam,
|
|
tf->hob_lbah);
|
|
}
|
|
|
|
if (is_addr) {
|
|
outb(tf->feature, ioaddr->feature_addr);
|
|
outb(tf->nsect, ioaddr->nsect_addr);
|
|
outb(tf->lbal, ioaddr->lbal_addr);
|
|
outb(tf->lbam, ioaddr->lbam_addr);
|
|
outb(tf->lbah, ioaddr->lbah_addr);
|
|
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
|
|
tf->feature,
|
|
tf->nsect,
|
|
tf->lbal,
|
|
tf->lbam,
|
|
tf->lbah);
|
|
}
|
|
|
|
if (tf->flags & ATA_TFLAG_DEVICE) {
|
|
outb(tf->device, ioaddr->device_addr);
|
|
VPRINTK("device 0x%X\n", tf->device);
|
|
}
|
|
|
|
ata_wait_idle(ap);
|
|
}
|
|
|
|
/**
|
|
* ata_tf_load_mmio - send taskfile registers to host controller
|
|
* @ap: Port to which output is sent
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Outputs ATA taskfile to standard ATA host controller using MMIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
|
|
|
|
if (tf->ctl != ap->last_ctl) {
|
|
writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
|
|
ap->last_ctl = tf->ctl;
|
|
ata_wait_idle(ap);
|
|
}
|
|
|
|
if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
|
|
writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
|
|
writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
|
|
writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
|
|
writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
|
|
writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
|
|
VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
|
|
tf->hob_feature,
|
|
tf->hob_nsect,
|
|
tf->hob_lbal,
|
|
tf->hob_lbam,
|
|
tf->hob_lbah);
|
|
}
|
|
|
|
if (is_addr) {
|
|
writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
|
|
writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
|
|
writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
|
|
writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
|
|
writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
|
|
VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
|
|
tf->feature,
|
|
tf->nsect,
|
|
tf->lbal,
|
|
tf->lbam,
|
|
tf->lbah);
|
|
}
|
|
|
|
if (tf->flags & ATA_TFLAG_DEVICE) {
|
|
writeb(tf->device, (void __iomem *) ioaddr->device_addr);
|
|
VPRINTK("device 0x%X\n", tf->device);
|
|
}
|
|
|
|
ata_wait_idle(ap);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_tf_load - send taskfile registers to host controller
|
|
* @ap: Port to which output is sent
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Outputs ATA taskfile to standard ATA host controller using MMIO
|
|
* or PIO as indicated by the ATA_FLAG_MMIO flag.
|
|
* Writes the control, feature, nsect, lbal, lbam, and lbah registers.
|
|
* Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
|
|
* hob_lbal, hob_lbam, and hob_lbah.
|
|
*
|
|
* This function waits for idle (!BUSY and !DRQ) after writing
|
|
* registers. If the control register has a new value, this
|
|
* function also waits for idle after writing control and before
|
|
* writing the remaining registers.
|
|
*
|
|
* May be used as the tf_load() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
ata_tf_load_mmio(ap, tf);
|
|
else
|
|
ata_tf_load_pio(ap, tf);
|
|
}
|
|
|
|
/**
|
|
* ata_exec_command_pio - issue ATA command to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues PIO write to ATA command register, with proper
|
|
* synchronization with interrupt handler / other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
|
|
|
|
outb(tf->command, ap->ioaddr.command_addr);
|
|
ata_pause(ap);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_exec_command_mmio - issue ATA command to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues MMIO write to ATA command register, with proper
|
|
* synchronization with interrupt handler / other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
|
|
|
|
writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
|
|
ata_pause(ap);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_exec_command - issue ATA command to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues PIO/MMIO write to ATA command register, with proper
|
|
* synchronization with interrupt handler / other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
|
|
{
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
ata_exec_command_mmio(ap, tf);
|
|
else
|
|
ata_exec_command_pio(ap, tf);
|
|
}
|
|
|
|
/**
|
|
* ata_tf_to_host - issue ATA taskfile to host controller
|
|
* @ap: port to which command is being issued
|
|
* @tf: ATA taskfile register set
|
|
*
|
|
* Issues ATA taskfile register set to ATA host controller,
|
|
* with proper synchronization with interrupt handler and
|
|
* other threads.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
static inline void ata_tf_to_host(struct ata_port *ap,
|
|
const struct ata_taskfile *tf)
|
|
{
|
|
ap->ops->tf_load(ap, tf);
|
|
ap->ops->exec_command(ap, tf);
|
|
}
|
|
|
|
/**
|
|
* ata_tf_read_pio - input device's ATA taskfile shadow registers
|
|
* @ap: Port from which input is read
|
|
* @tf: ATA taskfile register set for storing input
|
|
*
|
|
* Reads ATA taskfile registers for currently-selected device
|
|
* into @tf.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
tf->command = ata_check_status(ap);
|
|
tf->feature = inb(ioaddr->error_addr);
|
|
tf->nsect = inb(ioaddr->nsect_addr);
|
|
tf->lbal = inb(ioaddr->lbal_addr);
|
|
tf->lbam = inb(ioaddr->lbam_addr);
|
|
tf->lbah = inb(ioaddr->lbah_addr);
|
|
tf->device = inb(ioaddr->device_addr);
|
|
|
|
if (tf->flags & ATA_TFLAG_LBA48) {
|
|
outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
|
|
tf->hob_feature = inb(ioaddr->error_addr);
|
|
tf->hob_nsect = inb(ioaddr->nsect_addr);
|
|
tf->hob_lbal = inb(ioaddr->lbal_addr);
|
|
tf->hob_lbam = inb(ioaddr->lbam_addr);
|
|
tf->hob_lbah = inb(ioaddr->lbah_addr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_tf_read_mmio - input device's ATA taskfile shadow registers
|
|
* @ap: Port from which input is read
|
|
* @tf: ATA taskfile register set for storing input
|
|
*
|
|
* Reads ATA taskfile registers for currently-selected device
|
|
* into @tf via MMIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
tf->command = ata_check_status(ap);
|
|
tf->feature = readb((void __iomem *)ioaddr->error_addr);
|
|
tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
|
|
tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
|
|
tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
|
|
tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
|
|
tf->device = readb((void __iomem *)ioaddr->device_addr);
|
|
|
|
if (tf->flags & ATA_TFLAG_LBA48) {
|
|
writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
|
|
tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
|
|
tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
|
|
tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
|
|
tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
|
|
tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_tf_read - input device's ATA taskfile shadow registers
|
|
* @ap: Port from which input is read
|
|
* @tf: ATA taskfile register set for storing input
|
|
*
|
|
* Reads ATA taskfile registers for currently-selected device
|
|
* into @tf.
|
|
*
|
|
* Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
|
|
* is set, also reads the hob registers.
|
|
*
|
|
* May be used as the tf_read() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
|
|
{
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
ata_tf_read_mmio(ap, tf);
|
|
else
|
|
ata_tf_read_pio(ap, tf);
|
|
}
|
|
|
|
/**
|
|
* ata_check_status_pio - Read device status reg & clear interrupt
|
|
* @ap: port where the device is
|
|
*
|
|
* Reads ATA taskfile status register for currently-selected device
|
|
* and return its value. This also clears pending interrupts
|
|
* from this device
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static u8 ata_check_status_pio(struct ata_port *ap)
|
|
{
|
|
return inb(ap->ioaddr.status_addr);
|
|
}
|
|
|
|
/**
|
|
* ata_check_status_mmio - Read device status reg & clear interrupt
|
|
* @ap: port where the device is
|
|
*
|
|
* Reads ATA taskfile status register for currently-selected device
|
|
* via MMIO and return its value. This also clears pending interrupts
|
|
* from this device
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
static u8 ata_check_status_mmio(struct ata_port *ap)
|
|
{
|
|
return readb((void __iomem *) ap->ioaddr.status_addr);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_check_status - Read device status reg & clear interrupt
|
|
* @ap: port where the device is
|
|
*
|
|
* Reads ATA taskfile status register for currently-selected device
|
|
* and return its value. This also clears pending interrupts
|
|
* from this device
|
|
*
|
|
* May be used as the check_status() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
u8 ata_check_status(struct ata_port *ap)
|
|
{
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
return ata_check_status_mmio(ap);
|
|
return ata_check_status_pio(ap);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_altstatus - Read device alternate status reg
|
|
* @ap: port where the device is
|
|
*
|
|
* Reads ATA taskfile alternate status register for
|
|
* currently-selected device and return its value.
|
|
*
|
|
* Note: may NOT be used as the check_altstatus() entry in
|
|
* ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
u8 ata_altstatus(struct ata_port *ap)
|
|
{
|
|
if (ap->ops->check_altstatus)
|
|
return ap->ops->check_altstatus(ap);
|
|
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
return readb((void __iomem *)ap->ioaddr.altstatus_addr);
|
|
return inb(ap->ioaddr.altstatus_addr);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
|
|
* @tf: Taskfile to convert
|
|
* @fis: Buffer into which data will output
|
|
* @pmp: Port multiplier port
|
|
*
|
|
* Converts a standard ATA taskfile to a Serial ATA
|
|
* FIS structure (Register - Host to Device).
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
|
|
{
|
|
fis[0] = 0x27; /* Register - Host to Device FIS */
|
|
fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
|
|
bit 7 indicates Command FIS */
|
|
fis[2] = tf->command;
|
|
fis[3] = tf->feature;
|
|
|
|
fis[4] = tf->lbal;
|
|
fis[5] = tf->lbam;
|
|
fis[6] = tf->lbah;
|
|
fis[7] = tf->device;
|
|
|
|
fis[8] = tf->hob_lbal;
|
|
fis[9] = tf->hob_lbam;
|
|
fis[10] = tf->hob_lbah;
|
|
fis[11] = tf->hob_feature;
|
|
|
|
fis[12] = tf->nsect;
|
|
fis[13] = tf->hob_nsect;
|
|
fis[14] = 0;
|
|
fis[15] = tf->ctl;
|
|
|
|
fis[16] = 0;
|
|
fis[17] = 0;
|
|
fis[18] = 0;
|
|
fis[19] = 0;
|
|
}
|
|
|
|
/**
|
|
* ata_tf_from_fis - Convert SATA FIS to ATA taskfile
|
|
* @fis: Buffer from which data will be input
|
|
* @tf: Taskfile to output
|
|
*
|
|
* Converts a serial ATA FIS structure to a standard ATA taskfile.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
|
|
{
|
|
tf->command = fis[2]; /* status */
|
|
tf->feature = fis[3]; /* error */
|
|
|
|
tf->lbal = fis[4];
|
|
tf->lbam = fis[5];
|
|
tf->lbah = fis[6];
|
|
tf->device = fis[7];
|
|
|
|
tf->hob_lbal = fis[8];
|
|
tf->hob_lbam = fis[9];
|
|
tf->hob_lbah = fis[10];
|
|
|
|
tf->nsect = fis[12];
|
|
tf->hob_nsect = fis[13];
|
|
}
|
|
|
|
static const u8 ata_rw_cmds[] = {
|
|
/* pio multi */
|
|
ATA_CMD_READ_MULTI,
|
|
ATA_CMD_WRITE_MULTI,
|
|
ATA_CMD_READ_MULTI_EXT,
|
|
ATA_CMD_WRITE_MULTI_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
ATA_CMD_WRITE_MULTI_FUA_EXT,
|
|
/* pio */
|
|
ATA_CMD_PIO_READ,
|
|
ATA_CMD_PIO_WRITE,
|
|
ATA_CMD_PIO_READ_EXT,
|
|
ATA_CMD_PIO_WRITE_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
/* dma */
|
|
ATA_CMD_READ,
|
|
ATA_CMD_WRITE,
|
|
ATA_CMD_READ_EXT,
|
|
ATA_CMD_WRITE_EXT,
|
|
0,
|
|
0,
|
|
0,
|
|
ATA_CMD_WRITE_FUA_EXT
|
|
};
|
|
|
|
/**
|
|
* ata_rwcmd_protocol - set taskfile r/w commands and protocol
|
|
* @qc: command to examine and configure
|
|
*
|
|
* Examine the device configuration and tf->flags to calculate
|
|
* the proper read/write commands and protocol to use.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_taskfile *tf = &qc->tf;
|
|
struct ata_device *dev = qc->dev;
|
|
u8 cmd;
|
|
|
|
int index, fua, lba48, write;
|
|
|
|
fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
|
|
lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
|
|
write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
|
|
|
|
if (dev->flags & ATA_DFLAG_PIO) {
|
|
tf->protocol = ATA_PROT_PIO;
|
|
index = dev->multi_count ? 0 : 8;
|
|
} else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
|
|
/* Unable to use DMA due to host limitation */
|
|
tf->protocol = ATA_PROT_PIO;
|
|
index = dev->multi_count ? 0 : 8;
|
|
} else {
|
|
tf->protocol = ATA_PROT_DMA;
|
|
index = 16;
|
|
}
|
|
|
|
cmd = ata_rw_cmds[index + fua + lba48 + write];
|
|
if (cmd) {
|
|
tf->command = cmd;
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static const char * const xfer_mode_str[] = {
|
|
"UDMA/16",
|
|
"UDMA/25",
|
|
"UDMA/33",
|
|
"UDMA/44",
|
|
"UDMA/66",
|
|
"UDMA/100",
|
|
"UDMA/133",
|
|
"UDMA7",
|
|
"MWDMA0",
|
|
"MWDMA1",
|
|
"MWDMA2",
|
|
"PIO0",
|
|
"PIO1",
|
|
"PIO2",
|
|
"PIO3",
|
|
"PIO4",
|
|
};
|
|
|
|
/**
|
|
* ata_udma_string - convert UDMA bit offset to string
|
|
* @mask: mask of bits supported; only highest bit counts.
|
|
*
|
|
* Determine string which represents the highest speed
|
|
* (highest bit in @udma_mask).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Constant C string representing highest speed listed in
|
|
* @udma_mask, or the constant C string "<n/a>".
|
|
*/
|
|
|
|
static const char *ata_mode_string(unsigned int mask)
|
|
{
|
|
int i;
|
|
|
|
for (i = 7; i >= 0; i--)
|
|
if (mask & (1 << i))
|
|
goto out;
|
|
for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
|
|
if (mask & (1 << i))
|
|
goto out;
|
|
for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
|
|
if (mask & (1 << i))
|
|
goto out;
|
|
|
|
return "<n/a>";
|
|
|
|
out:
|
|
return xfer_mode_str[i];
|
|
}
|
|
|
|
/**
|
|
* ata_pio_devchk - PATA device presence detection
|
|
* @ap: ATA channel to examine
|
|
* @device: Device to examine (starting at zero)
|
|
*
|
|
* This technique was originally described in
|
|
* Hale Landis's ATADRVR (www.ata-atapi.com), and
|
|
* later found its way into the ATA/ATAPI spec.
|
|
*
|
|
* Write a pattern to the ATA shadow registers,
|
|
* and if a device is present, it will respond by
|
|
* correctly storing and echoing back the
|
|
* ATA shadow register contents.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static unsigned int ata_pio_devchk(struct ata_port *ap,
|
|
unsigned int device)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
u8 nsect, lbal;
|
|
|
|
ap->ops->dev_select(ap, device);
|
|
|
|
outb(0x55, ioaddr->nsect_addr);
|
|
outb(0xaa, ioaddr->lbal_addr);
|
|
|
|
outb(0xaa, ioaddr->nsect_addr);
|
|
outb(0x55, ioaddr->lbal_addr);
|
|
|
|
outb(0x55, ioaddr->nsect_addr);
|
|
outb(0xaa, ioaddr->lbal_addr);
|
|
|
|
nsect = inb(ioaddr->nsect_addr);
|
|
lbal = inb(ioaddr->lbal_addr);
|
|
|
|
if ((nsect == 0x55) && (lbal == 0xaa))
|
|
return 1; /* we found a device */
|
|
|
|
return 0; /* nothing found */
|
|
}
|
|
|
|
/**
|
|
* ata_mmio_devchk - PATA device presence detection
|
|
* @ap: ATA channel to examine
|
|
* @device: Device to examine (starting at zero)
|
|
*
|
|
* This technique was originally described in
|
|
* Hale Landis's ATADRVR (www.ata-atapi.com), and
|
|
* later found its way into the ATA/ATAPI spec.
|
|
*
|
|
* Write a pattern to the ATA shadow registers,
|
|
* and if a device is present, it will respond by
|
|
* correctly storing and echoing back the
|
|
* ATA shadow register contents.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static unsigned int ata_mmio_devchk(struct ata_port *ap,
|
|
unsigned int device)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
u8 nsect, lbal;
|
|
|
|
ap->ops->dev_select(ap, device);
|
|
|
|
writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
|
|
writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
|
|
|
|
writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
|
|
writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
|
|
|
|
writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
|
|
writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
|
|
|
|
nsect = readb((void __iomem *) ioaddr->nsect_addr);
|
|
lbal = readb((void __iomem *) ioaddr->lbal_addr);
|
|
|
|
if ((nsect == 0x55) && (lbal == 0xaa))
|
|
return 1; /* we found a device */
|
|
|
|
return 0; /* nothing found */
|
|
}
|
|
|
|
/**
|
|
* ata_devchk - PATA device presence detection
|
|
* @ap: ATA channel to examine
|
|
* @device: Device to examine (starting at zero)
|
|
*
|
|
* Dispatch ATA device presence detection, depending
|
|
* on whether we are using PIO or MMIO to talk to the
|
|
* ATA shadow registers.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static unsigned int ata_devchk(struct ata_port *ap,
|
|
unsigned int device)
|
|
{
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
return ata_mmio_devchk(ap, device);
|
|
return ata_pio_devchk(ap, device);
|
|
}
|
|
|
|
/**
|
|
* ata_dev_classify - determine device type based on ATA-spec signature
|
|
* @tf: ATA taskfile register set for device to be identified
|
|
*
|
|
* Determine from taskfile register contents whether a device is
|
|
* ATA or ATAPI, as per "Signature and persistence" section
|
|
* of ATA/PI spec (volume 1, sect 5.14).
