linux/mm/page_alloc.c
Michal Hocko 63f53dea0c mm: warn about allocations which stall for too long
Currently we do warn only about allocation failures but small
allocations are basically nofail and they might loop in the page
allocator for a long time.  Especially when the reclaim cannot make any
progress - e.g.  GFP_NOFS cannot invoke the oom killer and rely on a
different context to make a forward progress in case there is a lot
memory used by filesystems.

Give us at least a clue when something like this happens and warn about
allocations which take more than 10s.  Print the basic allocation
context information along with the cumulative time spent in the
allocation as well as the allocation stack.  Repeat the warning after
every 10 seconds so that we know that the problem is permanent rather
than ephemeral.

Link: http://lkml.kernel.org/r/20160929084407.7004-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00

7544 lines
205 KiB
C

/*
* linux/mm/page_alloc.c
*
* Manages the free list, the system allocates free pages here.
* Note that kmalloc() lives in slab.c
*
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
* Swap reorganised 29.12.95, Stephen Tweedie
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
*/
#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
#include <linux/jiffies.h>
#include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/kmemcheck.h>
#include <linux/kasan.h>
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/oom.h>
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/memory_hotplug.h>
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
#include <linux/vmstat.h>
#include <linux/mempolicy.h>
#include <linux/memremap.h>
#include <linux/stop_machine.h>
#include <linux/sort.h>
#include <linux/pfn.h>
#include <linux/backing-dev.h>
#include <linux/fault-inject.h>
#include <linux/page-isolation.h>
#include <linux/page_ext.h>
#include <linux/debugobjects.h>
#include <linux/kmemleak.h>
#include <linux/compaction.h>
#include <trace/events/kmem.h>
#include <linux/prefetch.h>
#include <linux/mm_inline.h>
#include <linux/migrate.h>
#include <linux/page_ext.h>
#include <linux/hugetlb.h>
#include <linux/sched/rt.h>
#include <linux/page_owner.h>
#include <linux/kthread.h>
#include <linux/memcontrol.h>
#include <asm/sections.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
#include "internal.h"
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
#define MIN_PERCPU_PAGELIST_FRACTION (8)
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
* It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
* Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
* defined in <linux/topology.h>.
*/
DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
int _node_numa_mem_[MAX_NUMNODES];
#endif
/*
* Array of node states.
*/
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
[N_POSSIBLE] = NODE_MASK_ALL,
[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
[N_HIGH_MEMORY] = { { [0] = 1UL } },
#endif
#ifdef CONFIG_MOVABLE_NODE
[N_MEMORY] = { { [0] = 1UL } },
#endif
[N_CPU] = { { [0] = 1UL } },
#endif /* NUMA */
};
EXPORT_SYMBOL(node_states);
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);
unsigned long totalram_pages __read_mostly;
unsigned long totalreserve_pages __read_mostly;
unsigned long totalcma_pages __read_mostly;
int percpu_pagelist_fraction;
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
/*
* A cached value of the page's pageblock's migratetype, used when the page is
* put on a pcplist. Used to avoid the pageblock migratetype lookup when
* freeing from pcplists in most cases, at the cost of possibly becoming stale.
* Also the migratetype set in the page does not necessarily match the pcplist
* index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
* other index - this ensures that it will be put on the correct CMA freelist.
*/
static inline int get_pcppage_migratetype(struct page *page)
{
return page->index;
}
static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
page->index = migratetype;
}
#ifdef CONFIG_PM_SLEEP
/*
* The following functions are used by the suspend/hibernate code to temporarily
* change gfp_allowed_mask in order to avoid using I/O during memory allocations
* while devices are suspended. To avoid races with the suspend/hibernate code,
* they should always be called with pm_mutex held (gfp_allowed_mask also should
* only be modified with pm_mutex held, unless the suspend/hibernate code is
* guaranteed not to run in parallel with that modification).
*/
static gfp_t saved_gfp_mask;
void pm_restore_gfp_mask(void)
{
WARN_ON(!mutex_is_locked(&pm_mutex));
if (saved_gfp_mask) {
gfp_allowed_mask = saved_gfp_mask;
saved_gfp_mask = 0;
}
}
void pm_restrict_gfp_mask(void)
{
WARN_ON(!mutex_is_locked(&pm_mutex));
WARN_ON(saved_gfp_mask);
saved_gfp_mask = gfp_allowed_mask;
gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
}
bool pm_suspended_storage(void)
{
if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
return false;
return true;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
unsigned int pageblock_order __read_mostly;
#endif
static void __free_pages_ok(struct page *page, unsigned int order);
/*
* results with 256, 32 in the lowmem_reserve sysctl:
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
* 1G machine -> (16M dma, 784M normal, 224M high)
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
* HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
*
* TBD: should special case ZONE_DMA32 machines here - in those we normally
* don't need any ZONE_NORMAL reservation
*/
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
#ifdef CONFIG_ZONE_DMA
256,
#endif
#ifdef CONFIG_ZONE_DMA32
256,
#endif
#ifdef CONFIG_HIGHMEM
32,
#endif
32,
};
EXPORT_SYMBOL(totalram_pages);
static char * const zone_names[MAX_NR_ZONES] = {
#ifdef CONFIG_ZONE_DMA
"DMA",
#endif
#ifdef CONFIG_ZONE_DMA32
"DMA32",
#endif
"Normal",
#ifdef CONFIG_HIGHMEM
"HighMem",
#endif
"Movable",
#ifdef CONFIG_ZONE_DEVICE
"Device",
#endif
};
char * const migratetype_names[MIGRATE_TYPES] = {
"Unmovable",
"Movable",
"Reclaimable",
"HighAtomic",
#ifdef CONFIG_CMA
"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
"Isolate",
#endif
};
compound_page_dtor * const compound_page_dtors[] = {
NULL,
free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
free_huge_page,
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
free_transhuge_page,
#endif
};
int min_free_kbytes = 1024;
int user_min_free_kbytes = -1;
int watermark_scale_factor = 10;
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
static unsigned long __meminitdata dma_reserve;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
static bool mirrored_kernelcore;
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
int nr_online_nodes __read_mostly = 1;
EXPORT_SYMBOL(nr_node_ids);
EXPORT_SYMBOL(nr_online_nodes);
#endif
int page_group_by_mobility_disabled __read_mostly;
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
pgdat->first_deferred_pfn = ULONG_MAX;
}
/* Returns true if the struct page for the pfn is uninitialised */
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
{
int nid = early_pfn_to_nid(pfn);
if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
return true;
return false;
}
/*
* Returns false when the remaining initialisation should be deferred until
* later in the boot cycle when it can be parallelised.
*/
static inline bool update_defer_init(pg_data_t *pgdat,
unsigned long pfn, unsigned long zone_end,
unsigned long *nr_initialised)
{
unsigned long max_initialise;
/* Always populate low zones for address-contrained allocations */
if (zone_end < pgdat_end_pfn(pgdat))
return true;
/*
* Initialise at least 2G of a node but also take into account that
* two large system hashes that can take up 1GB for 0.25TB/node.
*/
max_initialise = max(2UL << (30 - PAGE_SHIFT),
(pgdat->node_spanned_pages >> 8));
(*nr_initialised)++;
if ((*nr_initialised > max_initialise) &&
(pfn & (PAGES_PER_SECTION - 1)) == 0) {
pgdat->first_deferred_pfn = pfn;
return false;
}
return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}
static inline bool early_page_uninitialised(unsigned long pfn)
{
return false;
}
static inline bool update_defer_init(pg_data_t *pgdat,
unsigned long pfn, unsigned long zone_end,
unsigned long *nr_initialised)
{
return true;
}
#endif
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
return __pfn_to_section(pfn)->pageblock_flags;
#else
return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}
static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
pfn &= (PAGES_PER_SECTION-1);
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}
/**
* get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
* @page: The page within the block of interest
* @pfn: The target page frame number
* @end_bitidx: The last bit of interest to retrieve
* @mask: mask of bits that the caller is interested in
*
* Return: pageblock_bits flags
*/
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
unsigned long pfn,
unsigned long end_bitidx,
unsigned long mask)
{
unsigned long *bitmap;
unsigned long bitidx, word_bitidx;
unsigned long word;
bitmap = get_pageblock_bitmap(page, pfn);
bitidx = pfn_to_bitidx(page, pfn);
word_bitidx = bitidx / BITS_PER_LONG;
bitidx &= (BITS_PER_LONG-1);
word = bitmap[word_bitidx];
bitidx += end_bitidx;
return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}
unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
unsigned long end_bitidx,
unsigned long mask)
{
return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}
static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}
/**
* set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
* @page: The page within the block of interest
* @flags: The flags to set
* @pfn: The target page frame number
* @end_bitidx: The last bit of interest
* @mask: mask of bits that the caller is interested in
*/
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
unsigned long pfn,
unsigned long end_bitidx,
unsigned long mask)
{
unsigned long *bitmap;
unsigned long bitidx, word_bitidx;
unsigned long old_word, word;
BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
bitmap = get_pageblock_bitmap(page, pfn);
bitidx = pfn_to_bitidx(page, pfn);
word_bitidx = bitidx / BITS_PER_LONG;
bitidx &= (BITS_PER_LONG-1);
VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
bitidx += end_bitidx;
mask <<= (BITS_PER_LONG - bitidx - 1);
flags <<= (BITS_PER_LONG - bitidx - 1);
word = READ_ONCE(bitmap[word_bitidx]);
for (;;) {
old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
if (word == old_word)
break;
word = old_word;
}
}
void set_pageblock_migratetype(struct page *page, int migratetype)
{
if (unlikely(page_group_by_mobility_disabled &&
migratetype < MIGRATE_PCPTYPES))
migratetype = MIGRATE_UNMOVABLE;
set_pageblock_flags_group(page, (unsigned long)migratetype,
PB_migrate, PB_migrate_end);
}
#ifdef CONFIG_DEBUG_VM
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
{
int ret = 0;
unsigned seq;
unsigned long pfn = page_to_pfn(page);
unsigned long sp, start_pfn;
do {
seq = zone_span_seqbegin(zone);
start_pfn = zone->zone_start_pfn;
sp = zone->spanned_pages;
if (!zone_spans_pfn(zone, pfn))
ret = 1;
} while (zone_span_seqretry(zone, seq));
if (ret)
pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
pfn, zone_to_nid(zone), zone->name,
start_pfn, start_pfn + sp);
return ret;
}
static int page_is_consistent(struct zone *zone, struct page *page)
{
if (!pfn_valid_within(page_to_pfn(page)))
return 0;
if (zone != page_zone(page))
return 0;
return 1;
}
/*
* Temporary debugging check for pages not lying within a given zone.
*/
static int bad_range(struct zone *zone, struct page *page)
{
if (page_outside_zone_boundaries(zone, page))
return 1;
if (!page_is_consistent(zone, page))
return 1;
return 0;
}
#else
static inline int bad_range(struct zone *zone, struct page *page)
{
return 0;
}
#endif
static void bad_page(struct page *page, const char *reason,
unsigned long bad_flags)
{
static unsigned long resume;
static unsigned long nr_shown;
static unsigned long nr_unshown;
/*
* Allow a burst of 60 reports, then keep quiet for that minute;
* or allow a steady drip of one report per second.
