linux/arch/sparc/kernel/irq_32.c
Daniel Hellstrom d6d048192b sparc32: implement SMP IPIs using the generic functions
The current sparc32 SMP IPI generation is implemented the
cross call function. The cross call function uses IRQ15 the
NMI, this is has the effect that IPIs will interrupt IRQ
critical areas and hang the system. Typically on/after
spin_lock_irqsave calls can be aborted.

The cross call functionality must still exist to flush
cache/TLBS.

This patch provides CPU models a custom way to implement
generation of IPIs on the generic code's request. The
typical approach is to generate an IRQ for each IPI case.

After this patch each sparc32 SMP CPU model needs to
implement IPIs in order to function properly.

Signed-off-by: Daniel Hellstrom <daniel@gaisler.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-16 13:07:43 -07:00

376 lines
9.0 KiB
C

/*
* Interrupt request handling routines. On the
* Sparc the IRQs are basically 'cast in stone'
* and you are supposed to probe the prom's device
* node trees to find out who's got which IRQ.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
* Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
* Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
* Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
*/
#include <linux/kernel_stat.h>
#include <linux/seq_file.h>
#include <asm/cacheflush.h>
#include <asm/cpudata.h>
#include <asm/pcic.h>
#include <asm/leon.h>
#include "kernel.h"
#include "irq.h"
#ifdef CONFIG_SMP
#define SMP_NOP2 "nop; nop;\n\t"
#define SMP_NOP3 "nop; nop; nop;\n\t"
#else
#define SMP_NOP2
#define SMP_NOP3
#endif /* SMP */
/* platform specific irq setup */
struct sparc_irq_config sparc_irq_config;
unsigned long arch_local_irq_save(void)
{
unsigned long retval;
unsigned long tmp;
__asm__ __volatile__(
"rd %%psr, %0\n\t"
SMP_NOP3 /* Sun4m + Cypress + SMP bug */
"or %0, %2, %1\n\t"
"wr %1, 0, %%psr\n\t"
"nop; nop; nop\n"
: "=&r" (retval), "=r" (tmp)
: "i" (PSR_PIL)
: "memory");
return retval;
}
EXPORT_SYMBOL(arch_local_irq_save);
void arch_local_irq_enable(void)
{
unsigned long tmp;
__asm__ __volatile__(
"rd %%psr, %0\n\t"
SMP_NOP3 /* Sun4m + Cypress + SMP bug */
"andn %0, %1, %0\n\t"
"wr %0, 0, %%psr\n\t"
"nop; nop; nop\n"
: "=&r" (tmp)
: "i" (PSR_PIL)
: "memory");
}
EXPORT_SYMBOL(arch_local_irq_enable);
void arch_local_irq_restore(unsigned long old_psr)
{
unsigned long tmp;
__asm__ __volatile__(
"rd %%psr, %0\n\t"
"and %2, %1, %2\n\t"
SMP_NOP2 /* Sun4m + Cypress + SMP bug */
"andn %0, %1, %0\n\t"
"wr %0, %2, %%psr\n\t"
"nop; nop; nop\n"
: "=&r" (tmp)
: "i" (PSR_PIL), "r" (old_psr)
: "memory");
}
EXPORT_SYMBOL(arch_local_irq_restore);
/*
* Dave Redman (djhr@tadpole.co.uk)
*
* IRQ numbers.. These are no longer restricted to 15..
*
* this is done to enable SBUS cards and onboard IO to be masked
* correctly. using the interrupt level isn't good enough.
*
* For example:
* A device interrupting at sbus level6 and the Floppy both come in
* at IRQ11, but enabling and disabling them requires writing to
* different bits in the SLAVIO/SEC.
*
* As a result of these changes sun4m machines could now support
* directed CPU interrupts using the existing enable/disable irq code
* with tweaks.
*
* Sun4d complicates things even further. IRQ numbers are arbitrary
* 32-bit values in that case. Since this is similar to sparc64,
* we adopt a virtual IRQ numbering scheme as is done there.
* Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
* just becomes a limit of how many interrupt sources we can handle in
* a single system. Even fully loaded SS2000 machines top off at
* about 32 interrupt sources or so, therefore a NR_IRQS value of 64
* is more than enough.
*
* We keep a map of per-PIL enable interrupts. These get wired
* up via the irq_chip->startup() method which gets invoked by
* the generic IRQ layer during request_irq().
*/
/* Table of allocated irqs. Unused entries has irq == 0 */
static struct irq_bucket irq_table[NR_IRQS];
/* Protect access to irq_table */
static DEFINE_SPINLOCK(irq_table_lock);
/* Map between the irq identifier used in hw to the irq_bucket. */
struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
/* Protect access to irq_map */
static DEFINE_SPINLOCK(irq_map_lock);
/* Allocate a new irq from the irq_table */
unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
{
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&irq_table_lock, flags);
for (i = 1; i < NR_IRQS; i++) {
if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
goto found;
}
for (i = 1; i < NR_IRQS; i++) {
if (!irq_table[i].irq)
break;
}
if (i < NR_IRQS) {
irq_table[i].real_irq = real_irq;
irq_table[i].irq = i;