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*
|
|
* RETURNS:
|
|
* Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
|
|
* the event of failure.
|
|
*/
|
|
|
|
unsigned int ata_dev_classify(const struct ata_taskfile *tf)
|
|
{
|
|
/* Apple's open source Darwin code hints that some devices only
|
|
* put a proper signature into the LBA mid/high registers,
|
|
* So, we only check those. It's sufficient for uniqueness.
|
|
*/
|
|
|
|
if (((tf->lbam == 0) && (tf->lbah == 0)) ||
|
|
((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
|
|
DPRINTK("found ATA device by sig\n");
|
|
return ATA_DEV_ATA;
|
|
}
|
|
|
|
if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
|
|
((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
|
|
DPRINTK("found ATAPI device by sig\n");
|
|
return ATA_DEV_ATAPI;
|
|
}
|
|
|
|
DPRINTK("unknown device\n");
|
|
return ATA_DEV_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_try_classify - Parse returned ATA device signature
|
|
* @ap: ATA channel to examine
|
|
* @device: Device to examine (starting at zero)
|
|
*
|
|
* After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
|
|
* an ATA/ATAPI-defined set of values is placed in the ATA
|
|
* shadow registers, indicating the results of device detection
|
|
* and diagnostics.
|
|
*
|
|
* Select the ATA device, and read the values from the ATA shadow
|
|
* registers. Then parse according to the Error register value,
|
|
* and the spec-defined values examined by ata_dev_classify().
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
|
|
{
|
|
struct ata_device *dev = &ap->device[device];
|
|
struct ata_taskfile tf;
|
|
unsigned int class;
|
|
u8 err;
|
|
|
|
ap->ops->dev_select(ap, device);
|
|
|
|
memset(&tf, 0, sizeof(tf));
|
|
|
|
ap->ops->tf_read(ap, &tf);
|
|
err = tf.feature;
|
|
|
|
dev->class = ATA_DEV_NONE;
|
|
|
|
/* see if device passed diags */
|
|
if (err == 1)
|
|
/* do nothing */ ;
|
|
else if ((device == 0) && (err == 0x81))
|
|
/* do nothing */ ;
|
|
else
|
|
return err;
|
|
|
|
/* determine if device if ATA or ATAPI */
|
|
class = ata_dev_classify(&tf);
|
|
if (class == ATA_DEV_UNKNOWN)
|
|
return err;
|
|
if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
|
|
return err;
|
|
|
|
dev->class = class;
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_id_string - Convert IDENTIFY DEVICE page into string
|
|
* @id: IDENTIFY DEVICE results we will examine
|
|
* @s: string into which data is output
|
|
* @ofs: offset into identify device page
|
|
* @len: length of string to return. must be an even number.
|
|
*
|
|
* The strings in the IDENTIFY DEVICE page are broken up into
|
|
* 16-bit chunks. Run through the string, and output each
|
|
* 8-bit chunk linearly, regardless of platform.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
void ata_dev_id_string(const u16 *id, unsigned char *s,
|
|
unsigned int ofs, unsigned int len)
|
|
{
|
|
unsigned int c;
|
|
|
|
while (len > 0) {
|
|
c = id[ofs] >> 8;
|
|
*s = c;
|
|
s++;
|
|
|
|
c = id[ofs] & 0xff;
|
|
*s = c;
|
|
s++;
|
|
|
|
ofs++;
|
|
len -= 2;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_noop_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
*
|
|
* This function performs no actual function.
|
|
*
|
|
* May be used as the dev_select() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
|
|
{
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_std_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
*
|
|
* Use the method defined in the ATA specification to
|
|
* make either device 0, or device 1, active on the
|
|
* ATA channel. Works with both PIO and MMIO.
|
|
*
|
|
* May be used as the dev_select() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
void ata_std_dev_select (struct ata_port *ap, unsigned int device)
|
|
{
|
|
u8 tmp;
|
|
|
|
if (device == 0)
|
|
tmp = ATA_DEVICE_OBS;
|
|
else
|
|
tmp = ATA_DEVICE_OBS | ATA_DEV1;
|
|
|
|
if (ap->flags & ATA_FLAG_MMIO) {
|
|
writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
|
|
} else {
|
|
outb(tmp, ap->ioaddr.device_addr);
|
|
}
|
|
ata_pause(ap); /* needed; also flushes, for mmio */
|
|
}
|
|
|
|
/**
|
|
* ata_dev_select - Select device 0/1 on ATA bus
|
|
* @ap: ATA channel to manipulate
|
|
* @device: ATA device (numbered from zero) to select
|
|
* @wait: non-zero to wait for Status register BSY bit to clear
|
|
* @can_sleep: non-zero if context allows sleeping
|
|
*
|
|
* Use the method defined in the ATA specification to
|
|
* make either device 0, or device 1, active on the
|
|
* ATA channel.
|
|
*
|
|
* This is a high-level version of ata_std_dev_select(),
|
|
* which additionally provides the services of inserting
|
|
* the proper pauses and status polling, where needed.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
void ata_dev_select(struct ata_port *ap, unsigned int device,
|
|
unsigned int wait, unsigned int can_sleep)
|
|
{
|
|
VPRINTK("ENTER, ata%u: device %u, wait %u\n",
|
|
ap->id, device, wait);
|
|
|
|
if (wait)
|
|
ata_wait_idle(ap);
|
|
|
|
ap->ops->dev_select(ap, device);
|
|
|
|
if (wait) {
|
|
if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
|
|
msleep(150);
|
|
ata_wait_idle(ap);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_dump_id - IDENTIFY DEVICE info debugging output
|
|
* @dev: Device whose IDENTIFY DEVICE page we will dump
|
|
*
|
|
* Dump selected 16-bit words from a detected device's
|
|
* IDENTIFY PAGE page.
|
|
*
|
|
* LOCKING:
|
|
* caller.
|
|
*/
|
|
|
|
static inline void ata_dump_id(const struct ata_device *dev)
|
|
{
|
|
DPRINTK("49==0x%04x "
|
|
"53==0x%04x "
|
|
"63==0x%04x "
|
|
"64==0x%04x "
|
|
"75==0x%04x \n",
|
|
dev->id[49],
|
|
dev->id[53],
|
|
dev->id[63],
|
|
dev->id[64],
|
|
dev->id[75]);
|
|
DPRINTK("80==0x%04x "
|
|
"81==0x%04x "
|
|
"82==0x%04x "
|
|
"83==0x%04x "
|
|
"84==0x%04x \n",
|
|
dev->id[80],
|
|
dev->id[81],
|
|
dev->id[82],
|
|
dev->id[83],
|
|
dev->id[84]);
|
|
DPRINTK("88==0x%04x "
|
|
"93==0x%04x\n",
|
|
dev->id[88],
|
|
dev->id[93]);
|
|
}
|
|
|
|
/*
|
|
* Compute the PIO modes available for this device. This is not as
|
|
* trivial as it seems if we must consider early devices correctly.
|
|
*
|
|
* FIXME: pre IDE drive timing (do we care ?).
|
|
*/
|
|
|
|
static unsigned int ata_pio_modes(const struct ata_device *adev)
|
|
{
|
|
u16 modes;
|
|
|
|
/* Usual case. Word 53 indicates word 64 is valid */
|
|
if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
|
|
modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
|
|
modes <<= 3;
|
|
modes |= 0x7;
|
|
return modes;
|
|
}
|
|
|
|
/* If word 64 isn't valid then Word 51 high byte holds the PIO timing
|
|
number for the maximum. Turn it into a mask and return it */
|
|
modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
|
|
return modes;
|
|
/* But wait.. there's more. Design your standards by committee and
|
|
you too can get a free iordy field to process. However its the
|
|
speeds not the modes that are supported... Note drivers using the
|
|
timing API will get this right anyway */
|
|
}
|
|
|
|
struct ata_exec_internal_arg {
|
|
unsigned int err_mask;
|
|
struct ata_taskfile *tf;
|
|
struct completion *waiting;
|
|
};
|
|
|
|
int ata_qc_complete_internal(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_exec_internal_arg *arg = qc->private_data;
|
|
struct completion *waiting = arg->waiting;
|
|
|
|
if (!(qc->err_mask & ~AC_ERR_DEV))
|
|
qc->ap->ops->tf_read(qc->ap, arg->tf);
|
|
arg->err_mask = qc->err_mask;
|
|
arg->waiting = NULL;
|
|
complete(waiting);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_exec_internal - execute libata internal command
|
|
* @ap: Port to which the command is sent
|
|
* @dev: Device to which the command is sent
|
|
* @tf: Taskfile registers for the command and the result
|
|
* @dma_dir: Data tranfer direction of the command
|
|
* @buf: Data buffer of the command
|
|
* @buflen: Length of data buffer
|
|
*
|
|
* Executes libata internal command with timeout. @tf contains
|
|
* command on entry and result on return. Timeout and error
|
|
* conditions are reported via return value. No recovery action
|
|
* is taken after a command times out. It's caller's duty to
|
|
* clean up after timeout.
|
|
*
|
|
* LOCKING:
|
|
* None. Should be called with kernel context, might sleep.
|
|
*/
|
|
|
|
static unsigned
|
|
ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
|
|
struct ata_taskfile *tf,
|
|
int dma_dir, void *buf, unsigned int buflen)
|
|
{
|
|
u8 command = tf->command;
|
|
struct ata_queued_cmd *qc;
|
|
DECLARE_COMPLETION(wait);
|
|
unsigned long flags;
|
|
struct ata_exec_internal_arg arg;
|
|
|
|
spin_lock_irqsave(&ap->host_set->lock, flags);
|
|
|
|
qc = ata_qc_new_init(ap, dev);
|
|
BUG_ON(qc == NULL);
|
|
|
|
qc->tf = *tf;
|
|
qc->dma_dir = dma_dir;
|
|
if (dma_dir != DMA_NONE) {
|
|
ata_sg_init_one(qc, buf, buflen);
|
|
qc->nsect = buflen / ATA_SECT_SIZE;
|
|
}
|
|
|
|
arg.waiting = &wait;
|
|
arg.tf = tf;
|
|
qc->private_data = &arg;
|
|
qc->complete_fn = ata_qc_complete_internal;
|
|
|
|
if (ata_qc_issue(qc))
|
|
goto issue_fail;
|
|
|
|
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
|
|
|
if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
|
|
spin_lock_irqsave(&ap->host_set->lock, flags);
|
|
|
|
/* We're racing with irq here. If we lose, the
|
|
* following test prevents us from completing the qc
|
|
* again. If completion irq occurs after here but
|
|
* before the caller cleans up, it will result in a
|
|
* spurious interrupt. We can live with that.
|
|
*/
|
|
if (arg.waiting) {
|
|
qc->err_mask = AC_ERR_OTHER;
|
|
ata_qc_complete(qc);
|
|
printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
|
|
ap->id, command);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
|
}
|
|
|
|
return arg.err_mask;
|
|
|
|
issue_fail:
|
|
ata_qc_free(qc);
|
|
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
|
return AC_ERR_OTHER;
|
|
}
|
|
|
|
/**
|
|
* ata_pio_need_iordy - check if iordy needed
|
|
* @adev: ATA device
|
|
*
|
|
* Check if the current speed of the device requires IORDY. Used
|
|
* by various controllers for chip configuration.
|
|
*/
|
|
|
|
unsigned int ata_pio_need_iordy(const struct ata_device *adev)
|
|
{
|
|
int pio;
|
|
int speed = adev->pio_mode - XFER_PIO_0;
|
|
|
|
if (speed < 2)
|
|
return 0;
|
|
if (speed > 2)
|
|
return 1;
|
|
|
|
/* If we have no drive specific rule, then PIO 2 is non IORDY */
|
|
|
|
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
|
|
pio = adev->id[ATA_ID_EIDE_PIO];
|
|
/* Is the speed faster than the drive allows non IORDY ? */
|
|
if (pio) {
|
|
/* This is cycle times not frequency - watch the logic! */
|
|
if (pio > 240) /* PIO2 is 240nS per cycle */
|
|
return 1;
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_identify - obtain IDENTIFY x DEVICE page
|
|
* @ap: port on which device we wish to probe resides
|
|
* @device: device bus address, starting at zero
|
|
*
|
|
* Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
|
|
* command, and read back the 512-byte device information page.
|
|
* The device information page is fed to us via the standard
|
|
* PIO-IN protocol, but we hand-code it here. (TODO: investigate
|
|
* using standard PIO-IN paths)
|
|
*
|
|
* After reading the device information page, we use several
|
|
* bits of information from it to initialize data structures
|
|
* that will be used during the lifetime of the ata_device.
|
|
* Other data from the info page is used to disqualify certain
|
|
* older ATA devices we do not wish to support.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller. Some functions called by this function
|
|
* obtain the host_set lock.
|
|
*/
|
|
|
|
static void ata_dev_identify(struct ata_port *ap, unsigned int device)
|
|
{
|
|
struct ata_device *dev = &ap->device[device];
|
|
unsigned int major_version;
|
|
u16 tmp;
|
|
unsigned long xfer_modes;
|
|
unsigned int using_edd;
|
|
struct ata_taskfile tf;
|
|
unsigned int err_mask;
|
|
int rc;
|
|
|
|
if (!ata_dev_present(dev)) {
|
|
DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
|
|
ap->id, device);
|
|
return;
|
|
}
|
|
|
|
if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
|
|
using_edd = 0;
|
|
else
|
|
using_edd = 1;
|
|
|
|
DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
|
|
|
|
assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
|
|
dev->class == ATA_DEV_NONE);
|
|
|
|
ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
|
|
|
|
retry:
|
|
ata_tf_init(ap, &tf, device);
|
|
|
|
if (dev->class == ATA_DEV_ATA) {
|
|
tf.command = ATA_CMD_ID_ATA;
|
|
DPRINTK("do ATA identify\n");
|
|
} else {
|
|
tf.command = ATA_CMD_ID_ATAPI;
|
|
DPRINTK("do ATAPI identify\n");
|
|
}
|
|
|
|
tf.protocol = ATA_PROT_PIO;
|
|
|
|
err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
|
|
dev->id, sizeof(dev->id));
|
|
|
|
if (err_mask) {
|
|
if (err_mask & ~AC_ERR_DEV)
|
|
goto err_out;
|
|
|
|
/*
|
|
* arg! EDD works for all test cases, but seems to return
|
|
* the ATA signature for some ATAPI devices. Until the
|
|
* reason for this is found and fixed, we fix up the mess
|
|
* here. If IDENTIFY DEVICE returns command aborted
|
|
* (as ATAPI devices do), then we issue an
|
|
* IDENTIFY PACKET DEVICE.
|
|
*
|
|
* ATA software reset (SRST, the default) does not appear
|
|
* to have this problem.
|
|
*/
|
|
if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
|
|
u8 err = tf.feature;
|
|
if (err & ATA_ABORTED) {
|
|
dev->class = ATA_DEV_ATAPI;
|
|
goto retry;
|
|
}
|
|
}
|
|
goto err_out;
|
|
}
|
|
|
|
swap_buf_le16(dev->id, ATA_ID_WORDS);
|
|
|
|
/* print device capabilities */
|
|
printk(KERN_DEBUG "ata%u: dev %u cfg "
|
|
"49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
|
|
ap->id, device, dev->id[49],
|
|
dev->id[82], dev->id[83], dev->id[84],
|
|
dev->id[85], dev->id[86], dev->id[87],
|
|
dev->id[88]);
|
|
|
|
/*
|
|
* common ATA, ATAPI feature tests
|
|
*/
|
|
|
|
/* we require DMA support (bits 8 of word 49) */
|
|
if (!ata_id_has_dma(dev->id)) {
|
|
printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
|
|
goto err_out_nosup;
|
|
}
|
|
|
|
/* quick-n-dirty find max transfer mode; for printk only */
|
|
xfer_modes = dev->id[ATA_ID_UDMA_MODES];
|
|
if (!xfer_modes)
|
|
xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
|
|
if (!xfer_modes)
|
|
xfer_modes = ata_pio_modes(dev);
|
|
|
|
ata_dump_id(dev);
|
|
|
|
/* ATA-specific feature tests */
|
|
if (dev->class == ATA_DEV_ATA) {
|
|
if (!ata_id_is_ata(dev->id)) /* sanity check */
|
|
goto err_out_nosup;
|
|
|
|
/* get major version */
|
|
tmp = dev->id[ATA_ID_MAJOR_VER];
|
|
for (major_version = 14; major_version >= 1; major_version--)
|
|
if (tmp & (1 << major_version))
|
|
break;
|
|
|
|
/*
|
|
* The exact sequence expected by certain pre-ATA4 drives is:
|
|
* SRST RESET
|
|
* IDENTIFY
|
|
* INITIALIZE DEVICE PARAMETERS
|
|
* anything else..
|
|
* Some drives were very specific about that exact sequence.
|
|
*/
|
|
if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
|
|
ata_dev_init_params(ap, dev);
|
|
|
|
/* current CHS translation info (id[53-58]) might be
|
|
* changed. reread the identify device info.