*/
if (nr_shown == 60) {
if (time_before(jiffies, resume)) {
nr_unshown++;
goto out;
}
if (nr_unshown) {
pr_alert(
"BUG: Bad page state: %lu messages suppressed\n",
nr_unshown);
nr_unshown = 0;
}
nr_shown = 0;
}
if (nr_shown++ == 0)
resume = jiffies + 60 * HZ;
pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
current->comm, page_to_pfn(page));
__dump_page(page, reason);
bad_flags &= page->flags;
if (bad_flags)
pr_alert("bad because of flags: %#lx(%pGp)\n",
bad_flags, &bad_flags);
dump_page_owner(page);
print_modules();
dump_stack();
out:
/* Leave bad fields for debug, except PageBuddy could make trouble */
page_mapcount_reset(page); /* remove PageBuddy */
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
/*
* Higher-order pages are called "compound pages". They are structured thusly:
*
* The first PAGE_SIZE page is called the "head page" and have PG_head set.
*
* The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
* in bit 0 of page->compound_head. The rest of bits is pointer to head page.
*
* The first tail page's ->compound_dtor holds the offset in array of compound
* page destructors. See compound_page_dtors.
*
* The first tail page's ->compound_order holds the order of allocation.
* This usage means that zero-order pages may not be compound.
*/
void free_compound_page(struct page *page)
{
__free_pages_ok(page, compound_order(page));
}
void prep_compound_page(struct page *page, unsigned int order)
{
int i;
int nr_pages = 1 << order;
set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
set_compound_order(page, order);
__SetPageHead(page);
for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
set_page_count(p, 0);
p->mapping = TAIL_MAPPING;
set_compound_head(p, page);
}
atomic_set(compound_mapcount_ptr(page), -1);
}
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
bool _debug_pagealloc_enabled __read_mostly
= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
EXPORT_SYMBOL(_debug_pagealloc_enabled);
bool _debug_guardpage_enabled __read_mostly;
static int __init early_debug_pagealloc(char *buf)
{
if (!buf)
return -EINVAL;
return kstrtobool(buf, &_debug_pagealloc_enabled);
}
early_param("debug_pagealloc", early_debug_pagealloc);
static bool need_debug_guardpage(void)
{
/* If we don't use debug_pagealloc, we don't need guard page */
if (!debug_pagealloc_enabled())
return false;
if (!debug_guardpage_minorder())
return false;
return true;
}
static void init_debug_guardpage(void)
{
if (!debug_pagealloc_enabled())
return;
if (!debug_guardpage_minorder())
return;
_debug_guardpage_enabled = true;
}
struct page_ext_operations debug_guardpage_ops = {
.need = need_debug_guardpage,
.init = init_debug_guardpage,
};
static int __init debug_guardpage_minorder_setup(char *buf)
{
unsigned long res;
if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
pr_err("Bad debug_guardpage_minorder value\n");
return 0;
}
_debug_guardpage_minorder = res;
pr_info("Setting debug_guardpage_minorder to %lu\n", res);
return 0;
}
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
static inline bool set_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype)
{
struct page_ext *page_ext;
if (!debug_guardpage_enabled())
return false;
if (order >= debug_guardpage_minorder())
return false;
page_ext = lookup_page_ext(page);
if (unlikely(!page_ext))
return false;
__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
INIT_LIST_HEAD(&page->lru);
set_page_private(page, order);
/* Guard pages are not available for any usage */
__mod_zone_freepage_state(zone, -(1 << order), migratetype);
return true;
}
static inline void clear_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype)
{
struct page_ext *page_ext;
if (!debug_guardpage_enabled())
return;
page_ext = lookup_page_ext(page);
if (unlikely(!page_ext))
return;
__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
set_page_private(page, 0);
if (!is_migrate_isolate(migratetype))
__mod_zone_freepage_state(zone, (1 << order), migratetype);
}
#else
struct page_ext_operations debug_guardpage_ops;
static inline bool set_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype) { return false; }
static inline void clear_page_guard(struct zone *zone, struct page *page,
unsigned int order, int migratetype) {}
#endif
static inline void set_page_order(struct page *page, unsigned int order)
{
set_page_private(page, order);
__SetPageBuddy(page);
}
static inline void rmv_page_order(struct page *page)
{
__ClearPageBuddy(page);
set_page_private(page, 0);
}
/*
* This function checks whether a page is free && is the buddy
* we can do coalesce a page and its buddy if
* (a) the buddy is not in a hole &&
* (b) the buddy is in the buddy system &&
* (c) a page and its buddy have the same order &&
* (d) a page and its buddy are in the same zone.
*
* For recording whether a page is in the buddy system, we set ->_mapcount
* PAGE_BUDDY_MAPCOUNT_VALUE.
* Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
* serialized by zone->lock.
*
* For recording page's order, we use page_private(page).
*/
static inline int page_is_buddy(struct page *page, struct page *buddy,
unsigned int order)
{
if (!pfn_valid_within(page_to_pfn(buddy)))
return 0;
if (page_is_guard(buddy) && page_order(buddy) == order) {
if (page_zone_id(page) != page_zone_id(buddy))
return 0;
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
return 1;
}
if (PageBuddy(buddy) && page_order(buddy) == order) {
/*
* zone check is done late to avoid uselessly
* calculating zone/node ids for pages that could
* never merge.
*/
if (page_zone_id(page) != page_zone_id(buddy))
return 0;
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
return 1;
}
return 0;
}
/*
* Freeing function for a buddy system allocator.
*
* The concept of a buddy system is to maintain direct-mapped table
* (containing bit values) for memory blocks of various "orders".
* The bottom level table contains the map for the smallest allocatable
* units of memory (here, pages), and each level above it describes
* pairs of units from the levels below, hence, "buddies".
* At a high level, all that happens here is marking the table entry
* at the bottom level available, and propagating the changes upward
* as necessary, plus some accounting needed to play nicely with other
* parts of the VM system.
* At each level, we keep a list of pages, which are heads of continuous
* free pages of length of (1 << order) and marked with _mapcount
* PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
* field.
* So when we are allocating or freeing one, we can derive the state of the
* other. That is, if we allocate a small block, and both were
* free, the remainder of the region must be split into blocks.
* If a block is freed, and its buddy is also free, then this
* triggers coalescing into a block of larger size.
*
* -- nyc
*/
static inline void __free_one_page(struct page *page,
unsigned long pfn,
struct zone *zone, unsigned int order,
int migratetype)
{
unsigned long page_idx;
unsigned long combined_idx;
unsigned long uninitialized_var(buddy_idx);
struct page *buddy;
unsigned int max_order;
max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
VM_BUG_ON(!zone_is_initialized(zone));
VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
VM_BUG_ON(migratetype == -1);
if (likely(!is_migrate_isolate(migratetype)))
__mod_zone_freepage_state(zone, 1 << order, migratetype);
page_idx = pfn & ((1 << MAX_ORDER) - 1);
VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
VM_BUG_ON_PAGE(bad_range(zone, page), page);
continue_merging:
while (order < max_order - 1) {
buddy_idx = __find_buddy_index(page_idx, order);
buddy = page + (buddy_idx - page_idx);
if (!page_is_buddy(page, buddy, order))
goto done_merging;
/*
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
* merge with it and move up one order.
*/
if (page_is_guard(buddy)) {
clear_page_guard(zone, buddy, order, migratetype);
} else {
list_del(&buddy->lru);
zone->free_area[order].nr_free--;
rmv_page_order(buddy);
}
combined_idx = buddy_idx & page_idx;
page = page + (combined_idx - page_idx);
page_idx = combined_idx;
order++;
}
if (max_order < MAX_ORDER) {
/* If we are here, it means order is >= pageblock_order.
* We want to prevent merge between freepages on isolate
* pageblock and normal pageblock. Without this, pageblock
* isolation could cause incorrect freepage or CMA accounting.
*
* We don't want to hit this code for the more frequent
* low-order merging.
*/
if (unlikely(has_isolate_pageblock(zone))) {
int buddy_mt;
buddy_idx = __find_buddy_index(page_idx, order);
buddy = page + (buddy_idx - page_idx);
buddy_mt = get_pageblock_migratetype(buddy);
if (migratetype != buddy_mt
&& (is_migrate_isolate(migratetype) ||
is_migrate_isolate(buddy_mt)))
goto done_merging;
}
max_order++;
goto continue_merging;
}
done_merging:
set_page_order(page, order);
/*
* If this is not the largest possible page, check if the buddy
* of the next-highest order is free. If it is, it's possible
* that pages are being freed that will coalesce soon. In case,
* that is happening, add the free page to the tail of the list
* so it's less likely to be used soon and more likely to be merged
* as a higher order page
*/
if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
struct page *higher_page, *higher_buddy;
combined_idx = buddy_idx & page_idx;
higher_page = page + (combined_idx - page_idx);
buddy_idx = __find_buddy_index(combined_idx, order + 1);
higher_buddy = higher_page + (buddy_idx - combined_idx);
if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
list_add_tail(&page->lru,
&zone->free_area[order].free_list[migratetype]);
goto out;
}
}
list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
zone->free_area[order].nr_free++;
}
/*
* A bad page could be due to a number of fields. Instead of multiple branches,
* try and check multiple fields with one check. The caller must do a detailed
* check if necessary.
*/
static inline bool page_expected_state(struct page *page,
unsigned long check_flags)
{
if (unlikely(atomic_read(&page->_mapcount) != -1))
return false;
if (unlikely((unsigned long)page->mapping |
page_ref_count(page) |
#ifdef CONFIG_MEMCG
(unsigned long)page->mem_cgroup |
#endif
(page->flags & check_flags)))
return false;
return true;
}
static void free_pages_check_bad(struct page *page)
{
const char *bad_reason;
unsigned long bad_flags;
bad_reason = NULL;
bad_flags = 0;
if (unlikely(atomic_read(&page->_mapcount) != -1))
bad_reason = "nonzero mapcount";
if (unlikely(page->mapping != NULL))
bad_reason = "non-NULL mapping";
if (unlikely(page_ref_count(page) != 0))
bad_reason = "nonzero _refcount";
if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
}
#ifdef CONFIG_MEMCG
if (unlikely(page->mem_cgroup))
bad_reason = "page still charged to cgroup";
#endif
bad_page(page, bad_reason, bad_flags);
}
static inline int free_pages_check(struct page *page)
{
if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
return 0;
/* Something has gone sideways, find it */
free_pages_check_bad(page);
return 1;
}
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
int ret = 1;
/*
* We rely page->lru.next never has bit 0 set, unless the page
* is PageTail(). Let's make sure that's true even for poisoned ->lru.