irq_table[i].pil = pil;
} else {
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
i = 0;
}
found:
spin_unlock_irqrestore(&irq_table_lock, flags);
return i;
}
/* Based on a single pil handler_irq may need to call several
* interrupt handlers. Use irq_map as entry to irq_table,
* and let each entry in irq_table point to the next entry.
*/
void irq_link(unsigned int irq)
{
struct irq_bucket *p;
unsigned long flags;
unsigned int pil;
BUG_ON(irq >= NR_IRQS);
spin_lock_irqsave(&irq_map_lock, flags);
p = &irq_table[irq];
pil = p->pil;
BUG_ON(pil > SUN4D_MAX_IRQ);
p->next = irq_map[pil];
irq_map[pil] = p;
spin_unlock_irqrestore(&irq_map_lock, flags);
}
void irq_unlink(unsigned int irq)
{
struct irq_bucket *p, **pnext;
unsigned long flags;
BUG_ON(irq >= NR_IRQS);
spin_lock_irqsave(&irq_map_lock, flags);
p = &irq_table[irq];
BUG_ON(p->pil > SUN4D_MAX_IRQ);
pnext = &irq_map[p->pil];
while (*pnext != p)
pnext = &(*pnext)->next;
*pnext = p->next;
spin_unlock_irqrestore(&irq_map_lock, flags);
}
/* /proc/interrupts printing */
int arch_show_interrupts(struct seq_file *p, int prec)
{
int j;
#ifdef CONFIG_SMP
seq_printf(p, "RES: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
seq_printf(p, " IPI rescheduling interrupts\n");
seq_printf(p, "CAL: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
seq_printf(p, " IPI function call interrupts\n");
#endif
seq_printf(p, "NMI: ");
for_each_online_cpu(j)
seq_printf(p, "%10u ", cpu_data(j).counter);
seq_printf(p, " Non-maskable interrupts\n");
return 0;
}
void handler_irq(unsigned int pil, struct pt_regs *regs)
{
struct pt_regs *old_regs;
struct irq_bucket *p;
BUG_ON(pil > 15);
old_regs = set_irq_regs(regs);
irq_enter();
p = irq_map[pil];
while (p) {
struct irq_bucket *next = p->next;
generic_handle_irq(p->irq);
p = next;
}
irq_exit();
set_irq_regs(old_regs);
}
#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
static unsigned int floppy_irq;
int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
{
unsigned int cpu_irq;
int err;
#if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON
struct tt_entry *trap_table;
#endif
err = request_irq(irq, irq_handler, 0, "floppy", NULL);
if (err)
return -1;
/* Save for later use in floppy interrupt handler */
floppy_irq = irq;
cpu_irq = (irq & (NR_IRQS - 1));
/* Dork with trap table if we get this far. */
#define INSTANTIATE(table) \
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
SPARC_BRANCH((unsigned long) floppy_hardint, \
(unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
INSTANTIATE(sparc_ttable)
#if defined CONFIG_SMP && !defined CONFIG_SPARC_LEON
trap_table = &trapbase_cpu1;
INSTANTIATE(trap_table)
trap_table = &trapbase_cpu2;
INSTANTIATE(trap_table)
trap_table = &trapbase_cpu3;
INSTANTIATE(trap_table)
#endif
#undef INSTANTIATE
/*
* XXX Correct thing whould be to flush only I- and D-cache lines
* which contain the handler in question. But as of time of the
* writing we have no CPU-neutral interface to fine-grained flushes.
*/
flush_cache_all();
return 0;
}
EXPORT_SYMBOL(sparc_floppy_request_irq);
/*
* These variables are used to access state from the assembler
* interrupt handler, floppy_hardint, so we cannot put these in
* the floppy driver image because that would not work in the
* modular case.
*/
volatile unsigned char *fdc_status;
EXPORT_SYMBOL(fdc_status);
char *pdma_vaddr;
EXPORT_SYMBOL(pdma_vaddr);
unsigned long pdma_size;
EXPORT_SYMBOL(pdma_size);
volatile int doing_pdma;
EXPORT_SYMBOL(doing_pdma);
char *pdma_base;
EXPORT_SYMBOL(pdma_base);
unsigned long pdma_areasize;
EXPORT_SYMBOL(pdma_areasize);
/* Use the generic irq support to call floppy_interrupt
* which was setup using request_irq() in sparc_floppy_request_irq().
* We only have one floppy interrupt so we do not need to check
* for additional handlers being wired up by irq_link()
*/
void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct pt_regs *old_regs;
old_regs = set_irq_regs(regs);
irq_enter();
generic_handle_irq(floppy_irq);
irq_exit();
set_irq_regs(old_regs);
}
#endif
/* djhr
* This could probably be made indirect too and assigned in the CPU
* bits of the code. That would be much nicer I think and would also
* fit in with the idea of being able to tune your kernel for your machine
* by removing unrequired machine and device support.
*
*/
void __init init_IRQ(void)
{
switch (sparc_cpu_model) {
case sun4c:
case sun4:
sun4c_init_IRQ();
break;
case sun4m:
pcic_probe();
if (pcic_present())
sun4m_pci_init_IRQ();
else
sun4m_init_IRQ();
break;
case sun4d:
sun4d_init_IRQ();
break;
case sparc_leon:
leon_init_IRQ();
break;
default:
prom_printf("Cannot initialize IRQs on this Sun machine...");
break;
}
btfixup();
}