|
|
*/
|
|
ata_dev_reread_id(ap, dev);
|
|
}
|
|
|
|
if (ata_id_has_lba(dev->id)) {
|
|
dev->flags |= ATA_DFLAG_LBA;
|
|
|
|
if (ata_id_has_lba48(dev->id)) {
|
|
dev->flags |= ATA_DFLAG_LBA48;
|
|
dev->n_sectors = ata_id_u64(dev->id, 100);
|
|
} else {
|
|
dev->n_sectors = ata_id_u32(dev->id, 60);
|
|
}
|
|
|
|
/* print device info to dmesg */
|
|
printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
|
|
ap->id, device,
|
|
major_version,
|
|
ata_mode_string(xfer_modes),
|
|
(unsigned long long)dev->n_sectors,
|
|
dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
|
|
} else {
|
|
/* CHS */
|
|
|
|
/* Default translation */
|
|
dev->cylinders = dev->id[1];
|
|
dev->heads = dev->id[3];
|
|
dev->sectors = dev->id[6];
|
|
dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
|
|
|
|
if (ata_id_current_chs_valid(dev->id)) {
|
|
/* Current CHS translation is valid. */
|
|
dev->cylinders = dev->id[54];
|
|
dev->heads = dev->id[55];
|
|
dev->sectors = dev->id[56];
|
|
|
|
dev->n_sectors = ata_id_u32(dev->id, 57);
|
|
}
|
|
|
|
/* print device info to dmesg */
|
|
printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
|
|
ap->id, device,
|
|
major_version,
|
|
ata_mode_string(xfer_modes),
|
|
(unsigned long long)dev->n_sectors,
|
|
(int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
|
|
|
|
}
|
|
|
|
ap->host->max_cmd_len = 16;
|
|
}
|
|
|
|
/* ATAPI-specific feature tests */
|
|
else if (dev->class == ATA_DEV_ATAPI) {
|
|
if (ata_id_is_ata(dev->id)) /* sanity check */
|
|
goto err_out_nosup;
|
|
|
|
rc = atapi_cdb_len(dev->id);
|
|
if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
|
|
printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
|
|
goto err_out_nosup;
|
|
}
|
|
ap->cdb_len = (unsigned int) rc;
|
|
ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
|
|
|
|
/* print device info to dmesg */
|
|
printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
|
|
ap->id, device,
|
|
ata_mode_string(xfer_modes));
|
|
}
|
|
|
|
DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
|
|
return;
|
|
|
|
err_out_nosup:
|
|
printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
|
|
ap->id, device);
|
|
err_out:
|
|
dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
|
|
DPRINTK("EXIT, err\n");
|
|
}
|
|
|
|
|
|
static inline u8 ata_dev_knobble(const struct ata_port *ap)
|
|
{
|
|
return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
|
|
}
|
|
|
|
/**
|
|
* ata_dev_config - Run device specific handlers and check for
|
|
* SATA->PATA bridges
|
|
* @ap: Bus
|
|
* @i: Device
|
|
*
|
|
* LOCKING:
|
|
*/
|
|
|
|
void ata_dev_config(struct ata_port *ap, unsigned int i)
|
|
{
|
|
/* limit bridge transfers to udma5, 200 sectors */
|
|
if (ata_dev_knobble(ap)) {
|
|
printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
|
|
ap->id, ap->device->devno);
|
|
ap->udma_mask &= ATA_UDMA5;
|
|
ap->host->max_sectors = ATA_MAX_SECTORS;
|
|
ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
|
|
ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
|
|
}
|
|
|
|
if (ap->ops->dev_config)
|
|
ap->ops->dev_config(ap, &ap->device[i]);
|
|
}
|
|
|
|
/**
|
|
* ata_bus_probe - Reset and probe ATA bus
|
|
* @ap: Bus to probe
|
|
*
|
|
* Master ATA bus probing function. Initiates a hardware-dependent
|
|
* bus reset, then attempts to identify any devices found on
|
|
* the bus.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, non-zero on error.
|
|
*/
|
|
|
|
static int ata_bus_probe(struct ata_port *ap)
|
|
{
|
|
unsigned int i, found = 0;
|
|
|
|
ap->ops->phy_reset(ap);
|
|
if (ap->flags & ATA_FLAG_PORT_DISABLED)
|
|
goto err_out;
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
ata_dev_identify(ap, i);
|
|
if (ata_dev_present(&ap->device[i])) {
|
|
found = 1;
|
|
ata_dev_config(ap,i);
|
|
}
|
|
}
|
|
|
|
if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
|
|
goto err_out_disable;
|
|
|
|
ata_set_mode(ap);
|
|
if (ap->flags & ATA_FLAG_PORT_DISABLED)
|
|
goto err_out_disable;
|
|
|
|
return 0;
|
|
|
|
err_out_disable:
|
|
ap->ops->port_disable(ap);
|
|
err_out:
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* ata_port_probe - Mark port as enabled
|
|
* @ap: Port for which we indicate enablement
|
|
*
|
|
* Modify @ap data structure such that the system
|
|
* thinks that the entire port is enabled.
|
|
*
|
|
* LOCKING: host_set lock, or some other form of
|
|
* serialization.
|
|
*/
|
|
|
|
void ata_port_probe(struct ata_port *ap)
|
|
{
|
|
ap->flags &= ~ATA_FLAG_PORT_DISABLED;
|
|
}
|
|
|
|
/**
|
|
* __sata_phy_reset - Wake/reset a low-level SATA PHY
|
|
* @ap: SATA port associated with target SATA PHY.
|
|
*
|
|
* This function issues commands to standard SATA Sxxx
|
|
* PHY registers, to wake up the phy (and device), and
|
|
* clear any reset condition.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
*/
|
|
void __sata_phy_reset(struct ata_port *ap)
|
|
{
|
|
u32 sstatus;
|
|
unsigned long timeout = jiffies + (HZ * 5);
|
|
|
|
if (ap->flags & ATA_FLAG_SATA_RESET) {
|
|
/* issue phy wake/reset */
|
|
scr_write_flush(ap, SCR_CONTROL, 0x301);
|
|
/* Couldn't find anything in SATA I/II specs, but
|
|
* AHCI-1.1 10.4.2 says at least 1 ms. */
|
|
mdelay(1);
|
|
}
|
|
scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
|
|
|
|
/* wait for phy to become ready, if necessary */
|
|
do {
|
|
msleep(200);
|
|
sstatus = scr_read(ap, SCR_STATUS);
|
|
if ((sstatus & 0xf) != 1)
|
|
break;
|
|
} while (time_before(jiffies, timeout));
|
|
|
|
/* TODO: phy layer with polling, timeouts, etc. */
|
|
sstatus = scr_read(ap, SCR_STATUS);
|
|
if (sata_dev_present(ap)) {
|
|
const char *speed;
|
|
u32 tmp;
|
|
|
|
tmp = (sstatus >> 4) & 0xf;
|
|
if (tmp & (1 << 0))
|
|
speed = "1.5";
|
|
else if (tmp & (1 << 1))
|
|
speed = "3.0";
|
|
else
|
|
speed = "<unknown>";
|
|
printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
|
|
ap->id, speed, sstatus);
|
|
ata_port_probe(ap);
|
|
} else {
|
|
printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
|
|
ap->id, sstatus);
|
|
ata_port_disable(ap);
|
|
}
|
|
|
|
if (ap->flags & ATA_FLAG_PORT_DISABLED)
|
|
return;
|
|
|
|
if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
|
|
ata_port_disable(ap);
|
|
return;
|
|
}
|
|
|
|
ap->cbl = ATA_CBL_SATA;
|
|
}
|
|
|
|
/**
|
|
* sata_phy_reset - Reset SATA bus.
|
|
* @ap: SATA port associated with target SATA PHY.
|
|
*
|
|
* This function resets the SATA bus, and then probes
|
|
* the bus for devices.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
*/
|
|
void sata_phy_reset(struct ata_port *ap)
|
|
{
|
|
__sata_phy_reset(ap);
|
|
if (ap->flags & ATA_FLAG_PORT_DISABLED)
|
|
return;
|
|
ata_bus_reset(ap);
|
|
}
|
|
|
|
/**
|
|
* ata_port_disable - Disable port.
|
|
* @ap: Port to be disabled.
|
|
*
|
|
* Modify @ap data structure such that the system
|
|
* thinks that the entire port is disabled, and should
|
|
* never attempt to probe or communicate with devices
|
|
* on this port.
|
|
*
|
|
* LOCKING: host_set lock, or some other form of
|
|
* serialization.
|
|
*/
|
|
|
|
void ata_port_disable(struct ata_port *ap)
|
|
{
|
|
ap->device[0].class = ATA_DEV_NONE;
|
|
ap->device[1].class = ATA_DEV_NONE;
|
|
ap->flags |= ATA_FLAG_PORT_DISABLED;
|
|
}
|
|
|
|
/*
|
|
* This mode timing computation functionality is ported over from
|
|
* drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
|
|
*/
|
|
/*
|
|
* PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
|
|
* These were taken from ATA/ATAPI-6 standard, rev 0a, except
|
|
* for PIO 5, which is a nonstandard extension and UDMA6, which
|
|
* is currently supported only by Maxtor drives.
|
|
*/
|
|
|
|
static const struct ata_timing ata_timing[] = {
|
|
|
|
{ XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
|
|
{ XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
|
|
{ XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
|
|
{ XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
|
|
|
|
{ XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
|
|
{ XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
|
|
{ XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
|
|
|
|
/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
|
|
|
|
{ XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
|
|
{ XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
|
|
{ XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
|
|
|
|
{ XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
|
|
{ XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
|
|
{ XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
|
|
|
|
/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
|
|
{ XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
|
|
{ XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
|
|
|
|
{ XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
|
|
{ XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
|
|
{ XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
|
|
|
|
/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
|
|
|
|
{ 0xFF }
|
|
};
|
|
|
|
#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
|
|
#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
|
|
|
|
static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
|
|
{
|
|
q->setup = EZ(t->setup * 1000, T);
|
|
q->act8b = EZ(t->act8b * 1000, T);
|
|
q->rec8b = EZ(t->rec8b * 1000, T);
|
|
q->cyc8b = EZ(t->cyc8b * 1000, T);
|
|
q->active = EZ(t->active * 1000, T);
|
|
q->recover = EZ(t->recover * 1000, T);
|
|
q->cycle = EZ(t->cycle * 1000, T);
|
|
q->udma = EZ(t->udma * 1000, UT);
|
|
}
|
|
|
|
void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
|
|
struct ata_timing *m, unsigned int what)
|
|
{
|
|
if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
|
|
if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
|
|
if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
|
|
if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
|
|
if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
|
|
if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
|
|
if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
|
|
if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
|
|
}
|
|
|
|
static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
|
|
{
|
|
const struct ata_timing *t;
|
|
|
|
for (t = ata_timing; t->mode != speed; t++)
|
|
if (t->mode == 0xFF)
|
|
return NULL;
|
|
return t;
|
|
}
|
|
|
|
int ata_timing_compute(struct ata_device *adev, unsigned short speed,
|
|
struct ata_timing *t, int T, int UT)
|
|
{
|
|
const struct ata_timing *s;
|
|
struct ata_timing p;
|
|
|
|
/*
|
|
* Find the mode.
|
|
*/
|
|
|
|
if (!(s = ata_timing_find_mode(speed)))
|
|
return -EINVAL;
|
|
|
|
memcpy(t, s, sizeof(*s));
|
|
|
|
/*
|
|
* If the drive is an EIDE drive, it can tell us it needs extended
|
|
* PIO/MW_DMA cycle timing.
|
|
*/
|
|
|
|
if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
|
|
memset(&p, 0, sizeof(p));
|
|
if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
|
|
if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
|
|
else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
|
|
} else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
|
|
p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
|
|
}
|
|
ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
|
|
}
|
|
|
|
/*
|
|
* Convert the timing to bus clock counts.
|
|
*/
|
|
|
|
ata_timing_quantize(t, t, T, UT);
|
|
|
|
/*
|
|
* Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
|
|
* and some other commands. We have to ensure that the DMA cycle timing is
|
|
* slower/equal than the fastest PIO timing.
|
|
*/
|
|
|
|
if (speed > XFER_PIO_4) {
|
|
ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
|
|
ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
|
|
}
|
|
|
|
/*
|
|
* Lenghten active & recovery time so that cycle time is correct.
|
|
*/
|
|
|
|
if (t->act8b + t->rec8b < t->cyc8b) {
|
|
t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
|
|
t->rec8b = t->cyc8b - t->act8b;
|
|
}
|
|
|
|
if (t->active + t->recover < t->cycle) {
|
|
t->active += (t->cycle - (t->active + t->recover)) / 2;
|
|
t->recover = t->cycle - t->active;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct {
|
|
unsigned int shift;
|
|
u8 base;
|
|
} xfer_mode_classes[] = {
|
|
{ ATA_SHIFT_UDMA, XFER_UDMA_0 },
|
|
{ ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
|
|
{ ATA_SHIFT_PIO, XFER_PIO_0 },
|
|
};
|
|
|
|
static u8 base_from_shift(unsigned int shift)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
|
|
if (xfer_mode_classes[i].shift == shift)
|
|
return xfer_mode_classes[i].base;
|
|
|
|
return 0xff;
|
|
}
|
|
|
|
static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
int ofs, idx;
|
|
u8 base;
|
|
|
|
if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
|
|
return;
|
|
|
|
if (dev->xfer_shift == ATA_SHIFT_PIO)
|
|
dev->flags |= ATA_DFLAG_PIO;
|
|
|
|
ata_dev_set_xfermode(ap, dev);
|
|
|
|
base = base_from_shift(dev->xfer_shift);
|
|
ofs = dev->xfer_mode - base;
|
|
idx = ofs + dev->xfer_shift;
|
|
WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
|
|
|
|
DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
|
|
idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
|
|
|
|
printk(KERN_INFO "ata%u: dev %u configured for %s\n",
|
|
ap->id, dev->devno, xfer_mode_str[idx]);
|
|
}
|
|
|
|
static int ata_host_set_pio(struct ata_port *ap)
|
|
{
|
|
unsigned int mask;
|
|
int x, i;
|
|
u8 base, xfer_mode;
|
|
|
|
mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
|
|
x = fgb(mask);
|
|
if (x < 0) {
|
|
printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
|
|
return -1;
|
|
}
|
|
|
|
base = base_from_shift(ATA_SHIFT_PIO);
|
|
xfer_mode = base + x;
|
|
|
|
DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
|
|
(int)base, (int)xfer_mode, mask, x);
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
struct ata_device *dev = &ap->device[i];
|
|
if (ata_dev_present(dev)) {
|
|
dev->pio_mode = xfer_mode;
|
|
dev->xfer_mode = xfer_mode;
|
|
dev->xfer_shift = ATA_SHIFT_PIO;
|
|
if (ap->ops->set_piomode)
|
|
ap->ops->set_piomode(ap, dev);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
|
|
unsigned int xfer_shift)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++) {
|
|
struct ata_device *dev = &ap->device[i];
|
|
if (ata_dev_present(dev)) {
|
|
dev->dma_mode = xfer_mode;
|
|
dev->xfer_mode = xfer_mode;
|
|
dev->xfer_shift = xfer_shift;
|
|
if (ap->ops->set_dmamode)
|
|
ap->ops->set_dmamode(ap, dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_set_mode - Program timings and issue SET FEATURES - XFER
|
|
* @ap: port on which timings will be programmed
|
|
*
|
|
* Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
*/
|
|
static void ata_set_mode(struct ata_port *ap)
|
|
{
|
|
unsigned int xfer_shift;
|
|
u8 xfer_mode;
|
|
int rc;
|
|
|
|
/* step 1: always set host PIO timings */
|
|
rc = ata_host_set_pio(ap);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
/* step 2: choose the best data xfer mode */
|
|
xfer_mode = xfer_shift = 0;
|
|
rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
/* step 3: if that xfer mode isn't PIO, set host DMA timings */
|
|
if (xfer_shift != ATA_SHIFT_PIO)
|
|
ata_host_set_dma(ap, xfer_mode, xfer_shift);
|
|
|
|
/* step 4: update devices' xfer mode */
|
|
ata_dev_set_mode(ap, &ap->device[0]);
|
|
ata_dev_set_mode(ap, &ap->device[1]);
|
|
|
|
if (ap->flags & ATA_FLAG_PORT_DISABLED)
|
|
return;
|
|
|
|
if (ap->ops->post_set_mode)
|
|
ap->ops->post_set_mode(ap);
|
|
|
|
return;
|
|
|
|
err_out:
|
|
ata_port_disable(ap);
|
|
}
|
|
|
|
/**
|
|
* ata_busy_sleep - sleep until BSY clears, or timeout
|
|
* @ap: port containing status register to be polled
|
|
* @tmout_pat: impatience timeout
|
|
* @tmout: overall timeout
|
|
*
|
|
* Sleep until ATA Status register bit BSY clears,
|
|
* or a timeout occurs.
|
|
*
|
|
* LOCKING: None.
|
|
*
|
|
*/
|
|
|
|
static unsigned int ata_busy_sleep (struct ata_port *ap,
|
|
unsigned long tmout_pat,
|
|
unsigned long tmout)
|
|
{
|
|
unsigned long timer_start, timeout;
|
|
u8 status;
|
|
|
|
status = ata_busy_wait(ap, ATA_BUSY, 300);
|
|
timer_start = jiffies;
|
|
timeout = timer_start + tmout_pat;
|
|
while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
|
|
msleep(50);
|
|
status = ata_busy_wait(ap, ATA_BUSY, 3);
|
|
}
|
|
|
|
if (status & ATA_BUSY)
|
|
printk(KERN_WARNING "ata%u is slow to respond, "
|
|
"please be patient\n", ap->id);
|
|
|
|
timeout = timer_start + tmout;
|
|
while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
|
|
msleep(50);
|
|
status = ata_chk_status(ap);
|
|
}
|
|
|
|
if (status & ATA_BUSY) {
|
|
printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
|
|
ap->id, tmout / HZ);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int dev0 = devmask & (1 << 0);
|
|
unsigned int dev1 = devmask & (1 << 1);
|
|
unsigned long timeout;
|
|
|
|
/* if device 0 was found in ata_devchk, wait for its
|
|
* BSY bit to clear
|
|
*/
|
|
if (dev0)
|
|
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
|
|
|
|
/* if device 1 was found in ata_devchk, wait for
|
|
* register access, then wait for BSY to clear
|
|
*/
|
|
timeout = jiffies + ATA_TMOUT_BOOT;
|
|
while (dev1) {
|
|
u8 nsect, lbal;
|
|
|
|
ap->ops->dev_select(ap, 1);
|
|
if (ap->flags & ATA_FLAG_MMIO) {
|
|
nsect = readb((void __iomem *) ioaddr->nsect_addr);
|
|
lbal = readb((void __iomem *) ioaddr->lbal_addr);
|
|
} else {
|
|
nsect = inb(ioaddr->nsect_addr);
|
|
lbal = inb(ioaddr->lbal_addr);
|
|
}
|
|
if ((nsect == 1) && (lbal == 1))
|
|
break;
|
|
if (time_after(jiffies, timeout)) {
|
|
dev1 = 0;
|
|
break;
|
|
}
|
|
msleep(50); /* give drive a breather */
|
|
}
|
|
if (dev1)
|
|
ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
|
|
|
|
/* is all this really necessary? */
|
|
ap->ops->dev_select(ap, 0);
|
|
if (dev1)
|
|
ap->ops->dev_select(ap, 1);
|
|
if (dev0)
|
|
ap->ops->dev_select(ap, 0);
|
|
}
|
|
|
|
/**
|
|
* ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
|
|
* @ap: Port to reset and probe
|
|
*
|
|
* Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
|
|
* probe the bus. Not often used these days.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
* Obtains host_set lock.