*/
BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
ret = 0;
goto out;
}
switch (page - head_page) {
case 1:
/* the first tail page: ->mapping is compound_mapcount() */
if (unlikely(compound_mapcount(page))) {
bad_page(page, "nonzero compound_mapcount", 0);
goto out;
}
break;
case 2:
/*
* the second tail page: ->mapping is
* page_deferred_list().next -- ignore value.
*/
break;
default:
if (page->mapping != TAIL_MAPPING) {
bad_page(page, "corrupted mapping in tail page", 0);
goto out;
}
break;
}
if (unlikely(!PageTail(page))) {
bad_page(page, "PageTail not set", 0);
goto out;
}
if (unlikely(compound_head(page) != head_page)) {
bad_page(page, "compound_head not consistent", 0);
goto out;
}
ret = 0;
out:
page->mapping = NULL;
clear_compound_head(page);
return ret;
}
static __always_inline bool free_pages_prepare(struct page *page,
unsigned int order, bool check_free)
{
int bad = 0;
VM_BUG_ON_PAGE(PageTail(page), page);
trace_mm_page_free(page, order);
kmemcheck_free_shadow(page, order);
/*
* Check tail pages before head page information is cleared to
* avoid checking PageCompound for order-0 pages.
*/
if (unlikely(order)) {
bool compound = PageCompound(page);
int i;
VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
if (compound)
ClearPageDoubleMap(page);
for (i = 1; i < (1 << order); i++) {
if (compound)
bad += free_tail_pages_check(page, page + i);
if (unlikely(free_pages_check(page + i))) {
bad++;
continue;
}
(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
}
}
if (PageMappingFlags(page))
page->mapping = NULL;
if (memcg_kmem_enabled() && PageKmemcg(page))
memcg_kmem_uncharge(page, order);
if (check_free)
bad += free_pages_check(page);
if (bad)
return false;
page_cpupid_reset_last(page);
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
reset_page_owner(page, order);
if (!PageHighMem(page)) {
debug_check_no_locks_freed(page_address(page),
PAGE_SIZE << order);
debug_check_no_obj_freed(page_address(page),
PAGE_SIZE << order);
}
arch_free_page(page, order);
kernel_poison_pages(page, 1 << order, 0);
kernel_map_pages(page, 1 << order, 0);
kasan_free_pages(page, order);
return true;
}
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
return free_pages_prepare(page, 0, true);
}
static inline bool bulkfree_pcp_prepare(struct page *page)
{
return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
return free_pages_prepare(page, 0, false);
}
static bool bulkfree_pcp_prepare(struct page *page)
{
return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */
/*
* Frees a number of pages from the PCP lists
* Assumes all pages on list are in same zone, and of same order.
* count is the number of pages to free.
*
* If the zone was previously in an "all pages pinned" state then look to
* see if this freeing clears that state.
*
* And clear the zone's pages_scanned counter, to hold off the "all pages are
* pinned" detection logic.
*/
static void free_pcppages_bulk(struct zone *zone, int count,
struct per_cpu_pages *pcp)
{
int migratetype = 0;
int batch_free = 0;
unsigned long nr_scanned;
bool isolated_pageblocks;
spin_lock(&zone->lock);
isolated_pageblocks = has_isolate_pageblock(zone);
nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
if (nr_scanned)
__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
while (count) {
struct page *page;
struct list_head *list;
/*
* Remove pages from lists in a round-robin fashion. A
* batch_free count is maintained that is incremented when an
* empty list is encountered. This is so more pages are freed
* off fuller lists instead of spinning excessively around empty
* lists
*/
do {
batch_free++;
if (++migratetype == MIGRATE_PCPTYPES)
migratetype = 0;
list = &pcp->lists[migratetype];
} while (list_empty(list));
/* This is the only non-empty list. Free them all. */
if (batch_free == MIGRATE_PCPTYPES)
batch_free = count;
do {
int mt; /* migratetype of the to-be-freed page */
page = list_last_entry(list, struct page, lru);
/* must delete as __free_one_page list manipulates */
list_del(&page->lru);
mt = get_pcppage_migratetype(page);
/* MIGRATE_ISOLATE page should not go to pcplists */
VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
/* Pageblock could have been isolated meanwhile */
if (unlikely(isolated_pageblocks))
mt = get_pageblock_migratetype(page);
if (bulkfree_pcp_prepare(page))
continue;
__free_one_page(page, page_to_pfn(page), zone, 0, mt);
trace_mm_page_pcpu_drain(page, 0, mt);
} while (--count && --batch_free && !list_empty(list));
}
spin_unlock(&zone->lock);
}
static void free_one_page(struct zone *zone,
struct page *page, unsigned long pfn,
unsigned int order,
int migratetype)
{
unsigned long nr_scanned;
spin_lock(&zone->lock);
nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
if (nr_scanned)
__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
if (unlikely(has_isolate_pageblock(zone) ||
is_migrate_isolate(migratetype))) {
migratetype = get_pfnblock_migratetype(page, pfn);
}
__free_one_page(page, pfn, zone, order, migratetype);
spin_unlock(&zone->lock);
}
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
unsigned long zone, int nid)
{
set_page_links(page, zone, nid, pfn);
init_page_count(page);
page_mapcount_reset(page);
page_cpupid_reset_last(page);
INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
if (!is_highmem_idx(zone))
set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}
static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
int nid)
{
return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void init_reserved_page(unsigned long pfn)
{
pg_data_t *pgdat;
int nid, zid;
if (!early_page_uninitialised(pfn))
return;
nid = early_pfn_to_nid(pfn);
pgdat = NODE_DATA(nid);
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
struct zone *zone = &pgdat->node_zones[zid];
if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
break;
}
__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
/*
* Initialised pages do not have PageReserved set. This function is
* called for each range allocated by the bootmem allocator and
* marks the pages PageReserved. The remaining valid pages are later
* sent to the buddy page allocator.
*/
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
{
unsigned long start_pfn = PFN_DOWN(start);
unsigned long end_pfn = PFN_UP(end);
for (; start_pfn < end_pfn; start_pfn++) {
if (pfn_valid(start_pfn)) {
struct page *page = pfn_to_page(start_pfn);
init_reserved_page(start_pfn);
/* Avoid false-positive PageTail() */
INIT_LIST_HEAD(&page->lru);
SetPageReserved(page);
}
}
}
static void __free_pages_ok(struct page *page, unsigned int order)
{
unsigned long flags;
int migratetype;
unsigned long pfn = page_to_pfn(page);
if (!free_pages_prepare(page, order, true))
return;
migratetype = get_pfnblock_migratetype(page, pfn);
local_irq_save(flags);
__count_vm_events(PGFREE, 1 << order);
free_one_page(page_zone(page), page, pfn, order, migratetype);
local_irq_restore(flags);
}
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
{
unsigned int nr_pages = 1 << order;
struct page *p = page;
unsigned int loop;
prefetchw(p);
for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
prefetchw(p + 1);
__ClearPageReserved(p);
set_page_count(p, 0);
}
__ClearPageReserved(p);
set_page_count(p, 0);
page_zone(page)->managed_pages += nr_pages;
set_page_refcounted(page);
__free_pages(page, order);
}
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
int __meminit early_pfn_to_nid(unsigned long pfn)
{
static DEFINE_SPINLOCK(early_pfn_lock);
int nid;
spin_lock(&early_pfn_lock);
nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
if (nid < 0)
nid = first_online_node;
spin_unlock(&early_pfn_lock);
return nid;
}
#endif
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
struct mminit_pfnnid_cache *state)
{
int nid;
nid = __early_pfn_to_nid(pfn, state);
if (nid >= 0 && nid != node)
return false;
return true;
}
/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}
#else
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
return true;
}
static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
struct mminit_pfnnid_cache *state)
{
return true;
}
#endif
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
unsigned int order)
{
if (early_page_uninitialised(pfn))
return;
return __free_pages_boot_core(page, order);
}
/*
* Check that the whole (or subset of) a pageblock given by the interval of
* [start_pfn, end_pfn) is valid and within the same zone, before scanning it
* with the migration of free compaction scanner. The scanners then need to
* use only pfn_valid_within() check for arches that allow holes within
* pageblocks.
*
* Return struct page pointer of start_pfn, or NULL if checks were not passed.
*
* It's possible on some configurations to have a setup like node0 node1 node0
* i.e. it's possible that all pages within a zones range of pages do not
* belong to a single zone. We assume that a border between node0 and node1
* can occur within a single pageblock, but not a node0 node1 node0
* interleaving within a single pageblock. It is therefore sufficient to check
* the first and last page of a pageblock and avoid checking each individual
* page in a pageblock.