|
|
*
|
|
*/
|
|
|
|
static unsigned int ata_bus_edd(struct ata_port *ap)
|
|
{
|
|
struct ata_taskfile tf;
|
|
unsigned long flags;
|
|
|
|
/* set up execute-device-diag (bus reset) taskfile */
|
|
/* also, take interrupts to a known state (disabled) */
|
|
DPRINTK("execute-device-diag\n");
|
|
ata_tf_init(ap, &tf, 0);
|
|
tf.ctl |= ATA_NIEN;
|
|
tf.command = ATA_CMD_EDD;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
|
|
/* do bus reset */
|
|
spin_lock_irqsave(&ap->host_set->lock, flags);
|
|
ata_tf_to_host(ap, &tf);
|
|
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
|
|
|
/* spec says at least 2ms. but who knows with those
|
|
* crazy ATAPI devices...
|
|
*/
|
|
msleep(150);
|
|
|
|
return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
|
|
}
|
|
|
|
static unsigned int ata_bus_softreset(struct ata_port *ap,
|
|
unsigned int devmask)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
DPRINTK("ata%u: bus reset via SRST\n", ap->id);
|
|
|
|
/* software reset. causes dev0 to be selected */
|
|
if (ap->flags & ATA_FLAG_MMIO) {
|
|
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
|
|
udelay(20); /* FIXME: flush */
|
|
writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
|
|
udelay(20); /* FIXME: flush */
|
|
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
|
|
} else {
|
|
outb(ap->ctl, ioaddr->ctl_addr);
|
|
udelay(10);
|
|
outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
|
|
udelay(10);
|
|
outb(ap->ctl, ioaddr->ctl_addr);
|
|
}
|
|
|
|
/* spec mandates ">= 2ms" before checking status.
|
|
* We wait 150ms, because that was the magic delay used for
|
|
* ATAPI devices in Hale Landis's ATADRVR, for the period of time
|
|
* between when the ATA command register is written, and then
|
|
* status is checked. Because waiting for "a while" before
|
|
* checking status is fine, post SRST, we perform this magic
|
|
* delay here as well.
|
|
*/
|
|
msleep(150);
|
|
|
|
ata_bus_post_reset(ap, devmask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_bus_reset - reset host port and associated ATA channel
|
|
* @ap: port to reset
|
|
*
|
|
* This is typically the first time we actually start issuing
|
|
* commands to the ATA channel. We wait for BSY to clear, then
|
|
* issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
|
|
* result. Determine what devices, if any, are on the channel
|
|
* by looking at the device 0/1 error register. Look at the signature
|
|
* stored in each device's taskfile registers, to determine if
|
|
* the device is ATA or ATAPI.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
* Obtains host_set lock.
|
|
*
|
|
* SIDE EFFECTS:
|
|
* Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
|
|
*/
|
|
|
|
void ata_bus_reset(struct ata_port *ap)
|
|
{
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
|
|
u8 err;
|
|
unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
|
|
|
|
DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
|
|
|
|
/* determine if device 0/1 are present */
|
|
if (ap->flags & ATA_FLAG_SATA_RESET)
|
|
dev0 = 1;
|
|
else {
|
|
dev0 = ata_devchk(ap, 0);
|
|
if (slave_possible)
|
|
dev1 = ata_devchk(ap, 1);
|
|
}
|
|
|
|
if (dev0)
|
|
devmask |= (1 << 0);
|
|
if (dev1)
|
|
devmask |= (1 << 1);
|
|
|
|
/* select device 0 again */
|
|
ap->ops->dev_select(ap, 0);
|
|
|
|
/* issue bus reset */
|
|
if (ap->flags & ATA_FLAG_SRST)
|
|
rc = ata_bus_softreset(ap, devmask);
|
|
else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
|
|
/* set up device control */
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
|
|
else
|
|
outb(ap->ctl, ioaddr->ctl_addr);
|
|
rc = ata_bus_edd(ap);
|
|
}
|
|
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
/*
|
|
* determine by signature whether we have ATA or ATAPI devices
|
|
*/
|
|
err = ata_dev_try_classify(ap, 0);
|
|
if ((slave_possible) && (err != 0x81))
|
|
ata_dev_try_classify(ap, 1);
|
|
|
|
/* re-enable interrupts */
|
|
if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
|
|
ata_irq_on(ap);
|
|
|
|
/* is double-select really necessary? */
|
|
if (ap->device[1].class != ATA_DEV_NONE)
|
|
ap->ops->dev_select(ap, 1);
|
|
if (ap->device[0].class != ATA_DEV_NONE)
|
|
ap->ops->dev_select(ap, 0);
|
|
|
|
/* if no devices were detected, disable this port */
|
|
if ((ap->device[0].class == ATA_DEV_NONE) &&
|
|
(ap->device[1].class == ATA_DEV_NONE))
|
|
goto err_out;
|
|
|
|
if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
|
|
/* set up device control for ATA_FLAG_SATA_RESET */
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
|
|
else
|
|
outb(ap->ctl, ioaddr->ctl_addr);
|
|
}
|
|
|
|
DPRINTK("EXIT\n");
|
|
return;
|
|
|
|
err_out:
|
|
printk(KERN_ERR "ata%u: disabling port\n", ap->id);
|
|
ap->ops->port_disable(ap);
|
|
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
static void ata_pr_blacklisted(const struct ata_port *ap,
|
|
const struct ata_device *dev)
|
|
{
|
|
printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
|
|
ap->id, dev->devno);
|
|
}
|
|
|
|
static const char * const ata_dma_blacklist [] = {
|
|
"WDC AC11000H",
|
|
"WDC AC22100H",
|
|
"WDC AC32500H",
|
|
"WDC AC33100H",
|
|
"WDC AC31600H",
|
|
"WDC AC32100H",
|
|
"WDC AC23200L",
|
|
"Compaq CRD-8241B",
|
|
"CRD-8400B",
|
|
"CRD-8480B",
|
|
"CRD-8482B",
|
|
"CRD-84",
|
|
"SanDisk SDP3B",
|
|
"SanDisk SDP3B-64",
|
|
"SANYO CD-ROM CRD",
|
|
"HITACHI CDR-8",
|
|
"HITACHI CDR-8335",
|
|
"HITACHI CDR-8435",
|
|
"Toshiba CD-ROM XM-6202B",
|
|
"TOSHIBA CD-ROM XM-1702BC",
|
|
"CD-532E-A",
|
|
"E-IDE CD-ROM CR-840",
|
|
"CD-ROM Drive/F5A",
|
|
"WPI CDD-820",
|
|
"SAMSUNG CD-ROM SC-148C",
|
|
"SAMSUNG CD-ROM SC",
|
|
"SanDisk SDP3B-64",
|
|
"ATAPI CD-ROM DRIVE 40X MAXIMUM",
|
|
"_NEC DV5800A",
|
|
};
|
|
|
|
static int ata_dma_blacklisted(const struct ata_device *dev)
|
|
{
|
|
unsigned char model_num[40];
|
|
char *s;
|
|
unsigned int len;
|
|
int i;
|
|
|
|
ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
|
|
sizeof(model_num));
|
|
s = &model_num[0];
|
|
len = strnlen(s, sizeof(model_num));
|
|
|
|
/* ATAPI specifies that empty space is blank-filled; remove blanks */
|
|
while ((len > 0) && (s[len - 1] == ' ')) {
|
|
len--;
|
|
s[len] = 0;
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
|
|
if (!strncmp(ata_dma_blacklist[i], s, len))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
|
|
{
|
|
const struct ata_device *master, *slave;
|
|
unsigned int mask;
|
|
|
|
master = &ap->device[0];
|
|
slave = &ap->device[1];
|
|
|
|
assert (ata_dev_present(master) || ata_dev_present(slave));
|
|
|
|
if (shift == ATA_SHIFT_UDMA) {
|
|
mask = ap->udma_mask;
|
|
if (ata_dev_present(master)) {
|
|
mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
|
|
if (ata_dma_blacklisted(master)) {
|
|
mask = 0;
|
|
ata_pr_blacklisted(ap, master);
|
|
}
|
|
}
|
|
if (ata_dev_present(slave)) {
|
|
mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
|
|
if (ata_dma_blacklisted(slave)) {
|
|
mask = 0;
|
|
ata_pr_blacklisted(ap, slave);
|
|
}
|
|
}
|
|
}
|
|
else if (shift == ATA_SHIFT_MWDMA) {
|
|
mask = ap->mwdma_mask;
|
|
if (ata_dev_present(master)) {
|
|
mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
|
|
if (ata_dma_blacklisted(master)) {
|
|
mask = 0;
|
|
ata_pr_blacklisted(ap, master);
|
|
}
|
|
}
|
|
if (ata_dev_present(slave)) {
|
|
mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
|
|
if (ata_dma_blacklisted(slave)) {
|
|
mask = 0;
|
|
ata_pr_blacklisted(ap, slave);
|
|
}
|
|
}
|
|
}
|
|
else if (shift == ATA_SHIFT_PIO) {
|
|
mask = ap->pio_mask;
|
|
if (ata_dev_present(master)) {
|
|
/* spec doesn't return explicit support for
|
|
* PIO0-2, so we fake it
|
|
*/
|
|
u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
|
|
tmp_mode <<= 3;
|
|
tmp_mode |= 0x7;
|
|
mask &= tmp_mode;
|
|
}
|
|
if (ata_dev_present(slave)) {
|
|
/* spec doesn't return explicit support for
|
|
* PIO0-2, so we fake it
|
|
*/
|
|
u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
|
|
tmp_mode <<= 3;
|
|
tmp_mode |= 0x7;
|
|
mask &= tmp_mode;
|
|
}
|
|
}
|
|
else {
|
|
mask = 0xffffffff; /* shut up compiler warning */
|
|
BUG();
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
/* find greatest bit */
|
|
static int fgb(u32 bitmap)
|
|
{
|
|
unsigned int i;
|
|
int x = -1;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
if (bitmap & (1 << i))
|
|
x = i;
|
|
|
|
return x;
|
|
}
|
|
|
|
/**
|
|
* ata_choose_xfer_mode - attempt to find best transfer mode
|
|
* @ap: Port for which an xfer mode will be selected
|
|
* @xfer_mode_out: (output) SET FEATURES - XFER MODE code
|
|
* @xfer_shift_out: (output) bit shift that selects this mode
|
|
*
|
|
* Based on host and device capabilities, determine the
|
|
* maximum transfer mode that is amenable to all.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on error.
|
|
*/
|
|
|
|
static int ata_choose_xfer_mode(const struct ata_port *ap,
|
|
u8 *xfer_mode_out,
|
|
unsigned int *xfer_shift_out)
|
|
{
|
|
unsigned int mask, shift;
|
|
int x, i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
|
|
shift = xfer_mode_classes[i].shift;
|
|
mask = ata_get_mode_mask(ap, shift);
|
|
|
|
x = fgb(mask);
|
|
if (x >= 0) {
|
|
*xfer_mode_out = xfer_mode_classes[i].base + x;
|
|
*xfer_shift_out = shift;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
|
|
* @ap: Port associated with device @dev
|
|
* @dev: Device to which command will be sent
|
|
*
|
|
* Issue SET FEATURES - XFER MODE command to device @dev
|
|
* on port @ap.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*/
|
|
|
|
static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
struct ata_taskfile tf;
|
|
|
|
/* set up set-features taskfile */
|
|
DPRINTK("set features - xfer mode\n");
|
|
|
|
ata_tf_init(ap, &tf, dev->devno);
|
|
tf.command = ATA_CMD_SET_FEATURES;
|
|
tf.feature = SETFEATURES_XFER;
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
tf.nsect = dev->xfer_mode;
|
|
|
|
if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
|
|
printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
|
|
ap->id);
|
|
ata_port_disable(ap);
|
|
}
|
|
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* ata_dev_reread_id - Reread the device identify device info
|
|
* @ap: port where the device is
|
|
* @dev: device to reread the identify device info
|
|
*
|
|
* LOCKING:
|
|
*/
|
|
|
|
static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
struct ata_taskfile tf;
|
|
|
|
ata_tf_init(ap, &tf, dev->devno);
|
|
|
|
if (dev->class == ATA_DEV_ATA) {
|
|
tf.command = ATA_CMD_ID_ATA;
|
|
DPRINTK("do ATA identify\n");
|
|
} else {
|
|
tf.command = ATA_CMD_ID_ATAPI;
|
|
DPRINTK("do ATAPI identify\n");
|
|
}
|
|
|
|
tf.flags |= ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_PIO;
|
|
|
|
if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
|
|
dev->id, sizeof(dev->id)))
|
|
goto err_out;
|
|
|
|
swap_buf_le16(dev->id, ATA_ID_WORDS);
|
|
|
|
ata_dump_id(dev);
|
|
|
|
DPRINTK("EXIT\n");
|
|
|
|
return;
|
|
err_out:
|
|
printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
|
|
ata_port_disable(ap);
|
|
}
|
|
|
|
/**
|
|
* ata_dev_init_params - Issue INIT DEV PARAMS command
|
|
* @ap: Port associated with device @dev
|
|
* @dev: Device to which command will be sent
|
|
*
|
|
* LOCKING:
|
|
*/
|
|
|
|
static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
struct ata_taskfile tf;
|
|
u16 sectors = dev->id[6];
|
|
u16 heads = dev->id[3];
|
|
|
|
/* Number of sectors per track 1-255. Number of heads 1-16 */
|
|
if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
|
|
return;
|
|
|
|
/* set up init dev params taskfile */
|
|
DPRINTK("init dev params \n");
|
|
|
|
ata_tf_init(ap, &tf, dev->devno);
|
|
tf.command = ATA_CMD_INIT_DEV_PARAMS;
|
|
tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
tf.nsect = sectors;
|
|
tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
|
|
|
|
if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
|
|
printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
|
|
ap->id);
|
|
ata_port_disable(ap);
|
|
}
|
|
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* ata_sg_clean - Unmap DMA memory associated with command
|
|
* @qc: Command containing DMA memory to be released
|
|
*
|
|
* Unmap all mapped DMA memory associated with this command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
static void ata_sg_clean(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct scatterlist *sg = qc->__sg;
|
|
int dir = qc->dma_dir;
|
|
void *pad_buf = NULL;
|
|
|
|
assert(qc->flags & ATA_QCFLAG_DMAMAP);
|
|
assert(sg != NULL);
|
|
|
|
if (qc->flags & ATA_QCFLAG_SINGLE)
|
|
assert(qc->n_elem == 1);
|
|
|
|
VPRINTK("unmapping %u sg elements\n", qc->n_elem);
|
|
|
|
/* if we padded the buffer out to 32-bit bound, and data
|
|
* xfer direction is from-device, we must copy from the
|
|
* pad buffer back into the supplied buffer
|
|
*/
|
|
if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
|
|
pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
|
|
|
|
if (qc->flags & ATA_QCFLAG_SG) {
|
|
if (qc->n_elem)
|
|
dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
|
|
/* restore last sg */
|
|
sg[qc->orig_n_elem - 1].length += qc->pad_len;
|
|
if (pad_buf) {
|
|
struct scatterlist *psg = &qc->pad_sgent;
|
|
void *addr = kmap_atomic(psg->page, KM_IRQ0);
|
|
memcpy(addr + psg->offset, pad_buf, qc->pad_len);
|
|
kunmap_atomic(addr, KM_IRQ0);
|
|
}
|
|
} else {
|
|
if (sg_dma_len(&sg[0]) > 0)
|
|
dma_unmap_single(ap->host_set->dev,
|
|
sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
|
|
dir);
|
|
/* restore sg */
|
|
sg->length += qc->pad_len;
|
|
if (pad_buf)
|
|
memcpy(qc->buf_virt + sg->length - qc->pad_len,
|
|
pad_buf, qc->pad_len);
|
|
}
|
|
|
|
qc->flags &= ~ATA_QCFLAG_DMAMAP;
|
|
qc->__sg = NULL;
|
|
}
|
|
|
|
/**
|
|
* ata_fill_sg - Fill PCI IDE PRD table
|
|
* @qc: Metadata associated with taskfile to be transferred
|
|
*
|
|
* Fill PCI IDE PRD (scatter-gather) table with segments
|
|
* associated with the current disk command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*
|
|
*/
|
|
static void ata_fill_sg(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct scatterlist *sg;
|
|
unsigned int idx;
|
|
|
|
assert(qc->__sg != NULL);
|
|
assert(qc->n_elem > 0);
|
|
|
|
idx = 0;
|
|
ata_for_each_sg(sg, qc) {
|
|
u32 addr, offset;
|
|
u32 sg_len, len;
|
|
|
|
/* determine if physical DMA addr spans 64K boundary.
|
|
* Note h/w doesn't support 64-bit, so we unconditionally
|
|
* truncate dma_addr_t to u32.
|
|
*/
|
|
addr = (u32) sg_dma_address(sg);
|
|
sg_len = sg_dma_len(sg);
|
|
|
|
while (sg_len) {
|
|
offset = addr & 0xffff;
|
|
len = sg_len;
|
|
if ((offset + sg_len) > 0x10000)
|
|
len = 0x10000 - offset;
|
|
|
|
ap->prd[idx].addr = cpu_to_le32(addr);
|
|
ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
|
|
VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
|
|
|
|
idx++;
|
|
sg_len -= len;
|
|
addr += len;
|
|
}
|
|
}
|
|
|
|
if (idx)
|
|
ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
|
|
}
|
|
/**
|
|
* ata_check_atapi_dma - Check whether ATAPI DMA can be supported
|
|
* @qc: Metadata associated with taskfile to check
|
|
*
|
|
* Allow low-level driver to filter ATA PACKET commands, returning
|
|
* a status indicating whether or not it is OK to use DMA for the
|
|
* supplied PACKET command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*
|
|
* RETURNS: 0 when ATAPI DMA can be used
|
|
* nonzero otherwise
|
|
*/
|
|
int ata_check_atapi_dma(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
int rc = 0; /* Assume ATAPI DMA is OK by default */
|
|
|
|
if (ap->ops->check_atapi_dma)
|
|
rc = ap->ops->check_atapi_dma(qc);
|
|
|
|
return rc;
|
|
}
|
|
/**
|
|
* ata_qc_prep - Prepare taskfile for submission
|
|
* @qc: Metadata associated with taskfile to be prepared
|
|
*
|
|
* Prepare ATA taskfile for submission.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
void ata_qc_prep(struct ata_queued_cmd *qc)
|
|
{
|
|
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
return;
|
|
|
|
ata_fill_sg(qc);
|
|
}
|
|
|
|
/**
|
|
* ata_sg_init_one - Associate command with memory buffer
|
|
* @qc: Command to be associated
|
|
* @buf: Memory buffer
|
|
* @buflen: Length of memory buffer, in bytes.