*/
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
unsigned long end_pfn, struct zone *zone)
{
struct page *start_page;
struct page *end_page;
/* end_pfn is one past the range we are checking */
end_pfn--;
if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
return NULL;
start_page = pfn_to_page(start_pfn);
if (page_zone(start_page) != zone)
return NULL;
end_page = pfn_to_page(end_pfn);
/* This gives a shorter code than deriving page_zone(end_page) */
if (page_zone_id(start_page) != page_zone_id(end_page))
return NULL;
return start_page;
}
void set_zone_contiguous(struct zone *zone)
{
unsigned long block_start_pfn = zone->zone_start_pfn;
unsigned long block_end_pfn;
block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
for (; block_start_pfn < zone_end_pfn(zone);
block_start_pfn = block_end_pfn,
block_end_pfn += pageblock_nr_pages) {
block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
if (!__pageblock_pfn_to_page(block_start_pfn,
block_end_pfn, zone))
return;
}
/* We confirm that there is no hole */
zone->contiguous = true;
}
void clear_zone_contiguous(struct zone *zone)
{
zone->contiguous = false;
}
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void __init deferred_free_range(struct page *page,
unsigned long pfn, int nr_pages)
{
int i;
if (!page)
return;
/* Free a large naturally-aligned chunk if possible */
if (nr_pages == pageblock_nr_pages &&
(pfn & (pageblock_nr_pages - 1)) == 0) {
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
__free_pages_boot_core(page, pageblock_order);
return;
}
for (i = 0; i < nr_pages; i++, page++, pfn++) {
if ((pfn & (pageblock_nr_pages - 1)) == 0)
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
__free_pages_boot_core(page, 0);
}
}
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
static inline void __init pgdat_init_report_one_done(void)
{
if (atomic_dec_and_test(&pgdat_init_n_undone))
complete(&pgdat_init_all_done_comp);
}
/* Initialise remaining memory on a node */
static int __init deferred_init_memmap(void *data)
{
pg_data_t *pgdat = data;
int nid = pgdat->node_id;
struct mminit_pfnnid_cache nid_init_state = { };
unsigned long start = jiffies;
unsigned long nr_pages = 0;
unsigned long walk_start, walk_end;
int i, zid;
struct zone *zone;
unsigned long first_init_pfn = pgdat->first_deferred_pfn;
const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
if (first_init_pfn == ULONG_MAX) {
pgdat_init_report_one_done();
return 0;
}
/* Bind memory initialisation thread to a local node if possible */
if (!cpumask_empty(cpumask))
set_cpus_allowed_ptr(current, cpumask);
/* Sanity check boundaries */
BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
pgdat->first_deferred_pfn = ULONG_MAX;
/* Only the highest zone is deferred so find it */
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
zone = pgdat->node_zones + zid;
if (first_init_pfn < zone_end_pfn(zone))
break;
}
for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
unsigned long pfn, end_pfn;
struct page *page = NULL;
struct page *free_base_page = NULL;
unsigned long free_base_pfn = 0;
int nr_to_free = 0;
end_pfn = min(walk_end, zone_end_pfn(zone));
pfn = first_init_pfn;
if (pfn < walk_start)
pfn = walk_start;
if (pfn < zone->zone_start_pfn)
pfn = zone->zone_start_pfn;
for (; pfn < end_pfn; pfn++) {
if (!pfn_valid_within(pfn))
goto free_range;
/*
* Ensure pfn_valid is checked every
* pageblock_nr_pages for memory holes
*/
if ((pfn & (pageblock_nr_pages - 1)) == 0) {
if (!pfn_valid(pfn)) {
page = NULL;
goto free_range;
}
}
if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
page = NULL;
goto free_range;
}
/* Minimise pfn page lookups and scheduler checks */
if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
page++;
} else {
nr_pages += nr_to_free;
deferred_free_range(free_base_page,
free_base_pfn, nr_to_free);
free_base_page = NULL;
free_base_pfn = nr_to_free = 0;
page = pfn_to_page(pfn);
cond_resched();
}
if (page->flags) {
VM_BUG_ON(page_zone(page) != zone);
goto free_range;
}
__init_single_page(page, pfn, zid, nid);
if (!free_base_page) {
free_base_page = page;
free_base_pfn = pfn;
nr_to_free = 0;
}
nr_to_free++;
/* Where possible, batch up pages for a single free */
continue;
free_range:
/* Free the current block of pages to allocator */
nr_pages += nr_to_free;
deferred_free_range(free_base_page, free_base_pfn,
nr_to_free);
free_base_page = NULL;
free_base_pfn = nr_to_free = 0;
}
/* Free the last block of pages to allocator */
nr_pages += nr_to_free;
deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
first_init_pfn = max(end_pfn, first_init_pfn);
}
/* Sanity check that the next zone really is unpopulated */
WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
jiffies_to_msecs(jiffies - start));
pgdat_init_report_one_done();
return 0;
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
void __init page_alloc_init_late(void)
{
struct zone *zone;
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
int nid;
/* There will be num_node_state(N_MEMORY) threads */
atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
for_each_node_state(nid, N_MEMORY) {
kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
}
/* Block until all are initialised */
wait_for_completion(&pgdat_init_all_done_comp);
/* Reinit limits that are based on free pages after the kernel is up */
files_maxfiles_init();
#endif
for_each_populated_zone(zone)
set_zone_contiguous(zone);
}
#ifdef CONFIG_CMA
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
void __init init_cma_reserved_pageblock(struct page *page)
{
unsigned i = pageblock_nr_pages;
struct page *p = page;
do {
__ClearPageReserved(p);
set_page_count(p, 0);
} while (++p, --i);
set_pageblock_migratetype(page, MIGRATE_CMA);
if (pageblock_order >= MAX_ORDER) {
i = pageblock_nr_pages;
p = page;
do {
set_page_refcounted(p);
__free_pages(p, MAX_ORDER - 1);
p += MAX_ORDER_NR_PAGES;
} while (i -= MAX_ORDER_NR_PAGES);
} else {
set_page_refcounted(page);
__free_pages(page, pageblock_order);
}
adjust_managed_page_count(page, pageblock_nr_pages);
}
#endif
/*
* The order of subdivision here is critical for the IO subsystem.
* Please do not alter this order without good reasons and regression
* testing. Specifically, as large blocks of memory are subdivided,
* the order in which smaller blocks are delivered depends on the order
* they're subdivided in this function. This is the primary factor
* influencing the order in which pages are delivered to the IO
* subsystem according to empirical testing, and this is also justified
* by considering the behavior of a buddy system containing a single
* large block of memory acted on by a series of small allocations.
* This behavior is a critical factor in sglist merging's success.
*
* -- nyc
*/
static inline void expand(struct zone *zone, struct page *page,
int low, int high, struct free_area *area,
int migratetype)
{
unsigned long size = 1 << high;
while (high > low) {
area--;
high--;
size >>= 1;
VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
/*
* Mark as guard pages (or page), that will allow to
* merge back to allocator when buddy will be freed.
* Corresponding page table entries will not be touched,
* pages will stay not present in virtual address space
*/
if (set_page_guard(zone, &page[size], high, migratetype))
continue;
list_add(&page[size].lru, &area->free_list[migratetype]);
area->nr_free++;
set_page_order(&page[size], high);
}
}
static void check_new_page_bad(struct page *page)
{
const char *bad_reason = NULL;
unsigned long bad_flags = 0;
if (unlikely(atomic_read(&page->_mapcount) != -1))
bad_reason = "nonzero mapcount";
if (unlikely(page->mapping != NULL))
bad_reason = "non-NULL mapping";
if (unlikely(page_ref_count(page) != 0))
bad_reason = "nonzero _count";
if (unlikely(page->flags & __PG_HWPOISON)) {
bad_reason = "HWPoisoned (hardware-corrupted)";
bad_flags = __PG_HWPOISON;
/* Don't complain about hwpoisoned pages */
page_mapcount_reset(page); /* remove PageBuddy */
return;
}
if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
}
#ifdef CONFIG_MEMCG
if (unlikely(page->mem_cgroup))
bad_reason = "page still charged to cgroup";
#endif
bad_page(page, bad_reason, bad_flags);
}
/*
* This page is about to be returned from the page allocator
*/
static inline int check_new_page(struct page *page)
{
if (likely(page_expected_state(page,
PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
return 0;
check_new_page_bad(page);
return 1;
}
static inline bool free_pages_prezeroed(bool poisoned)
{
return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
page_poisoning_enabled() && poisoned;
}
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
return false;
}
static bool check_new_pcp(struct page *page)
{
return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
return false;
}
#endif /* CONFIG_DEBUG_VM */
static bool check_new_pages(struct page *page, unsigned int order)
{
int i;
for (i = 0; i < (1 << order); i++) {
struct page *p = page + i;
if (unlikely(check_new_page(p)))
return true;
}
return false;
}
inline void post_alloc_hook(struct page *page, unsigned int order,
gfp_t gfp_flags)
{
set_page_private(page, 0);
set_page_refcounted(page);
arch_alloc_page(page, order);
kernel_map_pages(page, 1 << order, 1);
kernel_poison_pages(page, 1 << order, 1);
kasan_alloc_pages(page, order);
set_page_owner(page, order, gfp_flags);
}
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
unsigned int alloc_flags)
{
int i;
bool poisoned = true;
for (i = 0; i < (1 << order); i++) {
struct page *p = page + i;
if (poisoned)
poisoned &= page_is_poisoned(p);
}
post_alloc_hook(page, order, gfp_flags);
if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
for (i = 0; i < (1 << order); i++)
clear_highpage(page + i);
if (order && (gfp_flags & __GFP_COMP))
prep_compound_page(page, order);
/*
* page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
* allocate the page. The expectation is that the caller is taking
* steps that will free more memory. The caller should avoid the page
* being used for !PFMEMALLOC purposes.
*/
if (alloc_flags & ALLOC_NO_WATERMARKS)
set_page_pfmemalloc(page);
else
clear_page_pfmemalloc(page);
}
/*
* Go through the free lists for the given migratetype and remove
* the smallest available page from the freelists
*/
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
struct free_area *area;
struct page *page;
/* Find a page of the appropriate size in the preferred list */
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
area = &(zone->free_area[current_order]);
page = list_first_entry_or_null(&area->free_list[migratetype],
struct page, lru);
if (!page)
continue;
list_del(&page->lru);
rmv_page_order(page);
area->nr_free--;
expand(zone, page, order, current_order, area, migratetype);
set_pcppage_migratetype(page, migratetype);
return page;
}
return NULL;
}
/*
* This array describes the order lists are fallen back to when
* the free lists for the desirable migrate type are depleted
*/
static int fallbacks[MIGRATE_TYPES][4] = {
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
#ifdef CONFIG_CMA
[MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
#endif
#ifdef CONFIG_MEMORY_ISOLATION
[MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
#endif
};
#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
unsigned int order)
{
return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
unsigned int order) { return NULL; }
#endif
/*
* Move the free pages in a range to the free lists of the requested type.
* Note that start_page and end_pages are not aligned on a pageblock
* boundary. If alignment is required, use move_freepages_block()
*/
int move_freepages(struct zone *zone,
struct page *start_page, struct page *end_page,
int migratetype)
{
struct page *page;
unsigned int order;
int pages_moved = 0;
#ifndef CONFIG_HOLES_IN_ZONE
/*
* page_zone is not safe to call in this context when
* CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
* anyway as we check zone boundaries in move_freepages_block().
* Remove at a later date when no bug reports exist related to
* grouping pages by mobility
*/
VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
#endif
for (page = start_page; page <= end_page;) {
/* Make sure we are not inadvertently changing nodes */
VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
if (!pfn_valid_within(page_to_pfn(page))) {
page++;
continue;
}
if (!PageBuddy(page)) {
page++;
continue;
}
order = page_order(page);
list_move(&page->lru,
&zone->free_area[order].free_list[migratetype]);
page += 1 << order;
pages_moved += 1 << order;
}
return pages_moved;
}
int move_freepages_block(struct zone *zone, struct page *page,
int migratetype)
{
unsigned long start_pfn, end_pfn;
struct page *start_page, *end_page;
start_pfn = page_to_pfn(page);
start_pfn = start_pfn & ~(pageblock_nr_pages-1);
start_page = pfn_to_page(start_pfn);
end_page = start_page + pageblock_nr_pages - 1;
end_pfn = start_pfn + pageblock_nr_pages - 1;
/* Do not cross zone boundaries */
if (!zone_spans_pfn(zone, start_pfn))
start_page = page;
if (!zone_spans_pfn(zone, end_pfn))
return 0;
return move_freepages(zone, start_page, end_page, migratetype);
}
static void change_pageblock_range(struct page *pageblock_page,
int start_order, int migratetype)
{
int nr_pageblocks = 1 << (start_order - pageblock_order);
while (nr_pageblocks--) {
set_pageblock_migratetype(pageblock_page, migratetype);
pageblock_page += pageblock_nr_pages;
}
}
/*
* When we are falling back to another migratetype during allocation, try to
* steal extra free pages from the same pageblocks to satisfy further
* allocations, instead of polluting multiple pageblocks.
*
* If we are stealing a relatively large buddy page, it is likely there will
* be more free pages in the pageblock, so try to steal them all. For
* reclaimable and unmovable allocations, we steal regardless of page size,
* as fragmentation caused by those allocations polluting movable pageblocks
* is worse than movable allocations stealing from unmovable and reclaimable
* pageblocks.
*/
static bool can_steal_fallback(unsigned int order, int start_mt)
{
/*
* Leaving this order check is intended, although there is
* relaxed order check in next check. The reason is that
* we can actually steal whole pageblock if this condition met,
* but, below check doesn't guarantee it and that is just heuristic
* so could be changed anytime.
*/
if (order >= pageblock_order)
return true;
if (order >= pageblock_order / 2 ||
start_mt == MIGRATE_RECLAIMABLE ||
start_mt == MIGRATE_UNMOVABLE ||
page_group_by_mobility_disabled)
return true;
return false;
}
/*
* This function implements actual steal behaviour. If order is large enough,
* we can steal whole pageblock. If not, we first move freepages in this
* pageblock and check whether half of pages are moved or not. If half of
* pages are moved, we can change migratetype of pageblock and permanently
* use it's pages as requested migratetype in the future.
*/
static void steal_suitable_fallback(struct zone *zone, struct page *page,
int start_type)
{
unsigned int current_order = page_order(page);
int pages;
/* Take ownership for orders >= pageblock_order */
if (current_order >= pageblock_order) {
change_pageblock_range(page, current_order, start_type);
return;
}
pages = move_freepages_block(zone, page, start_type);
/* Claim the whole block if over half of it is free */
if (pages >= (1 << (pageblock_order-1)) ||
page_group_by_mobility_disabled)
set_pageblock_migratetype(page, start_type);
}
/*
* Check whether there is a suitable fallback freepage with requested order.
* If only_stealable is true, this function returns fallback_mt only if
* we can steal other freepages all together. This would help to reduce
* fragmentation due to mixed migratetype pages in one pageblock.
*/
int find_suitable_fallback(struct free_area *area, unsigned int order,
int migratetype, bool only_stealable, bool *can_steal)
{
int i;
int fallback_mt;
if (area->nr_free == 0)
return -1;
*can_steal = false;
for (i = 0;; i++) {
fallback_mt = fallbacks[migratetype][i];
if (fallback_mt == MIGRATE_TYPES)
break;
if (list_empty(&area->free_list[fallback_mt]))
continue;
if (can_steal_fallback(order, migratetype))
*can_steal = true;
if (!only_stealable)
return fallback_mt;
if (*can_steal)
return fallback_mt;
}
return -1;
}
/*
* Reserve a pageblock for exclusive use of high-order atomic allocations if
* there are no empty page blocks that contain a page with a suitable order
*/
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
unsigned int alloc_order)
{
int mt;
unsigned long max_managed, flags;
/*
* Limit the number reserved to 1 pageblock or roughly 1% of a zone.
* Check is race-prone but harmless.
*/
max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
if (zone->nr_reserved_highatomic >= max_managed)
return;
spin_lock_irqsave(&zone->lock, flags);
/* Recheck the nr_reserved_highatomic limit under the lock */
if (zone->nr_reserved_highatomic >= max_managed)
goto out_unlock;
/* Yoink! */
mt = get_pageblock_migratetype(page);
if (mt != MIGRATE_HIGHATOMIC &&
!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
zone->nr_reserved_highatomic += pageblock_nr_pages;
set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
}
out_unlock:
spin_unlock_irqrestore(&zone->lock, flags);
}
/*
* Used when an allocation is about to fail under memory pressure. This
* potentially hurts the reliability of high-order allocations when under
* intense memory pressure but failed atomic allocations should be easier
* to recover from than an OOM.
*/
static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
{
struct zonelist *zonelist = ac->zonelist;
unsigned long flags;
struct zoneref *z;
struct zone *zone;
struct page *page;
int order;
for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
ac->nodemask) {
/* Preserve at least one pageblock */
if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
continue;
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
struct free_area *area = &(zone->free_area[order]);
page = list_first_entry_or_null(
&area->free_list[MIGRATE_HIGHATOMIC],
struct page, lru);
if (!page)
continue;
/*
* It should never happen but changes to locking could
* inadvertently allow a per-cpu drain to add pages
* to MIGRATE_HIGHATOMIC while unreserving so be safe
* and watch for underflows.
*/
zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
zone->nr_reserved_highatomic);
/*
* Convert to ac->migratetype and avoid the normal
* pageblock stealing heuristics. Minimally, the caller
* is doing the work and needs the pages. More
* importantly, if the block was always converted to
* MIGRATE_UNMOVABLE or another type then the number
* of pageblocks that cannot be completely freed
* may increase.
*/
set_pageblock_migratetype(page, ac->migratetype);
move_freepages_block(zone, page, ac->migratetype);
spin_unlock_irqrestore(&zone->lock, flags);
return;
}
spin_unlock_irqrestore(&zone->lock, flags);
}
}
/* Remove an element from the buddy allocator from the fallback list */
static inline struct page *
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
{
struct free_area *area;
unsigned int current_order;
struct page *page;
int fallback_mt;
bool can_steal;
/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1;
current_order >= order && current_order <= MAX_ORDER-1;
--current_order) {
area = &(zone->free_area[current_order]);
fallback_mt = find_suitable_fallback(area, current_order,
start_migratetype, false, &can_steal);
if (fallback_mt == -1)
continue;
page = list_first_entry(&area->free_list[fallback_mt],
struct page, lru);
if (can_steal)
steal_suitable_fallback(zone, page, start_migratetype);
/* Remove the page from the freelists */
area->nr_free--;
list_del(&page->lru);
rmv_page_order(page);
expand(zone, page, order, current_order, area,
start_migratetype);
/*
* The pcppage_migratetype may differ from pageblock's
* migratetype depending on the decisions in
* find_suitable_fallback(). This is OK as long as it does not
* differ for MIGRATE_CMA pageblocks. Those can be used as
* fallback only via special __rmqueue_cma_fallback() function
*/
set_pcppage_migratetype(page, start_migratetype);
trace_mm_page_alloc_extfrag(page, order, current_order,
start_migratetype, fallback_mt);
return page;
}
return NULL;
}
/*
* Do the hard work of removing an element from the buddy allocator.
* Call me with the zone->lock already held.
*/
static struct page *__rmqueue(struct zone *zone, unsigned int order,
int migratetype)
{
struct page *page;
page = __rmqueue_smallest(zone, order, migratetype);
if (unlikely(!page)) {
if (migratetype == MIGRATE_MOVABLE)
page = __rmqueue_cma_fallback(zone, order);
if (!page)
page = __rmqueue_fallback(zone, order, migratetype);
}
trace_mm_page_alloc_zone_locked(page, order, migratetype);
return page;
}
/*
* Obtain a specified number of elements from the buddy allocator, all under
* a single hold of the lock, for efficiency. Add them to the supplied list.
* Returns the number of new pages which were placed at *list.
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
unsigned long count, struct list_head *list,
int migratetype, bool cold)
{
int i;
spin_lock(&zone->lock);
for (i = 0; i < count; ++i) {
struct page *page = __rmqueue(zone, order, migratetype);
if (unlikely(page == NULL))
break;
if (unlikely(check_pcp_refill(page)))
continue;
/*
* Split buddy pages returned by expand() are received here
* in physical page order. The page is added to the callers and
* list and the list head then moves forward. From the callers
* perspective, the linked list is ordered by page number in
* some conditions. This is useful for IO devices that can
* merge IO requests if the physical pages are ordered
* properly.
*/
if (likely(!cold))
list_add(&page->lru, list);
else
list_add_tail(&page->lru, list);
list = &page->lru;
if (is_migrate_cma(get_pcppage_migratetype(page)))
__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
-(1 << order));
}
__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
spin_unlock(&zone->lock);
return i;
}
#ifdef CONFIG_NUMA
/*
* Called from the vmstat counter updater to drain pagesets of this
* currently executing processor on remote nodes after they have
* expired.
*
* Note that this function must be called with the thread pinned to
* a single processor.
*/
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
{
unsigned long flags;
int to_drain, batch;
local_irq_save(flags);
batch = READ_ONCE(pcp->batch);
to_drain = min(pcp->count, batch);
if (to_drain > 0) {
free_pcppages_bulk(zone, to_drain, pcp);
pcp->count -= to_drain;
}
local_irq_restore(flags);
}
#endif
/*
* Drain pcplists of the indicated processor and zone.
*
* The processor must either be the current processor and the
* thread pinned to the current processor or a processor that
* is not online.
*/
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
{
unsigned long flags;
struct per_cpu_pageset *pset;
struct per_cpu_pages *pcp;
local_irq_save(flags);
pset = per_cpu_ptr(zone->pageset, cpu);
pcp = &pset->pcp;
if (pcp->count) {
free_pcppages_bulk(zone, pcp->count, pcp);
pcp->count = 0;
}
local_irq_restore(flags);
}
/*
* Drain pcplists of all zones on the indicated processor.
*
* The processor must either be the current processor and the
* thread pinned to the current processor or a processor that
* is not online.
*/
static void drain_pages(unsigned int cpu)
{
struct zone *zone;
for_each_populated_zone(zone) {
drain_pages_zone(cpu, zone);
}
}
/*
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
*
* The CPU has to be pinned. When zone parameter is non-NULL, spill just
* the single zone's pages.
*/
void drain_local_pages(struct zone *zone)
{
int cpu = smp_processor_id();
if (zone)
drain_pages_zone(cpu, zone);
else
drain_pages(cpu);
}
/*
* Spill all the per-cpu pages from all CPUs back into the buddy allocator.
*
* When zone parameter is non-NULL, spill just the single zone's pages.
*
* Note that this code is protected against sending an IPI to an offline
* CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
* on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
* nothing keeps CPUs from showing up after we populated the cpumask and
* before the call to on_each_cpu_mask().