|
|
*
|
|
* Initialize the data-related elements of queued_cmd @qc
|
|
* to point to a single memory buffer, @buf of byte length @buflen.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
|
|
{
|
|
struct scatterlist *sg;
|
|
|
|
qc->flags |= ATA_QCFLAG_SINGLE;
|
|
|
|
memset(&qc->sgent, 0, sizeof(qc->sgent));
|
|
qc->__sg = &qc->sgent;
|
|
qc->n_elem = 1;
|
|
qc->orig_n_elem = 1;
|
|
qc->buf_virt = buf;
|
|
|
|
sg = qc->__sg;
|
|
sg_init_one(sg, buf, buflen);
|
|
}
|
|
|
|
/**
|
|
* ata_sg_init - Associate command with scatter-gather table.
|
|
* @qc: Command to be associated
|
|
* @sg: Scatter-gather table.
|
|
* @n_elem: Number of elements in s/g table.
|
|
*
|
|
* Initialize the data-related elements of queued_cmd @qc
|
|
* to point to a scatter-gather table @sg, containing @n_elem
|
|
* elements.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
|
|
unsigned int n_elem)
|
|
{
|
|
qc->flags |= ATA_QCFLAG_SG;
|
|
qc->__sg = sg;
|
|
qc->n_elem = n_elem;
|
|
qc->orig_n_elem = n_elem;
|
|
}
|
|
|
|
/**
|
|
* ata_sg_setup_one - DMA-map the memory buffer associated with a command.
|
|
* @qc: Command with memory buffer to be mapped.
|
|
*
|
|
* DMA-map the memory buffer associated with queued_cmd @qc.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on error.
|
|
*/
|
|
|
|
static int ata_sg_setup_one(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
int dir = qc->dma_dir;
|
|
struct scatterlist *sg = qc->__sg;
|
|
dma_addr_t dma_address;
|
|
|
|
/* we must lengthen transfers to end on a 32-bit boundary */
|
|
qc->pad_len = sg->length & 3;
|
|
if (qc->pad_len) {
|
|
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
|
|
struct scatterlist *psg = &qc->pad_sgent;
|
|
|
|
assert(qc->dev->class == ATA_DEV_ATAPI);
|
|
|
|
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_WRITE)
|
|
memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
|
|
qc->pad_len);
|
|
|
|
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
|
|
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
|
|
/* trim sg */
|
|
sg->length -= qc->pad_len;
|
|
|
|
DPRINTK("padding done, sg->length=%u pad_len=%u\n",
|
|
sg->length, qc->pad_len);
|
|
}
|
|
|
|
if (!sg->length) {
|
|
sg_dma_address(sg) = 0;
|
|
goto skip_map;
|
|
}
|
|
|
|
dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
|
|
sg->length, dir);
|
|
if (dma_mapping_error(dma_address)) {
|
|
/* restore sg */
|
|
sg->length += qc->pad_len;
|
|
return -1;
|
|
}
|
|
|
|
sg_dma_address(sg) = dma_address;
|
|
skip_map:
|
|
sg_dma_len(sg) = sg->length;
|
|
|
|
DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
|
|
qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_sg_setup - DMA-map the scatter-gather table associated with a command.
|
|
* @qc: Command with scatter-gather table to be mapped.
|
|
*
|
|
* DMA-map the scatter-gather table associated with queued_cmd @qc.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on error.
|
|
*
|
|
*/
|
|
|
|
static int ata_sg_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct scatterlist *sg = qc->__sg;
|
|
struct scatterlist *lsg = &sg[qc->n_elem - 1];
|
|
int n_elem, pre_n_elem, dir, trim_sg = 0;
|
|
|
|
VPRINTK("ENTER, ata%u\n", ap->id);
|
|
assert(qc->flags & ATA_QCFLAG_SG);
|
|
|
|
/* we must lengthen transfers to end on a 32-bit boundary */
|
|
qc->pad_len = lsg->length & 3;
|
|
if (qc->pad_len) {
|
|
void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
|
|
struct scatterlist *psg = &qc->pad_sgent;
|
|
unsigned int offset;
|
|
|
|
assert(qc->dev->class == ATA_DEV_ATAPI);
|
|
|
|
memset(pad_buf, 0, ATA_DMA_PAD_SZ);
|
|
|
|
/*
|
|
* psg->page/offset are used to copy to-be-written
|
|
* data in this function or read data in ata_sg_clean.
|
|
*/
|
|
offset = lsg->offset + lsg->length - qc->pad_len;
|
|
psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
|
|
psg->offset = offset_in_page(offset);
|
|
|
|
if (qc->tf.flags & ATA_TFLAG_WRITE) {
|
|
void *addr = kmap_atomic(psg->page, KM_IRQ0);
|
|
memcpy(pad_buf, addr + psg->offset, qc->pad_len);
|
|
kunmap_atomic(addr, KM_IRQ0);
|
|
}
|
|
|
|
sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
|
|
sg_dma_len(psg) = ATA_DMA_PAD_SZ;
|
|
/* trim last sg */
|
|
lsg->length -= qc->pad_len;
|
|
if (lsg->length == 0)
|
|
trim_sg = 1;
|
|
|
|
DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
|
|
qc->n_elem - 1, lsg->length, qc->pad_len);
|
|
}
|
|
|
|
pre_n_elem = qc->n_elem;
|
|
if (trim_sg && pre_n_elem)
|
|
pre_n_elem--;
|
|
|
|
if (!pre_n_elem) {
|
|
n_elem = 0;
|
|
goto skip_map;
|
|
}
|
|
|
|
dir = qc->dma_dir;
|
|
n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
|
|
if (n_elem < 1) {
|
|
/* restore last sg */
|
|
lsg->length += qc->pad_len;
|
|
return -1;
|
|
}
|
|
|
|
DPRINTK("%d sg elements mapped\n", n_elem);
|
|
|
|
skip_map:
|
|
qc->n_elem = n_elem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_poll_qc_complete - turn irq back on and finish qc
|
|
* @qc: Command to complete
|
|
* @err_mask: ATA status register content
|
|
*
|
|
* LOCKING:
|
|
* None. (grabs host lock)
|
|
*/
|
|
|
|
void ata_poll_qc_complete(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ap->host_set->lock, flags);
|
|
ap->flags &= ~ATA_FLAG_NOINTR;
|
|
ata_irq_on(ap);
|
|
ata_qc_complete(qc);
|
|
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* ata_pio_poll -
|
|
* @ap: the target ata_port
|
|
*
|
|
* LOCKING:
|
|
* None. (executing in kernel thread context)
|
|
*
|
|
* RETURNS:
|
|
* timeout value to use
|
|
*/
|
|
|
|
static unsigned long ata_pio_poll(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
u8 status;
|
|
unsigned int poll_state = HSM_ST_UNKNOWN;
|
|
unsigned int reg_state = HSM_ST_UNKNOWN;
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
assert(qc != NULL);
|
|
|
|
switch (ap->hsm_task_state) {
|
|
case HSM_ST:
|
|
case HSM_ST_POLL:
|
|
poll_state = HSM_ST_POLL;
|
|
reg_state = HSM_ST;
|
|
break;
|
|
case HSM_ST_LAST:
|
|
case HSM_ST_LAST_POLL:
|
|
poll_state = HSM_ST_LAST_POLL;
|
|
reg_state = HSM_ST_LAST;
|
|
break;
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
status = ata_chk_status(ap);
|
|
if (status & ATA_BUSY) {
|
|
if (time_after(jiffies, ap->pio_task_timeout)) {
|
|
qc->err_mask |= AC_ERR_ATA_BUS;
|
|
ap->hsm_task_state = HSM_ST_TMOUT;
|
|
return 0;
|
|
}
|
|
ap->hsm_task_state = poll_state;
|
|
return ATA_SHORT_PAUSE;
|
|
}
|
|
|
|
ap->hsm_task_state = reg_state;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_pio_complete - check if drive is busy or idle
|
|
* @ap: the target ata_port
|
|
*
|
|
* LOCKING:
|
|
* None. (executing in kernel thread context)
|
|
*
|
|
* RETURNS:
|
|
* Non-zero if qc completed, zero otherwise.
|
|
*/
|
|
|
|
static int ata_pio_complete (struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
u8 drv_stat;
|
|
|
|
/*
|
|
* This is purely heuristic. This is a fast path. Sometimes when
|
|
* we enter, BSY will be cleared in a chk-status or two. If not,
|
|
* the drive is probably seeking or something. Snooze for a couple
|
|
* msecs, then chk-status again. If still busy, fall back to
|
|
* HSM_ST_POLL state.
|
|
*/
|
|
drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
|
|
if (drv_stat & ATA_BUSY) {
|
|
msleep(2);
|
|
drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
|
|
if (drv_stat & ATA_BUSY) {
|
|
ap->hsm_task_state = HSM_ST_LAST_POLL;
|
|
ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
assert(qc != NULL);
|
|
|
|
drv_stat = ata_wait_idle(ap);
|
|
if (!ata_ok(drv_stat)) {
|
|
qc->err_mask |= __ac_err_mask(drv_stat);
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
return 0;
|
|
}
|
|
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
|
|
assert(qc->err_mask == 0);
|
|
ata_poll_qc_complete(qc);
|
|
|
|
/* another command may start at this point */
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* swap_buf_le16 - swap halves of 16-words in place
|
|
* @buf: Buffer to swap
|
|
* @buf_words: Number of 16-bit words in buffer.
|
|
*
|
|
* Swap halves of 16-bit words if needed to convert from
|
|
* little-endian byte order to native cpu byte order, or
|
|
* vice-versa.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
void swap_buf_le16(u16 *buf, unsigned int buf_words)
|
|
{
|
|
#ifdef __BIG_ENDIAN
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < buf_words; i++)
|
|
buf[i] = le16_to_cpu(buf[i]);
|
|
#endif /* __BIG_ENDIAN */
|
|
}
|
|
|
|
/**
|
|
* ata_mmio_data_xfer - Transfer data by MMIO
|
|
* @ap: port to read/write
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @write_data: read/write
|
|
*
|
|
* Transfer data from/to the device data register by MMIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
|
|
unsigned int buflen, int write_data)
|
|
{
|
|
unsigned int i;
|
|
unsigned int words = buflen >> 1;
|
|
u16 *buf16 = (u16 *) buf;
|
|
void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
|
|
|
|
/* Transfer multiple of 2 bytes */
|
|
if (write_data) {
|
|
for (i = 0; i < words; i++)
|
|
writew(le16_to_cpu(buf16[i]), mmio);
|
|
} else {
|
|
for (i = 0; i < words; i++)
|
|
buf16[i] = cpu_to_le16(readw(mmio));
|
|
}
|
|
|
|
/* Transfer trailing 1 byte, if any. */
|
|
if (unlikely(buflen & 0x01)) {
|
|
u16 align_buf[1] = { 0 };
|
|
unsigned char *trailing_buf = buf + buflen - 1;
|
|
|
|
if (write_data) {
|
|
memcpy(align_buf, trailing_buf, 1);
|
|
writew(le16_to_cpu(align_buf[0]), mmio);
|
|
} else {
|
|
align_buf[0] = cpu_to_le16(readw(mmio));
|
|
memcpy(trailing_buf, align_buf, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_pio_data_xfer - Transfer data by PIO
|
|
* @ap: port to read/write
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @write_data: read/write
|
|
*
|
|
* Transfer data from/to the device data register by PIO.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
|
|
unsigned int buflen, int write_data)
|
|
{
|
|
unsigned int words = buflen >> 1;
|
|
|
|
/* Transfer multiple of 2 bytes */
|
|
if (write_data)
|
|
outsw(ap->ioaddr.data_addr, buf, words);
|
|
else
|
|
insw(ap->ioaddr.data_addr, buf, words);
|
|
|
|
/* Transfer trailing 1 byte, if any. */
|
|
if (unlikely(buflen & 0x01)) {
|
|
u16 align_buf[1] = { 0 };
|
|
unsigned char *trailing_buf = buf + buflen - 1;
|
|
|
|
if (write_data) {
|
|
memcpy(align_buf, trailing_buf, 1);
|
|
outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
|
|
} else {
|
|
align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
|
|
memcpy(trailing_buf, align_buf, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_data_xfer - Transfer data from/to the data register.
|
|
* @ap: port to read/write
|
|
* @buf: data buffer
|
|
* @buflen: buffer length
|
|
* @do_write: read/write
|
|
*
|
|
* Transfer data from/to the device data register.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
|
|
unsigned int buflen, int do_write)
|
|
{
|
|
/* Make the crap hardware pay the costs not the good stuff */
|
|
if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
|
|
unsigned long flags;
|
|
local_irq_save(flags);
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
ata_mmio_data_xfer(ap, buf, buflen, do_write);
|
|
else
|
|
ata_pio_data_xfer(ap, buf, buflen, do_write);
|
|
local_irq_restore(flags);
|
|
} else {
|
|
if (ap->flags & ATA_FLAG_MMIO)
|
|
ata_mmio_data_xfer(ap, buf, buflen, do_write);
|
|
else
|
|
ata_pio_data_xfer(ap, buf, buflen, do_write);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer ATA_SECT_SIZE of data from/to the ATA device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_pio_sector(struct ata_queued_cmd *qc)
|
|
{
|
|
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
struct scatterlist *sg = qc->__sg;
|
|
struct ata_port *ap = qc->ap;
|
|
struct page *page;
|
|
unsigned int offset;
|
|
unsigned char *buf;
|
|
|
|
if (qc->cursect == (qc->nsect - 1))
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
page = sg[qc->cursg].page;
|
|
offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
|
|
|
|
/* get the current page and offset */
|
|
page = nth_page(page, (offset >> PAGE_SHIFT));
|
|
offset %= PAGE_SIZE;
|
|
|
|
buf = kmap(page) + offset;
|
|
|
|
qc->cursect++;
|
|
qc->cursg_ofs++;
|
|
|
|
if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
|
|
qc->cursg++;
|
|
qc->cursg_ofs = 0;
|
|
}
|
|
|
|
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
/* do the actual data transfer */
|
|
do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
|
|
|
|
kunmap(page);
|
|
}
|
|
|
|
/**
|
|
* __atapi_pio_bytes - Transfer data from/to the ATAPI device.
|
|
* @qc: Command on going
|
|
* @bytes: number of bytes
|
|
*
|
|
* Transfer Transfer data from/to the ATAPI device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*
|
|
*/
|
|
|
|
static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
|
|
{
|
|
int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
struct scatterlist *sg = qc->__sg;
|
|
struct ata_port *ap = qc->ap;
|
|
struct page *page;
|
|
unsigned char *buf;
|
|
unsigned int offset, count;
|
|
|
|
if (qc->curbytes + bytes >= qc->nbytes)
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
|
|
next_sg:
|
|
if (unlikely(qc->cursg >= qc->n_elem)) {
|
|
/*
|
|
* The end of qc->sg is reached and the device expects
|
|
* more data to transfer. In order not to overrun qc->sg
|
|
* and fulfill length specified in the byte count register,
|
|
* - for read case, discard trailing data from the device
|
|
* - for write case, padding zero data to the device
|
|
*/
|
|
u16 pad_buf[1] = { 0 };
|
|
unsigned int words = bytes >> 1;
|
|
unsigned int i;
|
|
|
|
if (words) /* warning if bytes > 1 */
|
|
printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
|
|
ap->id, bytes);
|
|
|
|
for (i = 0; i < words; i++)
|
|
ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
|
|
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
return;
|
|
}
|
|
|
|
sg = &qc->__sg[qc->cursg];
|
|
|
|
page = sg->page;
|
|
offset = sg->offset + qc->cursg_ofs;
|
|
|
|
/* get the current page and offset */
|
|
page = nth_page(page, (offset >> PAGE_SHIFT));
|
|
offset %= PAGE_SIZE;
|
|
|
|
/* don't overrun current sg */
|
|
count = min(sg->length - qc->cursg_ofs, bytes);
|
|
|
|
/* don't cross page boundaries */
|
|
count = min(count, (unsigned int)PAGE_SIZE - offset);
|
|
|
|
buf = kmap(page) + offset;
|
|
|
|
bytes -= count;
|
|
qc->curbytes += count;
|
|
qc->cursg_ofs += count;
|
|
|
|
if (qc->cursg_ofs == sg->length) {
|
|
qc->cursg++;
|
|
qc->cursg_ofs = 0;
|
|
}
|
|
|
|
DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
|
|
|
|
/* do the actual data transfer */
|
|
ata_data_xfer(ap, buf, count, do_write);
|
|
|
|
kunmap(page);
|
|
|
|
if (bytes)
|
|
goto next_sg;
|
|
}
|
|
|
|
/**
|
|
* atapi_pio_bytes - Transfer data from/to the ATAPI device.
|
|
* @qc: Command on going
|
|
*
|
|
* Transfer Transfer data from/to the ATAPI device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void atapi_pio_bytes(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_device *dev = qc->dev;
|
|
unsigned int ireason, bc_lo, bc_hi, bytes;
|
|
int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
|
|
|
|
ap->ops->tf_read(ap, &qc->tf);
|
|
ireason = qc->tf.nsect;
|
|
bc_lo = qc->tf.lbam;
|
|
bc_hi = qc->tf.lbah;
|
|
bytes = (bc_hi << 8) | bc_lo;
|
|
|
|
/* shall be cleared to zero, indicating xfer of data */
|
|
if (ireason & (1 << 0))
|
|
goto err_out;
|
|
|
|
/* make sure transfer direction matches expected */
|
|
i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
|
|
if (do_write != i_write)
|
|
goto err_out;
|
|
|
|
__atapi_pio_bytes(qc, bytes);
|
|
|
|
return;
|
|
|
|
err_out:
|
|
printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
|
|
ap->id, dev->devno);
|
|
qc->err_mask |= AC_ERR_ATA_BUS;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
}
|
|
|
|
/**
|
|
* ata_pio_block - start PIO on a block
|
|
* @ap: the target ata_port
|
|
*
|
|
* LOCKING:
|
|
* None. (executing in kernel thread context)
|
|
*/
|
|
|
|
static void ata_pio_block(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
u8 status;
|
|
|
|
/*
|
|
* This is purely heuristic. This is a fast path.