*/
void drain_all_pages(struct zone *zone)
{
int cpu;
/*
* Allocate in the BSS so we wont require allocation in
* direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
*/
static cpumask_t cpus_with_pcps;
/*
* We don't care about racing with CPU hotplug event
* as offline notification will cause the notified
* cpu to drain that CPU pcps and on_each_cpu_mask
* disables preemption as part of its processing
*/
for_each_online_cpu(cpu) {
struct per_cpu_pageset *pcp;
struct zone *z;
bool has_pcps = false;
if (zone) {
pcp = per_cpu_ptr(zone->pageset, cpu);
if (pcp->pcp.count)
has_pcps = true;
} else {
for_each_populated_zone(z) {
pcp = per_cpu_ptr(z->pageset, cpu);
if (pcp->pcp.count) {
has_pcps = true;
break;
}
}
}
if (has_pcps)
cpumask_set_cpu(cpu, &cpus_with_pcps);
else
cpumask_clear_cpu(cpu, &cpus_with_pcps);
}
on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
zone, 1);
}
#ifdef CONFIG_HIBERNATION
void mark_free_pages(struct zone *zone)
{
unsigned long pfn, max_zone_pfn;
unsigned long flags;
unsigned int order, t;
struct page *page;
if (zone_is_empty(zone))
return;
spin_lock_irqsave(&zone->lock, flags);
max_zone_pfn = zone_end_pfn(zone);
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
if (pfn_valid(pfn)) {
page = pfn_to_page(pfn);
if (page_zone(page) != zone)
continue;
if (!swsusp_page_is_forbidden(page))
swsusp_unset_page_free(page);
}
for_each_migratetype_order(order, t) {
list_for_each_entry(page,
&zone->free_area[order].free_list[t], lru) {
unsigned long i;
pfn = page_to_pfn(page);
for (i = 0; i < (1UL << order); i++)
swsusp_set_page_free(pfn_to_page(pfn + i));
}
}
spin_unlock_irqrestore(&zone->lock, flags);
}
#endif /* CONFIG_PM */
/*
* Free a 0-order page
* cold == true ? free a cold page : free a hot page
*/
void free_hot_cold_page(struct page *page, bool cold)
{
struct zone *zone = page_zone(page);
struct per_cpu_pages *pcp;
unsigned long flags;
unsigned long pfn = page_to_pfn(page);
int migratetype;
if (!free_pcp_prepare(page))
return;
migratetype = get_pfnblock_migratetype(page, pfn);
set_pcppage_migratetype(page, migratetype);
local_irq_save(flags);
__count_vm_event(PGFREE);
/*
* We only track unmovable, reclaimable and movable on pcp lists.
* Free ISOLATE pages back to the allocator because they are being
* offlined but treat RESERVE as movable pages so we can get those
* areas back if necessary. Otherwise, we may have to free
* excessively into the page allocator
*/
if (migratetype >= MIGRATE_PCPTYPES) {
if (unlikely(is_migrate_isolate(migratetype))) {
free_one_page(zone, page, pfn, 0, migratetype);
goto out;
}
migratetype = MIGRATE_MOVABLE;
}
pcp = &this_cpu_ptr(zone->pageset)->pcp;
if (!cold)
list_add(&page->lru, &pcp->lists[migratetype]);
else
list_add_tail(&page->lru, &pcp->lists[migratetype]);
pcp->count++;
if (pcp->count >= pcp->high) {
unsigned long batch = READ_ONCE(pcp->batch);
free_pcppages_bulk(zone, batch, pcp);
pcp->count -= batch;
}
out:
local_irq_restore(flags);
}
/*
* Free a list of 0-order pages
*/
void free_hot_cold_page_list(struct list_head *list, bool cold)
{
struct page *page, *next;
list_for_each_entry_safe(page, next, list, lru) {
trace_mm_page_free_batched(page, cold);
free_hot_cold_page(page, cold);
}
}
/*
* split_page takes a non-compound higher-order page, and splits it into
* n (1<<order) sub-pages: page[0..n]
* Each sub-page must be freed individually.
*
* Note: this is probably too low level an operation for use in drivers.
* Please consult with lkml before using this in your driver.
*/
void split_page(struct page *page, unsigned int order)
{
int i;
VM_BUG_ON_PAGE(PageCompound(page), page);
VM_BUG_ON_PAGE(!page_count(page), page);
#ifdef CONFIG_KMEMCHECK
/*
* Split shadow pages too, because free(page[0]) would
* otherwise free the whole shadow.
*/
if (kmemcheck_page_is_tracked(page))
split_page(virt_to_page(page[0].shadow), order);
#endif
for (i = 1; i < (1 << order); i++)
set_page_refcounted(page + i);
split_page_owner(page, order);
}
EXPORT_SYMBOL_GPL(split_page);
int __isolate_free_page(struct page *page, unsigned int order)
{
unsigned long watermark;
struct zone *zone;
int mt;
BUG_ON(!PageBuddy(page));
zone = page_zone(page);
mt = get_pageblock_migratetype(page);
if (!is_migrate_isolate(mt)) {
/*
* Obey watermarks as if the page was being allocated. We can
* emulate a high-order watermark check with a raised order-0
* watermark, because we already know our high-order page
* exists.
*/
watermark = min_wmark_pages(zone) + (1UL << order);
if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
return 0;
__mod_zone_freepage_state(zone, -(1UL << order), mt);
}
/* Remove page from free list */
list_del(&page->lru);
zone->free_area[order].nr_free--;
rmv_page_order(page);
/*
* Set the pageblock if the isolated page is at least half of a
* pageblock
*/
if (order >= pageblock_order - 1) {
struct page *endpage = page + (1 << order) - 1;
for (; page < endpage; page += pageblock_nr_pages) {
int mt = get_pageblock_migratetype(page);
if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
set_pageblock_migratetype(page,
MIGRATE_MOVABLE);
}
}
return 1UL << order;
}
/*
* Update NUMA hit/miss statistics
*
* Must be called with interrupts disabled.
*
* When __GFP_OTHER_NODE is set assume the node of the preferred
* zone is the local node. This is useful for daemons who allocate
* memory on behalf of other processes.
*/
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
gfp_t flags)
{
#ifdef CONFIG_NUMA
int local_nid = numa_node_id();
enum zone_stat_item local_stat = NUMA_LOCAL;
if (unlikely(flags & __GFP_OTHER_NODE)) {
local_stat = NUMA_OTHER;
local_nid = preferred_zone->node;
}
if (z->node == local_nid) {
__inc_zone_state(z, NUMA_HIT);
__inc_zone_state(z, local_stat);
} else {
__inc_zone_state(z, NUMA_MISS);
__inc_zone_state(preferred_zone, NUMA_FOREIGN);
}
#endif
}
/*
* Allocate a page from the given zone. Use pcplists for order-0 allocations.
*/
static inline
struct page *buffered_rmqueue(struct zone *preferred_zone,
struct zone *zone, unsigned int order,
gfp_t gfp_flags, unsigned int alloc_flags,
int migratetype)
{
unsigned long flags;
struct page *page;
bool cold = ((gfp_flags & __GFP_COLD) != 0);
if (likely(order == 0)) {
struct per_cpu_pages *pcp;
struct list_head *list;
local_irq_save(flags);
do {
pcp = &this_cpu_ptr(zone->pageset)->pcp;
list = &pcp->lists[migratetype];
if (list_empty(list)) {
pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, list,
migratetype, cold);
if (unlikely(list_empty(list)))
goto failed;
}
if (cold)
page = list_last_entry(list, struct page, lru);
else
page = list_first_entry(list, struct page, lru);
list_del(&page->lru);
pcp->count--;
} while (check_new_pcp(page));
} else {
/*
* We most definitely don't want callers attempting to
* allocate greater than order-1 page units with __GFP_NOFAIL.
*/
WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
spin_lock_irqsave(&zone->lock, flags);
do {
page = NULL;
if (alloc_flags & ALLOC_HARDER) {
page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
if (page)
trace_mm_page_alloc_zone_locked(page, order, migratetype);
}
if (!page)
page = __rmqueue(zone, order, migratetype);
} while (page && check_new_pages(page, order));
spin_unlock(&zone->lock);
if (!page)
goto failed;
__mod_zone_freepage_state(zone, -(1 << order),
get_pcppage_migratetype(page));
}
__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
zone_statistics(preferred_zone, zone, gfp_flags);
local_irq_restore(flags);
VM_BUG_ON_PAGE(bad_range(zone, page), page);
return page;
failed:
local_irq_restore(flags);
return NULL;
}
#ifdef CONFIG_FAIL_PAGE_ALLOC
static struct {
struct fault_attr attr;
bool ignore_gfp_highmem;
bool ignore_gfp_reclaim;
u32 min_order;
} fail_page_alloc = {
.attr = FAULT_ATTR_INITIALIZER,
.ignore_gfp_reclaim = true,
.ignore_gfp_highmem = true,
.min_order = 1,
};
static int __init setup_fail_page_alloc(char *str)
{
return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
if (order < fail_page_alloc.min_order)
return false;
if (gfp_mask & __GFP_NOFAIL)
return false;
if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
return false;
if (fail_page_alloc.ignore_gfp_reclaim &&
(gfp_mask & __GFP_DIRECT_RECLAIM))
return false;
return should_fail(&fail_page_alloc.attr, 1 << order);
}
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
static int __init fail_page_alloc_debugfs(void)
{
umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
struct dentry *dir;
dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
&fail_page_alloc.attr);
if (IS_ERR(dir))
return PTR_ERR(dir);
if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
&fail_page_alloc.ignore_gfp_reclaim))
goto fail;
if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
&fail_page_alloc.ignore_gfp_highmem))
goto fail;
if (!debugfs_create_u32("min-order", mode, dir,
&fail_page_alloc.min_order))
goto fail;
return 0;
fail:
debugfs_remove_recursive(dir);
return -ENOMEM;
}
late_initcall(fail_page_alloc_debugfs);
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
#else /* CONFIG_FAIL_PAGE_ALLOC */
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
{
return false;
}
#endif /* CONFIG_FAIL_PAGE_ALLOC */
/*
* Return true if free base pages are above 'mark'. For high-order checks it
* will return true of the order-0 watermark is reached and there is at least
* one free page of a suitable size. Checking now avoids taking the zone lock
* to check in the allocation paths if no pages are free.
*/
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
int classzone_idx, unsigned int alloc_flags,
long free_pages)
{
long min = mark;
int o;
const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
/* free_pages may go negative - that's OK */
free_pages -= (1 << order) - 1;
if (alloc_flags & ALLOC_HIGH)
min -= min / 2;
/*
* If the caller does not have rights to ALLOC_HARDER then subtract
* the high-atomic reserves. This will over-estimate the size of the
* atomic reserve but it avoids a search.
*/
if (likely(!alloc_harder))
free_pages -= z->nr_reserved_highatomic;
else
min -= min / 4;
#ifdef CONFIG_CMA
/* If allocation can't use CMA areas don't use free CMA pages */
if (!(alloc_flags & ALLOC_CMA))
free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
/*
* Check watermarks for an order-0 allocation request. If these
* are not met, then a high-order request also cannot go ahead
* even if a suitable page happened to be free.
*/
if (free_pages <= min + z->lowmem_reserve[classzone_idx])
return false;
/* If this is an order-0 request then the watermark is fine */
if (!order)
return true;
/* For a high-order request, check at least one suitable page is free */
for (o = order; o < MAX_ORDER; o++) {
struct free_area *area = &z->free_area[o];
int mt;
if (!area->nr_free)
continue;
if (alloc_harder)
return true;
for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
if (!list_empty(&area->free_list[mt]))
return true;
}
#ifdef CONFIG_CMA
if ((alloc_flags & ALLOC_CMA) &&
!list_empty(&area->free_list[MIGRATE_CMA])) {
return true;
}
#endif
}
return false;
}
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
int classzone_idx, unsigned int alloc_flags)
{
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
zone_page_state(z, NR_FREE_PAGES));
}
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
long free_pages = zone_page_state(z, NR_FREE_PAGES);
long cma_pages = 0;
#ifdef CONFIG_CMA
/* If allocation can't use CMA areas don't use free CMA pages */
if (!(alloc_flags & ALLOC_CMA))
cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif
/*
* Fast check for order-0 only. If this fails then the reserves
* need to be calculated. There is a corner case where the check
* passes but only the high-order atomic reserve are free. If
* the caller is !atomic then it'll uselessly search the free
* list. That corner case is then slower but it is harmless.