|
|
* Sometimes when we enter, BSY will be cleared in
|
|
* a chk-status or two. If not, the drive is probably seeking
|
|
* or something. Snooze for a couple msecs, then
|
|
* chk-status again. If still busy, fall back to
|
|
* HSM_ST_POLL state.
|
|
*/
|
|
status = ata_busy_wait(ap, ATA_BUSY, 5);
|
|
if (status & ATA_BUSY) {
|
|
msleep(2);
|
|
status = ata_busy_wait(ap, ATA_BUSY, 10);
|
|
if (status & ATA_BUSY) {
|
|
ap->hsm_task_state = HSM_ST_POLL;
|
|
ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
|
|
return;
|
|
}
|
|
}
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
assert(qc != NULL);
|
|
|
|
/* check error */
|
|
if (status & (ATA_ERR | ATA_DF)) {
|
|
qc->err_mask |= AC_ERR_DEV;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
return;
|
|
}
|
|
|
|
/* transfer data if any */
|
|
if (is_atapi_taskfile(&qc->tf)) {
|
|
/* DRQ=0 means no more data to transfer */
|
|
if ((status & ATA_DRQ) == 0) {
|
|
ap->hsm_task_state = HSM_ST_LAST;
|
|
return;
|
|
}
|
|
|
|
atapi_pio_bytes(qc);
|
|
} else {
|
|
/* handle BSY=0, DRQ=0 as error */
|
|
if ((status & ATA_DRQ) == 0) {
|
|
qc->err_mask |= AC_ERR_ATA_BUS;
|
|
ap->hsm_task_state = HSM_ST_ERR;
|
|
return;
|
|
}
|
|
|
|
ata_pio_sector(qc);
|
|
}
|
|
}
|
|
|
|
static void ata_pio_error(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
assert(qc != NULL);
|
|
|
|
if (qc->tf.command != ATA_CMD_PACKET)
|
|
printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
|
|
|
|
/* make sure qc->err_mask is available to
|
|
* know what's wrong and recover
|
|
*/
|
|
assert(qc->err_mask);
|
|
|
|
ap->hsm_task_state = HSM_ST_IDLE;
|
|
|
|
ata_poll_qc_complete(qc);
|
|
}
|
|
|
|
static void ata_pio_task(void *_data)
|
|
{
|
|
struct ata_port *ap = _data;
|
|
unsigned long timeout;
|
|
int qc_completed;
|
|
|
|
fsm_start:
|
|
timeout = 0;
|
|
qc_completed = 0;
|
|
|
|
switch (ap->hsm_task_state) {
|
|
case HSM_ST_IDLE:
|
|
return;
|
|
|
|
case HSM_ST:
|
|
ata_pio_block(ap);
|
|
break;
|
|
|
|
case HSM_ST_LAST:
|
|
qc_completed = ata_pio_complete(ap);
|
|
break;
|
|
|
|
case HSM_ST_POLL:
|
|
case HSM_ST_LAST_POLL:
|
|
timeout = ata_pio_poll(ap);
|
|
break;
|
|
|
|
case HSM_ST_TMOUT:
|
|
case HSM_ST_ERR:
|
|
ata_pio_error(ap);
|
|
return;
|
|
}
|
|
|
|
if (timeout)
|
|
queue_delayed_work(ata_wq, &ap->pio_task, timeout);
|
|
else if (!qc_completed)
|
|
goto fsm_start;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_timeout - Handle timeout of queued command
|
|
* @qc: Command that timed out
|
|
*
|
|
* Some part of the kernel (currently, only the SCSI layer)
|
|
* has noticed that the active command on port @ap has not
|
|
* completed after a specified length of time. Handle this
|
|
* condition by disabling DMA (if necessary) and completing
|
|
* transactions, with error if necessary.
|
|
*
|
|
* This also handles the case of the "lost interrupt", where
|
|
* for some reason (possibly hardware bug, possibly driver bug)
|
|
* an interrupt was not delivered to the driver, even though the
|
|
* transaction completed successfully.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from SCSI layer (none, can sleep)
|
|
*/
|
|
|
|
static void ata_qc_timeout(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_host_set *host_set = ap->host_set;
|
|
u8 host_stat = 0, drv_stat;
|
|
unsigned long flags;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
spin_lock_irqsave(&host_set->lock, flags);
|
|
|
|
/* hack alert! We cannot use the supplied completion
|
|
* function from inside the ->eh_strategy_handler() thread.
|
|
* libata is the only user of ->eh_strategy_handler() in
|
|
* any kernel, so the default scsi_done() assumes it is
|
|
* not being called from the SCSI EH.
|
|
*/
|
|
qc->scsidone = scsi_finish_command;
|
|
|
|
switch (qc->tf.protocol) {
|
|
|
|
case ATA_PROT_DMA:
|
|
case ATA_PROT_ATAPI_DMA:
|
|
host_stat = ap->ops->bmdma_status(ap);
|
|
|
|
/* before we do anything else, clear DMA-Start bit */
|
|
ap->ops->bmdma_stop(qc);
|
|
|
|
/* fall through */
|
|
|
|
default:
|
|
ata_altstatus(ap);
|
|
drv_stat = ata_chk_status(ap);
|
|
|
|
/* ack bmdma irq events */
|
|
ap->ops->irq_clear(ap);
|
|
|
|
printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
|
|
ap->id, qc->tf.command, drv_stat, host_stat);
|
|
|
|
/* complete taskfile transaction */
|
|
qc->err_mask |= ac_err_mask(drv_stat);
|
|
ata_qc_complete(qc);
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&host_set->lock, flags);
|
|
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* ata_eng_timeout - Handle timeout of queued command
|
|
* @ap: Port on which timed-out command is active
|
|
*
|
|
* Some part of the kernel (currently, only the SCSI layer)
|
|
* has noticed that the active command on port @ap has not
|
|
* completed after a specified length of time. Handle this
|
|
* condition by disabling DMA (if necessary) and completing
|
|
* transactions, with error if necessary.
|
|
*
|
|
* This also handles the case of the "lost interrupt", where
|
|
* for some reason (possibly hardware bug, possibly driver bug)
|
|
* an interrupt was not delivered to the driver, even though the
|
|
* transaction completed successfully.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from SCSI layer (none, can sleep)
|
|
*/
|
|
|
|
void ata_eng_timeout(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
if (qc)
|
|
ata_qc_timeout(qc);
|
|
else {
|
|
printk(KERN_ERR "ata%u: BUG: timeout without command\n",
|
|
ap->id);
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
DPRINTK("EXIT\n");
|
|
}
|
|
|
|
/**
|
|
* ata_qc_new - Request an available ATA command, for queueing
|
|
* @ap: Port associated with device @dev
|
|
* @dev: Device from whom we request an available command structure
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
|
|
static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
|
|
{
|
|
struct ata_queued_cmd *qc = NULL;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ATA_MAX_QUEUE; i++)
|
|
if (!test_and_set_bit(i, &ap->qactive)) {
|
|
qc = ata_qc_from_tag(ap, i);
|
|
break;
|
|
}
|
|
|
|
if (qc)
|
|
qc->tag = i;
|
|
|
|
return qc;
|
|
}
|
|
|
|
/**
|
|
* ata_qc_new_init - Request an available ATA command, and initialize it
|
|
* @ap: Port associated with device @dev
|
|
* @dev: Device from whom we request an available command structure
|
|
*
|
|
* LOCKING:
|
|
* None.
|
|
*/
|
|
|
|
struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
|
|
struct ata_device *dev)
|
|
{
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_new(ap);
|
|
if (qc) {
|
|
qc->scsicmd = NULL;
|
|
qc->ap = ap;
|
|
qc->dev = dev;
|
|
|
|
ata_qc_reinit(qc);
|
|
}
|
|
|
|
return qc;
|
|
}
|
|
|
|
static void __ata_qc_complete(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned int tag;
|
|
|
|
qc->flags = 0;
|
|
tag = qc->tag;
|
|
if (likely(ata_tag_valid(tag))) {
|
|
if (tag == ap->active_tag)
|
|
ap->active_tag = ATA_TAG_POISON;
|
|
qc->tag = ATA_TAG_POISON;
|
|
clear_bit(tag, &ap->qactive);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ata_qc_free - free unused ata_queued_cmd
|
|
* @qc: Command to complete
|
|
*
|
|
* Designed to free unused ata_queued_cmd object
|
|
* in case something prevents using it.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
void ata_qc_free(struct ata_queued_cmd *qc)
|
|
{
|
|
assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
|
|
|
|
__ata_qc_complete(qc);
|
|
}
|
|
|
|
/**
|
|
* ata_qc_complete - Complete an active ATA command
|
|
* @qc: Command to complete
|
|
* @err_mask: ATA Status register contents
|
|
*
|
|
* Indicate to the mid and upper layers that an ATA
|
|
* command has completed, with either an ok or not-ok status.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
void ata_qc_complete(struct ata_queued_cmd *qc)
|
|
{
|
|
int rc;
|
|
|
|
assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
|
|
assert(qc->flags & ATA_QCFLAG_ACTIVE);
|
|
|
|
if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
|
|
ata_sg_clean(qc);
|
|
|
|
/* atapi: mark qc as inactive to prevent the interrupt handler
|
|
* from completing the command twice later, before the error handler
|
|
* is called. (when rc != 0 and atapi request sense is needed)
|
|
*/
|
|
qc->flags &= ~ATA_QCFLAG_ACTIVE;
|
|
|
|
/* call completion callback */
|
|
rc = qc->complete_fn(qc);
|
|
|
|
/* if callback indicates not to complete command (non-zero),
|
|
* return immediately
|
|
*/
|
|
if (rc != 0)
|
|
return;
|
|
|
|
__ata_qc_complete(qc);
|
|
|
|
VPRINTK("EXIT\n");
|
|
}
|
|
|
|
static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_DMA:
|
|
case ATA_PROT_ATAPI_DMA:
|
|
return 1;
|
|
|
|
case ATA_PROT_ATAPI:
|
|
case ATA_PROT_PIO:
|
|
case ATA_PROT_PIO_MULT:
|
|
if (ap->flags & ATA_FLAG_PIO_DMA)
|
|
return 1;
|
|
|
|
/* fall through */
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/* never reached */
|
|
}
|
|
|
|
/**
|
|
* ata_qc_issue - issue taskfile to device
|
|
* @qc: command to issue to device
|
|
*
|
|
* Prepare an ATA command to submission to device.
|
|
* This includes mapping the data into a DMA-able
|
|
* area, filling in the S/G table, and finally
|
|
* writing the taskfile to hardware, starting the command.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on error.
|
|
*/
|
|
|
|
int ata_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
if (ata_should_dma_map(qc)) {
|
|
if (qc->flags & ATA_QCFLAG_SG) {
|
|
if (ata_sg_setup(qc))
|
|
goto err_out;
|
|
} else if (qc->flags & ATA_QCFLAG_SINGLE) {
|
|
if (ata_sg_setup_one(qc))
|
|
goto err_out;
|
|
}
|
|
} else {
|
|
qc->flags &= ~ATA_QCFLAG_DMAMAP;
|
|
}
|
|
|
|
ap->ops->qc_prep(qc);
|
|
|
|
qc->ap->active_tag = qc->tag;
|
|
qc->flags |= ATA_QCFLAG_ACTIVE;
|
|
|
|
return ap->ops->qc_issue(qc);
|
|
|
|
err_out:
|
|
return -1;
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
|
|
* @qc: command to issue to device
|
|
*
|
|
* Using various libata functions and hooks, this function
|
|
* starts an ATA command. ATA commands are grouped into
|
|
* classes called "protocols", and issuing each type of protocol
|
|
* is slightly different.
|
|
*
|
|
* May be used as the qc_issue() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on error.
|
|
*/
|
|
|
|
int ata_qc_issue_prot(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
|
|
ata_dev_select(ap, qc->dev->devno, 1, 0);
|
|
|
|
switch (qc->tf.protocol) {
|
|
case ATA_PROT_NODATA:
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
break;
|
|
|
|
case ATA_PROT_DMA:
|
|
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
|
|
ap->ops->bmdma_setup(qc); /* set up bmdma */
|
|
ap->ops->bmdma_start(qc); /* initiate bmdma */
|
|
break;
|
|
|
|
case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
|
|
ata_qc_set_polling(qc);
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
ap->hsm_task_state = HSM_ST;
|
|
queue_work(ata_wq, &ap->pio_task);
|
|
break;
|
|
|
|
case ATA_PROT_ATAPI:
|
|
ata_qc_set_polling(qc);
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
queue_work(ata_wq, &ap->packet_task);
|
|
break;
|
|
|
|
case ATA_PROT_ATAPI_NODATA:
|
|
ap->flags |= ATA_FLAG_NOINTR;
|
|
ata_tf_to_host(ap, &qc->tf);
|
|
queue_work(ata_wq, &ap->packet_task);
|
|
break;
|
|
|
|
case ATA_PROT_ATAPI_DMA:
|
|
ap->flags |= ATA_FLAG_NOINTR;
|
|
ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
|
|
ap->ops->bmdma_setup(qc); /* set up bmdma */
|
|
queue_work(ata_wq, &ap->packet_task);
|
|
break;
|
|
|
|
default:
|
|
WARN_ON(1);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
u8 dmactl;
|
|
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
|
|
|
|
/* load PRD table addr. */
|
|
mb(); /* make sure PRD table writes are visible to controller */
|
|
writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
|
|
|
|
/* specify data direction, triple-check start bit is clear */
|
|
dmactl = readb(mmio + ATA_DMA_CMD);
|
|
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
|
|
if (!rw)
|
|
dmactl |= ATA_DMA_WR;
|
|
writeb(dmactl, mmio + ATA_DMA_CMD);
|
|
|
|
/* issue r/w command */
|
|
ap->ops->exec_command(ap, &qc->tf);
|
|
}
|
|
|
|
/**
|
|
* ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
|
|
u8 dmactl;
|
|
|
|
/* start host DMA transaction */
|
|
dmactl = readb(mmio + ATA_DMA_CMD);
|
|
writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
|
|
|
|
/* Strictly, one may wish to issue a readb() here, to
|
|
* flush the mmio write. However, control also passes
|
|
* to the hardware at this point, and it will interrupt
|
|
* us when we are to resume control. So, in effect,
|
|
* we don't care when the mmio write flushes.
|
|
* Further, a read of the DMA status register _immediately_
|
|
* following the write may not be what certain flaky hardware
|
|
* is expected, so I think it is best to not add a readb()
|
|
* without first all the MMIO ATA cards/mobos.
|
|
* Or maybe I'm just being paranoid.
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
|
|
u8 dmactl;
|
|
|
|
/* load PRD table addr. */
|
|
outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
|
|
|
|
/* specify data direction, triple-check start bit is clear */
|
|
dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
|
|
if (!rw)
|
|
dmactl |= ATA_DMA_WR;
|
|
outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
|
|
/* issue r/w command */
|
|
ap->ops->exec_command(ap, &qc->tf);
|
|
}
|
|
|
|
/**
|
|
* ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
u8 dmactl;
|
|
|
|
/* start host DMA transaction */
|
|
dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
outb(dmactl | ATA_DMA_START,
|
|
ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_bmdma_start - Start a PCI IDE BMDMA transaction
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* Writes the ATA_DMA_START flag to the DMA command register.
|
|
*
|
|
* May be used as the bmdma_start() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
void ata_bmdma_start(struct ata_queued_cmd *qc)
|
|
{
|
|
if (qc->ap->flags & ATA_FLAG_MMIO)
|
|
ata_bmdma_start_mmio(qc);
|
|
else
|
|
ata_bmdma_start_pio(qc);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_bmdma_setup - Set up PCI IDE BMDMA transaction
|
|
* @qc: Info associated with this ATA transaction.
|
|
*
|
|
* Writes address of PRD table to device's PRD Table Address
|
|
* register, sets the DMA control register, and calls
|
|
* ops->exec_command() to start the transfer.
|
|
*
|
|
* May be used as the bmdma_setup() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
void ata_bmdma_setup(struct ata_queued_cmd *qc)
|
|
{
|
|
if (qc->ap->flags & ATA_FLAG_MMIO)
|
|
ata_bmdma_setup_mmio(qc);
|
|
else
|
|
ata_bmdma_setup_pio(qc);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
|
|
* @ap: Port associated with this ATA transaction.
|
|
*
|
|
* Clear interrupt and error flags in DMA status register.
|
|
*
|
|
* May be used as the irq_clear() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
void ata_bmdma_irq_clear(struct ata_port *ap)
|
|
{
|
|
if (ap->flags & ATA_FLAG_MMIO) {
|
|
void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
|
|
writeb(readb(mmio), mmio);
|
|
} else {
|
|
unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
|
|
outb(inb(addr), addr);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_bmdma_status - Read PCI IDE BMDMA status
|
|
* @ap: Port associated with this ATA transaction.
|
|
*
|
|
* Read and return BMDMA status register.
|
|
*
|
|
* May be used as the bmdma_status() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
u8 ata_bmdma_status(struct ata_port *ap)
|
|
{
|
|
u8 host_stat;
|
|
if (ap->flags & ATA_FLAG_MMIO) {
|
|
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
|
|
host_stat = readb(mmio + ATA_DMA_STATUS);
|
|
} else
|
|
host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
|
|
return host_stat;
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_bmdma_stop - Stop PCI IDE BMDMA transfer
|
|
* @qc: Command we are ending DMA for
|
|
*
|
|
* Clears the ATA_DMA_START flag in the dma control register
|
|
*
|
|
* May be used as the bmdma_stop() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*/
|
|
|
|
void ata_bmdma_stop(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
if (ap->flags & ATA_FLAG_MMIO) {
|
|
void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
|
|
|
|
/* clear start/stop bit */
|
|
writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
|
|
mmio + ATA_DMA_CMD);
|
|
} else {
|
|
/* clear start/stop bit */
|
|
outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
|
|
ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
|
|
}
|
|
|
|
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
|
|
ata_altstatus(ap); /* dummy read */
|
|
}
|
|
|
|
/**
|
|
* ata_host_intr - Handle host interrupt for given (port, task)
|
|
* @ap: Port on which interrupt arrived (possibly...)