*/
if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
return true;
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
free_pages);
}
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
unsigned long mark, int classzone_idx)
{
long free_pages = zone_page_state(z, NR_FREE_PAGES);
if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
free_pages);
}
#ifdef CONFIG_NUMA
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
RECLAIM_DISTANCE;
}
#else /* CONFIG_NUMA */
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
return true;
}
#endif /* CONFIG_NUMA */
/*
* get_page_from_freelist goes through the zonelist trying to allocate
* a page.
*/
static struct page *
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
const struct alloc_context *ac)
{
struct zoneref *z = ac->preferred_zoneref;
struct zone *zone;
struct pglist_data *last_pgdat_dirty_limit = NULL;
/*
* Scan zonelist, looking for a zone with enough free.
* See also __cpuset_node_allowed() comment in kernel/cpuset.c.
*/
for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
ac->nodemask) {
struct page *page;
unsigned long mark;
if (cpusets_enabled() &&
(alloc_flags & ALLOC_CPUSET) &&
!__cpuset_zone_allowed(zone, gfp_mask))
continue;
/*
* When allocating a page cache page for writing, we
* want to get it from a node that is within its dirty
* limit, such that no single node holds more than its
* proportional share of globally allowed dirty pages.
* The dirty limits take into account the node's
* lowmem reserves and high watermark so that kswapd
* should be able to balance it without having to
* write pages from its LRU list.
*
* XXX: For now, allow allocations to potentially
* exceed the per-node dirty limit in the slowpath
* (spread_dirty_pages unset) before going into reclaim,
* which is important when on a NUMA setup the allowed
* nodes are together not big enough to reach the
* global limit. The proper fix for these situations
* will require awareness of nodes in the
* dirty-throttling and the flusher threads.
*/
if (ac->spread_dirty_pages) {
if (last_pgdat_dirty_limit == zone->zone_pgdat)
continue;
if (!node_dirty_ok(zone->zone_pgdat)) {
last_pgdat_dirty_limit = zone->zone_pgdat;
continue;
}
}
mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
if (!zone_watermark_fast(zone, order, mark,
ac_classzone_idx(ac), alloc_flags)) {
int ret;
/* Checked here to keep the fast path fast */
BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
if (alloc_flags & ALLOC_NO_WATERMARKS)
goto try_this_zone;
if (node_reclaim_mode == 0 ||
!zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
continue;
ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
switch (ret) {
case NODE_RECLAIM_NOSCAN:
/* did not scan */
continue;
case NODE_RECLAIM_FULL:
/* scanned but unreclaimable */
continue;
default:
/* did we reclaim enough */
if (zone_watermark_ok(zone, order, mark,
ac_classzone_idx(ac), alloc_flags))
goto try_this_zone;
continue;
}
}
try_this_zone:
page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
gfp_mask, alloc_flags, ac->migratetype);
if (page) {
prep_new_page(page, order, gfp_mask, alloc_flags);
/*
* If this is a high-order atomic allocation then check
* if the pageblock should be reserved for the future
*/
if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
reserve_highatomic_pageblock(page, zone, order);
return page;
}
}
return NULL;
}
/*
* Large machines with many possible nodes should not always dump per-node
* meminfo in irq context.
*/
static inline bool should_suppress_show_mem(void)
{
bool ret = false;
#if NODES_SHIFT > 8
ret = in_interrupt();
#endif
return ret;
}
static DEFINE_RATELIMIT_STATE(nopage_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
{
unsigned int filter = SHOW_MEM_FILTER_NODES;
struct va_format vaf;
va_list args;
if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
debug_guardpage_minorder() > 0)
return;
/*
* This documents exceptions given to allocations in certain
* contexts that are allowed to allocate outside current's set
* of allowed nodes.
*/
if (!(gfp_mask & __GFP_NOMEMALLOC))
if (test_thread_flag(TIF_MEMDIE) ||
(current->flags & (PF_MEMALLOC | PF_EXITING)))
filter &= ~SHOW_MEM_FILTER_NODES;
if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
filter &= ~SHOW_MEM_FILTER_NODES;
pr_warn("%s: ", current->comm);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_cont("%pV", &vaf);
va_end(args);
pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
dump_stack();
if (!should_suppress_show_mem())
show_mem(filter);
}
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
const struct alloc_context *ac, unsigned long *did_some_progress)
{
struct oom_control oc = {
.zonelist = ac->zonelist,
.nodemask = ac->nodemask,
.memcg = NULL,
.gfp_mask = gfp_mask,
.order = order,
};
struct page *page;
*did_some_progress = 0;
/*
* Acquire the oom lock. If that fails, somebody else is
* making progress for us.
*/
if (!mutex_trylock(&oom_lock)) {
*did_some_progress = 1;
schedule_timeout_uninterruptible(1);
return NULL;
}
/*
* Go through the zonelist yet one more time, keep very high watermark
* here, this is only to catch a parallel oom killing, we must fail if
* we're still under heavy pressure.
*/
page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
if (page)
goto out;
if (!(gfp_mask & __GFP_NOFAIL)) {
/* Coredumps can quickly deplete all memory reserves */
if (current->flags & PF_DUMPCORE)
goto out;
/* The OOM killer will not help higher order allocs */
if (order > PAGE_ALLOC_COSTLY_ORDER)
goto out;
/* The OOM killer does not needlessly kill tasks for lowmem */
if (ac->high_zoneidx < ZONE_NORMAL)
goto out;
if (pm_suspended_storage())
goto out;
/*
* XXX: GFP_NOFS allocations should rather fail than rely on
* other request to make a forward progress.
* We are in an unfortunate situation where out_of_memory cannot
* do much for this context but let's try it to at least get
* access to memory reserved if the current task is killed (see
* out_of_memory). Once filesystems are ready to handle allocation
* failures more gracefully we should just bail out here.
*/
/* The OOM killer may not free memory on a specific node */
if (gfp_mask & __GFP_THISNODE)
goto out;
}
/* Exhausted what can be done so it's blamo time */
if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
*did_some_progress = 1;
if (gfp_mask & __GFP_NOFAIL) {
page = get_page_from_freelist(gfp_mask, order,
ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
/*
* fallback to ignore cpuset restriction if our nodes
* are depleted
*/
if (!page)
page = get_page_from_freelist(gfp_mask, order,
ALLOC_NO_WATERMARKS, ac);
}
}
out:
mutex_unlock(&oom_lock);
return page;
}
/*
* Maximum number of compaction retries wit a progress before OOM
* killer is consider as the only way to move forward.
*/
#define MAX_COMPACT_RETRIES 16
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
unsigned int alloc_flags, const struct alloc_context *ac,
enum compact_priority prio, enum compact_result *compact_result)
{
struct page *page;
if (!order)
return NULL;
current->flags |= PF_MEMALLOC;
*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
prio);
current->flags &= ~PF_MEMALLOC;
if (*compact_result <= COMPACT_INACTIVE)
return NULL;
/*
* At least in one zone compaction wasn't deferred or skipped, so let's
* count a compaction stall
*/
count_vm_event(COMPACTSTALL);
page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
if (page) {
struct zone *zone = page_zone(page);
zone->compact_blockskip_flush = false;
compaction_defer_reset(zone, order, true);
count_vm_event(COMPACTSUCCESS);
return page;
}
/*
* It's bad if compaction run occurs and fails. The most likely reason
* is that pages exist, but not enough to satisfy watermarks.
*/
count_vm_event(COMPACTFAIL);
cond_resched();
return NULL;
}
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
enum compact_result compact_result,
enum compact_priority *compact_priority,
int *compaction_retries)
{
int max_retries = MAX_COMPACT_RETRIES;
int min_priority;
if (!order)
return false;
if (compaction_made_progress(compact_result))
(*compaction_retries)++;
/*
* compaction considers all the zone as desperately out of memory
* so it doesn't really make much sense to retry except when the
* failure could be caused by insufficient priority
*/
if (compaction_failed(compact_result))
goto check_priority;
/*
* make sure the compaction wasn't deferred or didn't bail out early
* due to locks contention before we declare that we should give up.
* But do not retry if the given zonelist is not suitable for
* compaction.
*/
if (compaction_withdrawn(compact_result))
return compaction_zonelist_suitable(ac, order, alloc_flags);
/*
* !costly requests are much more important than __GFP_REPEAT
* costly ones because they are de facto nofail and invoke OOM
* killer to move on while costly can fail and users are ready
* to cope with that. 1/4 retries is rather arbitrary but we
* would need much more detailed feedback from compaction to
* make a better decision.
*/
if (order > PAGE_ALLOC_COSTLY_ORDER)
max_retries /= 4;
if (*compaction_retries <= max_retries)
return true;
/*
* Make sure there are attempts at the highest priority if we exhausted
* all retries or failed at the lower priorities.
*/
check_priority:
min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
if (*compact_priority > min_priority) {
(*compact_priority)--;
*compaction_retries = 0;
return true;
}
return false;
}
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
unsigned int alloc_flags, const struct alloc_context *ac,
enum compact_priority prio, enum compact_result *compact_result)
{
*compact_result = COMPACT_SKIPPED;
return NULL;
}
static inline bool
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
enum compact_result compact_result,
enum compact_priority *compact_priority,
int *compaction_retries)
{
struct zone *zone;
struct zoneref *z;
if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
return false;
/*
* There are setups with compaction disabled which would prefer to loop
* inside the allocator rather than hit the oom killer prematurely.
* Let's give them a good hope and keep retrying while the order-0
* watermarks are OK.
*/
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
ac->nodemask) {
if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
ac_classzone_idx(ac), alloc_flags))
return true;
}
return false;
}
#endif /* CONFIG_COMPACTION */
/* Perform direct synchronous page reclaim */
static int
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
const struct alloc_context *ac)
{
struct reclaim_state reclaim_state;
int progress;
cond_resched();
/* We now go into synchronous reclaim */
cpuset_memory_pressure_bump();
current->flags |= PF_MEMALLOC;
lockdep_set_current_reclaim_state(gfp_mask);
reclaim_state.reclaimed_slab = 0;
current->reclaim_state = &reclaim_state;
progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
ac->nodemask);
current->reclaim_state = NULL;
lockdep_clear_current_reclaim_state();
current->flags &= ~PF_MEMALLOC;
cond_resched();
return progress;
}
/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
unsigned int alloc_flags, const struct alloc_context *ac,
unsigned long *did_some_progress)
{
struct page *page = NULL;
bool drained = false;
*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
if (unlikely(!(*did_some_progress)))
return NULL;
retry:
page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
/*
* If an allocation failed after direct reclaim, it could be because
* pages are pinned on the per-cpu lists or in high alloc reserves.