|
|
* @qc: Taskfile currently active in engine
|
|
*
|
|
* Handle host interrupt for given queued command. Currently,
|
|
* only DMA interrupts are handled. All other commands are
|
|
* handled via polling with interrupts disabled (nIEN bit).
|
|
*
|
|
* LOCKING:
|
|
* spin_lock_irqsave(host_set lock)
|
|
*
|
|
* RETURNS:
|
|
* One if interrupt was handled, zero if not (shared irq).
|
|
*/
|
|
|
|
inline unsigned int ata_host_intr (struct ata_port *ap,
|
|
struct ata_queued_cmd *qc)
|
|
{
|
|
u8 status, host_stat;
|
|
|
|
switch (qc->tf.protocol) {
|
|
|
|
case ATA_PROT_DMA:
|
|
case ATA_PROT_ATAPI_DMA:
|
|
case ATA_PROT_ATAPI:
|
|
/* check status of DMA engine */
|
|
host_stat = ap->ops->bmdma_status(ap);
|
|
VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
|
|
|
|
/* if it's not our irq... */
|
|
if (!(host_stat & ATA_DMA_INTR))
|
|
goto idle_irq;
|
|
|
|
/* before we do anything else, clear DMA-Start bit */
|
|
ap->ops->bmdma_stop(qc);
|
|
|
|
/* fall through */
|
|
|
|
case ATA_PROT_ATAPI_NODATA:
|
|
case ATA_PROT_NODATA:
|
|
/* check altstatus */
|
|
status = ata_altstatus(ap);
|
|
if (status & ATA_BUSY)
|
|
goto idle_irq;
|
|
|
|
/* check main status, clearing INTRQ */
|
|
status = ata_chk_status(ap);
|
|
if (unlikely(status & ATA_BUSY))
|
|
goto idle_irq;
|
|
DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
|
|
ap->id, qc->tf.protocol, status);
|
|
|
|
/* ack bmdma irq events */
|
|
ap->ops->irq_clear(ap);
|
|
|
|
/* complete taskfile transaction */
|
|
qc->err_mask |= ac_err_mask(status);
|
|
ata_qc_complete(qc);
|
|
break;
|
|
|
|
default:
|
|
goto idle_irq;
|
|
}
|
|
|
|
return 1; /* irq handled */
|
|
|
|
idle_irq:
|
|
ap->stats.idle_irq++;
|
|
|
|
#ifdef ATA_IRQ_TRAP
|
|
if ((ap->stats.idle_irq % 1000) == 0) {
|
|
handled = 1;
|
|
ata_irq_ack(ap, 0); /* debug trap */
|
|
printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
|
|
}
|
|
#endif
|
|
return 0; /* irq not handled */
|
|
}
|
|
|
|
/**
|
|
* ata_interrupt - Default ATA host interrupt handler
|
|
* @irq: irq line (unused)
|
|
* @dev_instance: pointer to our ata_host_set information structure
|
|
* @regs: unused
|
|
*
|
|
* Default interrupt handler for PCI IDE devices. Calls
|
|
* ata_host_intr() for each port that is not disabled.
|
|
*
|
|
* LOCKING:
|
|
* Obtains host_set lock during operation.
|
|
*
|
|
* RETURNS:
|
|
* IRQ_NONE or IRQ_HANDLED.
|
|
*/
|
|
|
|
irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
|
|
{
|
|
struct ata_host_set *host_set = dev_instance;
|
|
unsigned int i;
|
|
unsigned int handled = 0;
|
|
unsigned long flags;
|
|
|
|
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
|
|
spin_lock_irqsave(&host_set->lock, flags);
|
|
|
|
for (i = 0; i < host_set->n_ports; i++) {
|
|
struct ata_port *ap;
|
|
|
|
ap = host_set->ports[i];
|
|
if (ap &&
|
|
!(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
|
|
struct ata_queued_cmd *qc;
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
|
|
(qc->flags & ATA_QCFLAG_ACTIVE))
|
|
handled |= ata_host_intr(ap, qc);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&host_set->lock, flags);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
/**
|
|
* atapi_packet_task - Write CDB bytes to hardware
|
|
* @_data: Port to which ATAPI device is attached.
|
|
*
|
|
* When device has indicated its readiness to accept
|
|
* a CDB, this function is called. Send the CDB.
|
|
* If DMA is to be performed, exit immediately.
|
|
* Otherwise, we are in polling mode, so poll
|
|
* status under operation succeeds or fails.
|
|
*
|
|
* LOCKING:
|
|
* Kernel thread context (may sleep)
|
|
*/
|
|
|
|
static void atapi_packet_task(void *_data)
|
|
{
|
|
struct ata_port *ap = _data;
|
|
struct ata_queued_cmd *qc;
|
|
u8 status;
|
|
|
|
qc = ata_qc_from_tag(ap, ap->active_tag);
|
|
assert(qc != NULL);
|
|
assert(qc->flags & ATA_QCFLAG_ACTIVE);
|
|
|
|
/* sleep-wait for BSY to clear */
|
|
DPRINTK("busy wait\n");
|
|
if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
|
|
qc->err_mask |= AC_ERR_ATA_BUS;
|
|
goto err_out;
|
|
}
|
|
|
|
/* make sure DRQ is set */
|
|
status = ata_chk_status(ap);
|
|
if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
|
|
qc->err_mask |= AC_ERR_ATA_BUS;
|
|
goto err_out;
|
|
}
|
|
|
|
/* send SCSI cdb */
|
|
DPRINTK("send cdb\n");
|
|
assert(ap->cdb_len >= 12);
|
|
|
|
if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
|
|
qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
|
|
unsigned long flags;
|
|
|
|
/* Once we're done issuing command and kicking bmdma,
|
|
* irq handler takes over. To not lose irq, we need
|
|
* to clear NOINTR flag before sending cdb, but
|
|
* interrupt handler shouldn't be invoked before we're
|
|
* finished. Hence, the following locking.
|
|
*/
|
|
spin_lock_irqsave(&ap->host_set->lock, flags);
|
|
ap->flags &= ~ATA_FLAG_NOINTR;
|
|
ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
|
|
if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
|
|
ap->ops->bmdma_start(qc); /* initiate bmdma */
|
|
spin_unlock_irqrestore(&ap->host_set->lock, flags);
|
|
} else {
|
|
ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
|
|
|
|
/* PIO commands are handled by polling */
|
|
ap->hsm_task_state = HSM_ST;
|
|
queue_work(ata_wq, &ap->pio_task);
|
|
}
|
|
|
|
return;
|
|
|
|
err_out:
|
|
ata_poll_qc_complete(qc);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_port_start - Set port up for dma.
|
|
* @ap: Port to initialize
|
|
*
|
|
* Called just after data structures for each port are
|
|
* initialized. Allocates space for PRD table.
|
|
*
|
|
* May be used as the port_start() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
/*
|
|
* Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
|
|
* without filling any other registers
|
|
*/
|
|
static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
|
|
u8 cmd)
|
|
{
|
|
struct ata_taskfile tf;
|
|
int err;
|
|
|
|
ata_tf_init(ap, &tf, dev->devno);
|
|
|
|
tf.command = cmd;
|
|
tf.flags |= ATA_TFLAG_DEVICE;
|
|
tf.protocol = ATA_PROT_NODATA;
|
|
|
|
err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
|
|
if (err)
|
|
printk(KERN_ERR "%s: ata command failed: %d\n",
|
|
__FUNCTION__, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
u8 cmd;
|
|
|
|
if (!ata_try_flush_cache(dev))
|
|
return 0;
|
|
|
|
if (ata_id_has_flush_ext(dev->id))
|
|
cmd = ATA_CMD_FLUSH_EXT;
|
|
else
|
|
cmd = ATA_CMD_FLUSH;
|
|
|
|
return ata_do_simple_cmd(ap, dev, cmd);
|
|
}
|
|
|
|
static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
|
|
}
|
|
|
|
static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
|
|
}
|
|
|
|
/**
|
|
* ata_device_resume - wakeup a previously suspended devices
|
|
*
|
|
* Kick the drive back into action, by sending it an idle immediate
|
|
* command and making sure its transfer mode matches between drive
|
|
* and host.
|
|
*
|
|
*/
|
|
int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
if (ap->flags & ATA_FLAG_SUSPENDED) {
|
|
ap->flags &= ~ATA_FLAG_SUSPENDED;
|
|
ata_set_mode(ap);
|
|
}
|
|
if (!ata_dev_present(dev))
|
|
return 0;
|
|
if (dev->class == ATA_DEV_ATA)
|
|
ata_start_drive(ap, dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_device_suspend - prepare a device for suspend
|
|
*
|
|
* Flush the cache on the drive, if appropriate, then issue a
|
|
* standbynow command.
|
|
*
|
|
*/
|
|
int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
|
|
{
|
|
if (!ata_dev_present(dev))
|
|
return 0;
|
|
if (dev->class == ATA_DEV_ATA)
|
|
ata_flush_cache(ap, dev);
|
|
|
|
ata_standby_drive(ap, dev);
|
|
ap->flags |= ATA_FLAG_SUSPENDED;
|
|
return 0;
|
|
}
|
|
|
|
int ata_port_start (struct ata_port *ap)
|
|
{
|
|
struct device *dev = ap->host_set->dev;
|
|
int rc;
|
|
|
|
ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
|
|
if (!ap->prd)
|
|
return -ENOMEM;
|
|
|
|
rc = ata_pad_alloc(ap, dev);
|
|
if (rc) {
|
|
dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
|
|
return rc;
|
|
}
|
|
|
|
DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_port_stop - Undo ata_port_start()
|
|
* @ap: Port to shut down
|
|
*
|
|
* Frees the PRD table.
|
|
*
|
|
* May be used as the port_stop() entry in ata_port_operations.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
void ata_port_stop (struct ata_port *ap)
|
|
{
|
|
struct device *dev = ap->host_set->dev;
|
|
|
|
dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
|
|
ata_pad_free(ap, dev);
|
|
}
|
|
|
|
void ata_host_stop (struct ata_host_set *host_set)
|
|
{
|
|
if (host_set->mmio_base)
|
|
iounmap(host_set->mmio_base);
|
|
}
|
|
|
|
|
|
/**
|
|
* ata_host_remove - Unregister SCSI host structure with upper layers
|
|
* @ap: Port to unregister
|
|
* @do_unregister: 1 if we fully unregister, 0 to just stop the port
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
|
|
{
|
|
struct Scsi_Host *sh = ap->host;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
if (do_unregister)
|
|
scsi_remove_host(sh);
|
|
|
|
ap->ops->port_stop(ap);
|
|
}
|
|
|
|
/**
|
|
* ata_host_init - Initialize an ata_port structure
|
|
* @ap: Structure to initialize
|
|
* @host: associated SCSI mid-layer structure
|
|
* @host_set: Collection of hosts to which @ap belongs
|
|
* @ent: Probe information provided by low-level driver
|
|
* @port_no: Port number associated with this ata_port
|
|
*
|
|
* Initialize a new ata_port structure, and its associated
|
|
* scsi_host.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from caller.
|
|
*/
|
|
|
|
static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
|
|
struct ata_host_set *host_set,
|
|
const struct ata_probe_ent *ent, unsigned int port_no)
|
|
{
|
|
unsigned int i;
|
|
|
|
host->max_id = 16;
|
|
host->max_lun = 1;
|
|
host->max_channel = 1;
|
|
host->unique_id = ata_unique_id++;
|
|
host->max_cmd_len = 12;
|
|
|
|
ap->flags = ATA_FLAG_PORT_DISABLED;
|
|
ap->id = host->unique_id;
|
|
ap->host = host;
|
|
ap->ctl = ATA_DEVCTL_OBS;
|
|
ap->host_set = host_set;
|
|
ap->port_no = port_no;
|
|
ap->hard_port_no =
|
|
ent->legacy_mode ? ent->hard_port_no : port_no;
|
|
ap->pio_mask = ent->pio_mask;
|
|
ap->mwdma_mask = ent->mwdma_mask;
|
|
ap->udma_mask = ent->udma_mask;
|
|
ap->flags |= ent->host_flags;
|
|
ap->ops = ent->port_ops;
|
|
ap->cbl = ATA_CBL_NONE;
|
|
ap->active_tag = ATA_TAG_POISON;
|
|
ap->last_ctl = 0xFF;
|
|
|
|
INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
|
|
INIT_WORK(&ap->pio_task, ata_pio_task, ap);
|
|
|
|
for (i = 0; i < ATA_MAX_DEVICES; i++)
|
|
ap->device[i].devno = i;
|
|
|
|
#ifdef ATA_IRQ_TRAP
|
|
ap->stats.unhandled_irq = 1;
|
|
ap->stats.idle_irq = 1;
|
|
#endif
|
|
|
|
memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
|
|
}
|
|
|
|
/**
|
|
* ata_host_add - Attach low-level ATA driver to system
|
|
* @ent: Information provided by low-level driver
|
|
* @host_set: Collections of ports to which we add
|
|
* @port_no: Port number associated with this host
|
|
*
|
|
* Attach low-level ATA driver to system.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* New ata_port on success, for NULL on error.
|
|
*/
|
|
|
|
static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
|
|
struct ata_host_set *host_set,
|
|
unsigned int port_no)
|
|
{
|
|
struct Scsi_Host *host;
|
|
struct ata_port *ap;
|
|
int rc;
|
|
|
|
DPRINTK("ENTER\n");
|
|
host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
|
|
if (!host)
|
|
return NULL;
|
|
|
|
ap = (struct ata_port *) &host->hostdata[0];
|
|
|
|
ata_host_init(ap, host, host_set, ent, port_no);
|
|
|
|
rc = ap->ops->port_start(ap);
|
|
if (rc)
|
|
goto err_out;
|
|
|
|
return ap;
|
|
|
|
err_out:
|
|
scsi_host_put(host);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ata_device_add - Register hardware device with ATA and SCSI layers
|
|
* @ent: Probe information describing hardware device to be registered
|
|
*
|
|
* This function processes the information provided in the probe
|
|
* information struct @ent, allocates the necessary ATA and SCSI
|
|
* host information structures, initializes them, and registers
|
|
* everything with requisite kernel subsystems.
|
|
*
|
|
* This function requests irqs, probes the ATA bus, and probes
|
|
* the SCSI bus.
|
|
*
|
|
* LOCKING:
|
|
* PCI/etc. bus probe sem.
|
|
*
|
|
* RETURNS:
|
|
* Number of ports registered. Zero on error (no ports registered).
|
|
*/
|
|
|
|
int ata_device_add(const struct ata_probe_ent *ent)
|
|
{
|
|
unsigned int count = 0, i;
|
|
struct device *dev = ent->dev;
|
|
struct ata_host_set *host_set;
|
|
|
|
DPRINTK("ENTER\n");
|
|
/* alloc a container for our list of ATA ports (buses) */
|
|
host_set = kzalloc(sizeof(struct ata_host_set) +
|
|
(ent->n_ports * sizeof(void *)), GFP_KERNEL);
|
|
if (!host_set)
|
|
return 0;
|
|
spin_lock_init(&host_set->lock);
|
|
|
|
host_set->dev = dev;
|
|
host_set->n_ports = ent->n_ports;
|
|
host_set->irq = ent->irq;
|
|
host_set->mmio_base = ent->mmio_base;
|
|
host_set->private_data = ent->private_data;
|
|
host_set->ops = ent->port_ops;
|
|
|
|
/* register each port bound to this device */
|
|
for (i = 0; i < ent->n_ports; i++) {
|
|
struct ata_port *ap;
|
|
unsigned long xfer_mode_mask;
|
|
|
|
ap = ata_host_add(ent, host_set, i);
|
|
if (!ap)
|
|
goto err_out;
|
|
|
|
host_set->ports[i] = ap;
|
|
xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
|
|
(ap->mwdma_mask << ATA_SHIFT_MWDMA) |
|
|
(ap->pio_mask << ATA_SHIFT_PIO);
|
|
|
|
/* print per-port info to dmesg */
|
|
printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
|
|
"bmdma 0x%lX irq %lu\n",
|
|
ap->id,
|
|
ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
|
|
ata_mode_string(xfer_mode_mask),
|
|
ap->ioaddr.cmd_addr,
|
|
ap->ioaddr.ctl_addr,
|
|
ap->ioaddr.bmdma_addr,
|
|
ent->irq);
|
|
|
|
ata_chk_status(ap);
|
|
host_set->ops->irq_clear(ap);
|
|
count++;
|
|
}
|
|
|
|
if (!count)
|
|
goto err_free_ret;
|
|
|
|
/* obtain irq, that is shared between channels */
|
|
if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
|
|
DRV_NAME, host_set))
|
|
goto err_out;
|
|
|
|
/* perform each probe synchronously */
|
|
DPRINTK("probe begin\n");
|
|
for (i = 0; i < count; i++) {
|
|
struct ata_port *ap;
|
|
int rc;
|
|
|
|
ap = host_set->ports[i];
|
|
|
|
DPRINTK("ata%u: probe begin\n", ap->id);
|
|
rc = ata_bus_probe(ap);
|
|
DPRINTK("ata%u: probe end\n", ap->id);
|
|
|
|
if (rc) {
|
|
/* FIXME: do something useful here?
|
|
* Current libata behavior will
|
|
* tear down everything when
|
|
* the module is removed
|
|
* or the h/w is unplugged.
|
|
*/
|
|
}
|
|
|
|
rc = scsi_add_host(ap->host, dev);
|
|
if (rc) {
|
|
printk(KERN_ERR "ata%u: scsi_add_host failed\n",
|
|
ap->id);
|
|
/* FIXME: do something useful here */
|
|
/* FIXME: handle unconditional calls to
|
|
* scsi_scan_host and ata_host_remove, below,
|
|
* at the very least
|
|
*/
|
|
}
|
|
}
|
|
|
|
/* probes are done, now scan each port's disk(s) */
|
|
DPRINTK("probe begin\n");
|
|
for (i = 0; i < count; i++) {
|
|
struct ata_port *ap = host_set->ports[i];
|
|
|
|
ata_scsi_scan_host(ap);
|
|
}
|
|
|
|
dev_set_drvdata(dev, host_set);
|
|
|
|
VPRINTK("EXIT, returning %u\n", ent->n_ports);
|
|
return ent->n_ports; /* success */
|
|
|
|
err_out:
|
|
for (i = 0; i < count; i++) {
|
|
ata_host_remove(host_set->ports[i], 1);
|
|
scsi_host_put(host_set->ports[i]->host);
|
|
}
|
|
err_free_ret:
|
|
kfree(host_set);
|
|
VPRINTK("EXIT, returning 0\n");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ata_host_set_remove - PCI layer callback for device removal
|
|
* @host_set: ATA host set that was removed
|
|
*
|
|
* Unregister all objects associated with this host set. Free those
|
|
* objects.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from calling layer (may sleep).
|
|
*/
|
|
|
|
void ata_host_set_remove(struct ata_host_set *host_set)
|
|
{
|
|
struct ata_port *ap;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < host_set->n_ports; i++) {
|
|
ap = host_set->ports[i];
|
|
scsi_remove_host(ap->host);
|
|
}
|
|
|
|
free_irq(host_set->irq, host_set);
|
|
|
|
for (i = 0; i < host_set->n_ports; i++) {
|
|
ap = host_set->ports[i];
|
|
|
|
ata_scsi_release(ap->host);
|
|
|
|
if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
|
|
struct ata_ioports *ioaddr = &ap->ioaddr;
|
|
|
|
if (ioaddr->cmd_addr == 0x1f0)
|
|
release_region(0x1f0, 8);
|
|
else if (ioaddr->cmd_addr == 0x170)
|
|
release_region(0x170, 8);
|
|
}
|
|
|
|
scsi_host_put(ap->host);
|
|
}
|
|
|
|
if (host_set->ops->host_stop)
|
|
host_set->ops->host_stop(host_set);
|
|
|
|
kfree(host_set);
|
|
}
|
|
|
|
/**
|
|
* ata_scsi_release - SCSI layer callback hook for host unload
|
|
* @host: libata host to be unloaded
|
|
*
|
|
* Performs all duties necessary to shut down a libata port...
|
|
* Kill port kthread, disable port, and release resources.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from SCSI layer.
|
|
*
|
|
* RETURNS:
|
|
* One.
|
|
*/
|
|
|
|
int ata_scsi_release(struct Scsi_Host *host)
|
|
{
|
|
struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
ap->ops->port_disable(ap);
|
|
ata_host_remove(ap, 0);
|
|
|
|
DPRINTK("EXIT\n");
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ata_std_ports - initialize ioaddr with standard port offsets.
|
|
* @ioaddr: IO address structure to be initialized
|
|
*
|
|
* Utility function which initializes data_addr, error_addr,
|
|
* feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
|
|
* device_addr, status_addr, and command_addr to standard offsets
|
|
* relative to cmd_addr.
|
|
*
|
|
* Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
|
|
*/
|
|
|
|
void ata_std_ports(struct ata_ioports *ioaddr)
|
|
{
|
|
ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
|
|
ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
|
|
ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
|
|
ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
|
|
ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
|
|
ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
|
|
ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
|
|
ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
|
|
ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
|
|
ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
|
|
}
|
|
|
|
static struct ata_probe_ent *
|
|
ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
|
|
{
|
|
struct ata_probe_ent *probe_ent;
|
|
|
|
probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
|
|
if (!probe_ent) {
|
|
printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
|
|
kobject_name(&(dev->kobj)));
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&probe_ent->node);
|
|
probe_ent->dev = dev;
|
|
|
|
probe_ent->sht = port->sht;
|
|
probe_ent->host_flags = port->host_flags;
|
|
probe_ent->pio_mask = port->pio_mask;
|
|
probe_ent->mwdma_mask = port->mwdma_mask;
|
|
probe_ent->udma_mask = port->udma_mask;
|
|
probe_ent->port_ops = port->port_ops;
|
|
|
|
return probe_ent;
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_PCI
|
|
|
|
void ata_pci_host_stop (struct ata_host_set *host_set)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(host_set->dev);
|
|
|
|
pci_iounmap(pdev, host_set->mmio_base);
|
|
}
|
|
|
|
/**
|
|
* ata_pci_init_native_mode - Initialize native-mode driver
|
|
* @pdev: pci device to be initialized
|
|
* @port: array[2] of pointers to port info structures.
|
|
* @ports: bitmap of ports present
|
|
*
|
|
* Utility function which allocates and initializes an
|
|
* ata_probe_ent structure for a standard dual-port
|
|
* PIO-based IDE controller. The returned ata_probe_ent
|
|
* structure can be passed to ata_device_add(). The returned
|
|
* ata_probe_ent structure should then be freed with kfree().
|
|
*
|
|
* The caller need only pass the address of the primary port, the
|
|
* secondary will be deduced automatically. If the device has non
|
|
* standard secondary port mappings this function can be called twice,
|
|
* once for each interface.
|
|
*/
|
|
|
|
struct ata_probe_ent *
|
|
ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
|
|
{
|
|
struct ata_probe_ent *probe_ent =
|
|
ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
|
|
int p = 0;
|
|
|
|
if (!probe_ent)
|
|
return NULL;
|
|
|
|
probe_ent->irq = pdev->irq;
|
|
probe_ent->irq_flags = SA_SHIRQ;
|
|
probe_ent->private_data = port[0]->private_data;
|
|
|
|
if (ports & ATA_PORT_PRIMARY) {
|
|
probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
|
|
probe_ent->port[p].altstatus_addr =
|
|
probe_ent->port[p].ctl_addr =
|
|
pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
|
|
probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
|
|
ata_std_ports(&probe_ent->port[p]);
|
|
p++;
|
|
}
|
|
|
|
if (ports & ATA_PORT_SECONDARY) {
|
|
probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
|
|
probe_ent->port[p].altstatus_addr =
|
|
probe_ent->port[p].ctl_addr =
|
|
pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
|
|
probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
|
|
ata_std_ports(&probe_ent->port[p]);
|
|
p++;
|
|
}
|
|
|
|
probe_ent->n_ports = p;
|
|
return probe_ent;
|
|
}
|
|
|
|
static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
|
|
{
|
|
struct ata_probe_ent *probe_ent;
|
|
|
|
probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
|
|
if (!probe_ent)
|
|
return NULL;
|
|
|
|
probe_ent->legacy_mode = 1;
|
|
probe_ent->n_ports = 1;
|
|
probe_ent->hard_port_no = port_num;
|
|
probe_ent->private_data = port->private_data;
|
|
|
|
switch(port_num)
|
|
{
|
|
case 0:
|
|
probe_ent->irq = 14;
|
|
probe_ent->port[0].cmd_addr = 0x1f0;
|
|
probe_ent->port[0].altstatus_addr =
|
|
probe_ent->port[0].ctl_addr = 0x3f6;
|
|
break;
|
|
case 1:
|
|
probe_ent->irq = 15;
|
|
probe_ent->port[0].cmd_addr = 0x170;
|
|
probe_ent->port[0].altstatus_addr =
|
|
probe_ent->port[0].ctl_addr = 0x376;
|
|
break;
|
|
}
|
|
probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
|
|
ata_std_ports(&probe_ent->port[0]);
|
|
return probe_ent;
|
|
}
|
|
|
|
/**
|
|
* ata_pci_init_one - Initialize/register PCI IDE host controller
|
|
* @pdev: Controller to be initialized
|
|
* @port_info: Information from low-level host driver
|
|
* @n_ports: Number of ports attached to host controller
|
|
*
|
|
* This is a helper function which can be called from a driver's
|
|
* xxx_init_one() probe function if the hardware uses traditional
|
|
* IDE taskfile registers.
|
|
*
|
|
* This function calls pci_enable_device(), reserves its register
|
|
* regions, sets the dma mask, enables bus master mode, and calls
|
|
* ata_device_add()
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, negative on errno-based value on error.
|
|
*/
|
|
|
|
int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
|
|
unsigned int n_ports)
|
|
{
|
|
struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
|
|
struct ata_port_info *port[2];
|
|
u8 tmp8, mask;
|
|
unsigned int legacy_mode = 0;
|
|
int disable_dev_on_err = 1;
|
|
int rc;
|
|
|
|
DPRINTK("ENTER\n");
|
|
|
|
port[0] = port_info[0];
|
|
if (n_ports > 1)
|
|
port[1] = port_info[1];
|
|
else
|
|
port[1] = port[0];
|
|
|
|
if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
|
|
&& (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
|
|
/* TODO: What if one channel is in native mode ... */
|
|
pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
|
|
mask = (1 << 2) | (1 << 0);
|
|
if ((tmp8 & mask) != mask)
|
|
legacy_mode = (1 << 3);
|
|
}
|
|
|
|
/* FIXME... */
|
|
if ((!legacy_mode) && (n_ports > 2)) {
|
|
printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
|
|
n_ports = 2;
|
|
/* For now */
|
|
}
|
|
|
|
/* FIXME: Really for ATA it isn't safe because the device may be
|
|
multi-purpose and we want to leave it alone if it was already
|
|
enabled. Secondly for shared use as Arjan says we want refcounting
|
|
|
|
Checking dev->is_enabled is insufficient as this is not set at
|
|
boot for the primary video which is BIOS enabled
|
|
*/
|
|
|
|
rc = pci_enable_device(pdev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = pci_request_regions(pdev, DRV_NAME);
|
|
if (rc) {
|
|
disable_dev_on_err = 0;
|
|
goto err_out;
|
|
}
|
|
|
|
/* FIXME: Should use platform specific mappers for legacy port ranges */
|
|
if (legacy_mode) {
|
|
if (!request_region(0x1f0, 8, "libata")) {
|
|
struct resource *conflict, res;
|
|
res.start = 0x1f0;
|
|
res.end = 0x1f0 + 8 - 1;
|
|
conflict = ____request_resource(&ioport_resource, &res);
|
|
if (!strcmp(conflict->name, "libata"))
|
|
legacy_mode |= (1 << 0);
|
|
else {
|
|
disable_dev_on_err = 0;
|
|
printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
|
|
}
|
|
} else
|
|
legacy_mode |= (1 << 0);
|
|
|
|
if (!request_region(0x170, 8, "libata")) {
|
|
struct resource *conflict, res;
|
|
res.start = 0x170;
|
|
res.end = 0x170 + 8 - 1;
|
|
conflict = ____request_resource(&ioport_resource, &res);
|
|
if (!strcmp(conflict->name, "libata"))
|
|
legacy_mode |= (1 << 1);
|
|
else {
|
|
disable_dev_on_err = 0;
|
|
printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
|
|
}
|
|
} else
|
|
legacy_mode |= (1 << 1);
|
|
}
|
|
|
|
/* we have legacy mode, but all ports are unavailable */
|
|
if (legacy_mode == (1 << 3)) {
|
|
rc = -EBUSY;
|
|
goto err_out_regions;
|
|
}
|
|
|
|
rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
|
|
if (rc)
|
|
goto err_out_regions;
|
|
rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
|
|
if (rc)
|
|
goto err_out_regions;
|
|
|
|
if (legacy_mode) {
|
|
if (legacy_mode & (1 << 0))
|
|
probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
|
|
if (legacy_mode & (1 << 1))
|
|
probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
|
|
} else {
|
|
if (n_ports == 2)
|
|
probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
|
|
else
|
|
probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
|
|
}
|
|
if (!probe_ent && !probe_ent2) {
|
|
rc = -ENOMEM;
|
|
goto err_out_regions;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
/* FIXME: check ata_device_add return */
|
|
if (legacy_mode) {
|
|
if (legacy_mode & (1 << 0))
|
|
ata_device_add(probe_ent);
|
|
if (legacy_mode & (1 << 1))
|
|
ata_device_add(probe_ent2);
|
|
} else
|
|
ata_device_add(probe_ent);
|
|
|
|
kfree(probe_ent);
|
|
kfree(probe_ent2);
|
|
|
|
return 0;
|
|
|
|
err_out_regions:
|
|
if (legacy_mode & (1 << 0))
|
|
release_region(0x1f0, 8);
|
|
if (legacy_mode & (1 << 1))
|
|
release_region(0x170, 8);
|
|
pci_release_regions(pdev);
|
|
err_out:
|
|
if (disable_dev_on_err)
|
|
pci_disable_device(pdev);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* ata_pci_remove_one - PCI layer callback for device removal
|
|
* @pdev: PCI device that was removed
|
|
*
|
|
* PCI layer indicates to libata via this hook that
|
|
* hot-unplug or module unload event has occurred.
|
|
* Handle this by unregistering all objects associated
|
|
* with this PCI device. Free those objects. Then finally
|
|
* release PCI resources and disable device.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*/
|
|
|
|
void ata_pci_remove_one (struct pci_dev *pdev)
|
|
{
|
|
struct device *dev = pci_dev_to_dev(pdev);
|
|
struct ata_host_set *host_set = dev_get_drvdata(dev);
|
|
|
|
ata_host_set_remove(host_set);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
dev_set_drvdata(dev, NULL);
|
|
}
|
|
|
|
/* move to PCI subsystem */
|
|
int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
|
|
{
|
|
unsigned long tmp = 0;
|
|
|
|
switch (bits->width) {
|
|
case 1: {
|
|
u8 tmp8 = 0;
|
|
pci_read_config_byte(pdev, bits->reg, &tmp8);
|
|
tmp = tmp8;
|
|
break;
|
|
}
|
|
case 2: {
|
|
u16 tmp16 = 0;
|
|
pci_read_config_word(pdev, bits->reg, &tmp16);
|
|
tmp = tmp16;
|
|
break;
|
|
}
|
|
case 4: {
|
|
u32 tmp32 = 0;
|
|
pci_read_config_dword(pdev, bits->reg, &tmp32);
|
|
tmp = tmp32;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
tmp &= bits->mask;
|
|
|
|
return (tmp == bits->val) ? 1 : 0;
|
|
}
|
|
|
|
int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
pci_save_state(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_power_state(pdev, PCI_D3hot);
|
|
return 0;
|
|
}
|
|
|
|
int ata_pci_device_resume(struct pci_dev *pdev)
|
|
{
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
pci_enable_device(pdev);
|
|
pci_set_master(pdev);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PCI */
|
|
|
|
|
|
static int __init ata_init(void)
|
|
{
|
|
ata_wq = create_workqueue("ata");
|
|
if (!ata_wq)
|
|
return -ENOMEM;
|
|
|
|
printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
|
|
return 0;
|
|
}
|
|
|
|
static void __exit ata_exit(void)
|
|
{
|
|
destroy_workqueue(ata_wq);
|
|
}
|
|
|
|
module_init(ata_init);
|
|
module_exit(ata_exit);
|
|
|
|
static unsigned long ratelimit_time;
|
|
static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
|
|
|
|
int ata_ratelimit(void)
|
|
{
|
|
int rc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ata_ratelimit_lock, flags);
|
|
|
|
if (time_after(jiffies, ratelimit_time)) {
|
|
rc = 1;
|
|
ratelimit_time = jiffies + (HZ/5);
|
|
} else
|
|
rc = 0;
|
|
|
|
spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* libata is essentially a library of internal helper functions for
|
|
* low-level ATA host controller drivers. As such, the API/ABI is
|
|
* likely to change as new drivers are added and updated.
|
|
* Do not depend on ABI/API stability.
|
|
*/
|
|
|
|
EXPORT_SYMBOL_GPL(ata_std_bios_param);
|
|
EXPORT_SYMBOL_GPL(ata_std_ports);
|
|
EXPORT_SYMBOL_GPL(ata_device_add);
|
|
EXPORT_SYMBOL_GPL(ata_host_set_remove);
|
|
EXPORT_SYMBOL_GPL(ata_sg_init);
|
|
EXPORT_SYMBOL_GPL(ata_sg_init_one);
|
|
EXPORT_SYMBOL_GPL(ata_qc_complete);
|
|
EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
|
|
EXPORT_SYMBOL_GPL(ata_eng_timeout);
|
|
EXPORT_SYMBOL_GPL(ata_tf_load);
|
|
EXPORT_SYMBOL_GPL(ata_tf_read);
|
|
EXPORT_SYMBOL_GPL(ata_noop_dev_select);
|
|
EXPORT_SYMBOL_GPL(ata_std_dev_select);
|
|
EXPORT_SYMBOL_GPL(ata_tf_to_fis);
|
|
EXPORT_SYMBOL_GPL(ata_tf_from_fis);
|
|
EXPORT_SYMBOL_GPL(ata_check_status);
|
|
EXPORT_SYMBOL_GPL(ata_altstatus);
|
|
EXPORT_SYMBOL_GPL(ata_exec_command);
|
|
EXPORT_SYMBOL_GPL(ata_port_start);
|
|
EXPORT_SYMBOL_GPL(ata_port_stop);
|
|
EXPORT_SYMBOL_GPL(ata_host_stop);
|
|
EXPORT_SYMBOL_GPL(ata_interrupt);
|
|
EXPORT_SYMBOL_GPL(ata_qc_prep);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_setup);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_start);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_status);
|
|
EXPORT_SYMBOL_GPL(ata_bmdma_stop);
|
|
EXPORT_SYMBOL_GPL(ata_port_probe);
|
|
EXPORT_SYMBOL_GPL(sata_phy_reset);
|
|
EXPORT_SYMBOL_GPL(__sata_phy_reset);
|
|
EXPORT_SYMBOL_GPL(ata_bus_reset);
|
|
EXPORT_SYMBOL_GPL(ata_port_disable);
|
|
EXPORT_SYMBOL_GPL(ata_ratelimit);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_error);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_release);
|
|
EXPORT_SYMBOL_GPL(ata_host_intr);
|
|
EXPORT_SYMBOL_GPL(ata_dev_classify);
|
|
EXPORT_SYMBOL_GPL(ata_dev_id_string);
|
|
EXPORT_SYMBOL_GPL(ata_dev_config);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_simulate);
|
|
|
|
EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
|
|
EXPORT_SYMBOL_GPL(ata_timing_compute);
|
|
EXPORT_SYMBOL_GPL(ata_timing_merge);
|
|
|
|
#ifdef CONFIG_PCI
|
|
EXPORT_SYMBOL_GPL(pci_test_config_bits);
|
|
EXPORT_SYMBOL_GPL(ata_pci_host_stop);
|
|
EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
|
|
EXPORT_SYMBOL_GPL(ata_pci_init_one);
|
|
EXPORT_SYMBOL_GPL(ata_pci_remove_one);
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_pci_device_resume);
|
|
#endif /* CONFIG_PCI */
|
|
|
|
EXPORT_SYMBOL_GPL(ata_device_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_device_resume);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
|
|
EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
|