* Shrink them them and try again
*/
if (!page && !drained) {
unreserve_highatomic_pageblock(ac);
drain_all_pages(NULL);
drained = true;
goto retry;
}
return page;
}
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
{
struct zoneref *z;
struct zone *zone;
pg_data_t *last_pgdat = NULL;
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
ac->high_zoneidx, ac->nodemask) {
if (last_pgdat != zone->zone_pgdat)
wakeup_kswapd(zone, order, ac->high_zoneidx);
last_pgdat = zone->zone_pgdat;
}
}
static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)
{
unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
/*
* The caller may dip into page reserves a bit more if the caller
* cannot run direct reclaim, or if the caller has realtime scheduling
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
* set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
*/
alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
if (gfp_mask & __GFP_ATOMIC) {
/*
* Not worth trying to allocate harder for __GFP_NOMEMALLOC even
* if it can't schedule.
*/
if (!(gfp_mask & __GFP_NOMEMALLOC))
alloc_flags |= ALLOC_HARDER;
/*
* Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
* comment for __cpuset_node_allowed().
*/
alloc_flags &= ~ALLOC_CPUSET;
} else if (unlikely(rt_task(current)) && !in_interrupt())
alloc_flags |= ALLOC_HARDER;
#ifdef CONFIG_CMA
if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
alloc_flags |= ALLOC_CMA;
#endif
return alloc_flags;
}
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
return false;
if (gfp_mask & __GFP_MEMALLOC)
return true;
if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
return true;
if (!in_interrupt() &&
((current->flags & PF_MEMALLOC) ||
unlikely(test_thread_flag(TIF_MEMDIE))))
return true;
return false;
}
/*
* Maximum number of reclaim retries without any progress before OOM killer
* is consider as the only way to move forward.
*/
#define MAX_RECLAIM_RETRIES 16
/*
* Checks whether it makes sense to retry the reclaim to make a forward progress
* for the given allocation request.
* The reclaim feedback represented by did_some_progress (any progress during
* the last reclaim round) and no_progress_loops (number of reclaim rounds without
* any progress in a row) is considered as well as the reclaimable pages on the
* applicable zone list (with a backoff mechanism which is a function of
* no_progress_loops).
*
* Returns true if a retry is viable or false to enter the oom path.
*/
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
struct alloc_context *ac, int alloc_flags,
bool did_some_progress, int *no_progress_loops)
{
struct zone *zone;
struct zoneref *z;
/*
* Costly allocations might have made a progress but this doesn't mean
* their order will become available due to high fragmentation so
* always increment the no progress counter for them
*/
if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
*no_progress_loops = 0;
else
(*no_progress_loops)++;
/*
* Make sure we converge to OOM if we cannot make any progress
* several times in the row.
*/
if (*no_progress_loops > MAX_RECLAIM_RETRIES)
return false;
/*
* Keep reclaiming pages while there is a chance this will lead
* somewhere. If none of the target zones can satisfy our allocation
* request even if all reclaimable pages are considered then we are
* screwed and have to go OOM.
*/
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
ac->nodemask) {
unsigned long available;
unsigned long reclaimable;
available = reclaimable = zone_reclaimable_pages(zone);
available -= DIV_ROUND_UP((*no_progress_loops) * available,
MAX_RECLAIM_RETRIES);
available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
/*
* Would the allocation succeed if we reclaimed the whole
* available?
*/
if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ac_classzone_idx(ac), alloc_flags, available)) {
/*
* If we didn't make any progress and have a lot of
* dirty + writeback pages then we should wait for
* an IO to complete to slow down the reclaim and
* prevent from pre mature OOM
*/
if (!did_some_progress) {
unsigned long write_pending;
write_pending = zone_page_state_snapshot(zone,
NR_ZONE_WRITE_PENDING);
if (2 * write_pending > reclaimable) {
congestion_wait(BLK_RW_ASYNC, HZ/10);
return true;
}
}
/*
* Memory allocation/reclaim might be called from a WQ
* context and the current implementation of the WQ
* concurrency control doesn't recognize that
* a particular WQ is congested if the worker thread is
* looping without ever sleeping. Therefore we have to
* do a short sleep here rather than calling
* cond_resched().
*/
if (current->flags & PF_WQ_WORKER)
schedule_timeout_uninterruptible(1);
else
cond_resched();
return true;
}
}
return false;
}
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
struct alloc_context *ac)
{
bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
struct page *page = NULL;
unsigned int alloc_flags;
unsigned long did_some_progress;
enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
enum compact_result compact_result;
int compaction_retries = 0;
int no_progress_loops = 0;
unsigned long alloc_start = jiffies;
unsigned int stall_timeout = 10 * HZ;
/*
* In the slowpath, we sanity check order to avoid ever trying to
* reclaim >= MAX_ORDER areas which will never succeed. Callers may
* be using allocators in order of preference for an area that is
* too large.
*/
if (order >= MAX_ORDER) {
WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
return NULL;
}
/*
* We also sanity check to catch abuse of atomic reserves being used by
* callers that are not in atomic context.
*/
if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
gfp_mask &= ~__GFP_ATOMIC;
/*
* The fast path uses conservative alloc_flags to succeed only until
* kswapd needs to be woken up, and to avoid the cost of setting up
* alloc_flags precisely. So we do that now.
*/
alloc_flags = gfp_to_alloc_flags(gfp_mask);
if (gfp_mask & __GFP_KSWAPD_RECLAIM)
wake_all_kswapds(order, ac);
/*
* The adjusted alloc_flags might result in immediate success, so try
* that first
*/
page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
if (page)
goto got_pg;
/*
* For costly allocations, try direct compaction first, as it's likely
* that we have enough base pages and don't need to reclaim. Don't try
* that for allocations that are allowed to ignore watermarks, as the
* ALLOC_NO_WATERMARKS attempt didn't yet happen.
*/
if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
!gfp_pfmemalloc_allowed(gfp_mask)) {
page = __alloc_pages_direct_compact(gfp_mask, order,
alloc_flags, ac,
INIT_COMPACT_PRIORITY,
&compact_result);
if (page)
goto got_pg;
/*
* Checks for costly allocations with __GFP_NORETRY, which
* includes THP page fault allocations
*/
if (gfp_mask & __GFP_NORETRY) {
/*
* If compaction is deferred for high-order allocations,
* it is because sync compaction recently failed. If
* this is the case and the caller requested a THP
* allocation, we do not want to heavily disrupt the
* system, so we fail the allocation instead of entering
* direct reclaim.
*/
if (compact_result == COMPACT_DEFERRED)
goto nopage;
/*
* Looks like reclaim/compaction is worth trying, but
* sync compaction could be very expensive, so keep
* using async compaction.
*/
compact_priority = INIT_COMPACT_PRIORITY;
}
}
retry:
/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
if (gfp_mask & __GFP_KSWAPD_RECLAIM)
wake_all_kswapds(order, ac);
if (gfp_pfmemalloc_allowed(gfp_mask))
alloc_flags = ALLOC_NO_WATERMARKS;
/*
* Reset the zonelist iterators if memory policies can be ignored.
* These allocations are high priority and system rather than user
* orientated.
*/
if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
ac->high_zoneidx, ac->nodemask);
}
/* Attempt with potentially adjusted zonelist and alloc_flags */
page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
if (page)
goto got_pg;
/* Caller is not willing to reclaim, we can't balance anything */
if (!can_direct_reclaim) {
/*
* All existing users of the __GFP_NOFAIL are blockable, so warn
* of any new users that actually allow this type of allocation
* to fail.
*/
WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
goto nopage;
}
/* Avoid recursion of direct reclaim */
if (current->flags & PF_MEMALLOC) {
/*
* __GFP_NOFAIL request from this context is rather bizarre
* because we cannot reclaim anything and only can loop waiting
* for somebody to do a work for us.
*/
if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
cond_resched();
goto retry;
}
goto nopage;
}
/* Avoid allocations with no watermarks from looping endlessly */
if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
goto nopage;
/* Try direct reclaim and then allocating */
page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
&did_some_progress);
if (page)
goto got_pg;
/* Try direct compaction and then allocating */
page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
compact_priority, &compact_result);
if (page)
goto got_pg;
/* Do not loop if specifically requested */
if (gfp_mask & __GFP_NORETRY)
goto nopage;
/*
* Do not retry costly high order allocations unless they are
* __GFP_REPEAT
*/
if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
goto nopage;
/* Make sure we know about allocations which stall for too long */
if (time_after(jiffies, alloc_start + stall_timeout)) {
warn_alloc(gfp_mask,
"page alloction stalls for %ums, order:%u\n",
jiffies_to_msecs(jiffies-alloc_start), order);
stall_timeout += 10 * HZ;
}
if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
did_some_progress > 0, &no_progress_loops))
goto retry;
/*
* It doesn't make any sense to retry for the compaction if the order-0
* reclaim is not able to make any progress because the current
* implementation of the compaction depends on the sufficient amount
* of free memory (see __compaction_suitable)
*/
if (did_some_progress > 0 &&
should_compact_retry(ac, order, alloc_flags,
compact_result, &compact_priority,
&compaction_retries))
goto retry;
/* Reclaim has failed us, start killing things */
page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
if (page)
goto got_pg;
/* Retry as long as the OOM killer is making progress */
if (did_some_progress) {
no_progress_loops = 0;
goto retry;
}
nopage:
warn_alloc(gfp_mask,
"page allocation failure: order:%u", order);
got_pg:
return page;
}
/*
* This is the 'heart' of the zoned buddy allocator.
*/
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, nodemask_t *nodemask)
{
struct page *page;
unsigned int cpuset_mems_cookie;
unsigned int alloc_flags = ALLOC_WMARK_LOW;
gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
struct alloc_context ac = {
.high_zoneidx = gfp_zone(gfp_mask),
.zonelist = zonelist,
.nodemask = nodemask,
.migratetype = gfpflags_to_migratetype(gfp_mask),
};
if (cpusets_enabled()) {
alloc_mask |= __GFP_HARDWALL;
alloc_flags |= ALLOC_CPUSET;
if (!ac.nodemask)
ac.nodemask = &cpuset_current_mems_allowed;
}
gfp_mask &= gfp_allowed_mask;
lockdep_trace_alloc(gfp_mask);
might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
if (should_fail_alloc_page(gfp_mask, order))
return NULL;
/*
* Check the zones suitable for the gfp_mask contain at least one
* valid zone. It's possible to have an empty zonelist as a result
* of __GFP_THISNODE and a memoryless node
*/
if (unlikely(!zonelist->_zonerefs->zone))
return NULL;
if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
alloc_flags |= ALLOC_CMA;
retry_cpuset:
cpuset_mems_cookie = read_mems_allowed_begin();
/* Dirty zone balancing only done in the fast path */
ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
/*
* The preferred zone is used for statistics but crucially it is
* also used as the starting point for the zonelist iterator. It
* may get reset for allocations that ignore memory policies.
*/
ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
ac.high_zoneidx, ac.nodemask);
if (!ac.preferred_zoneref) {
page = NULL;
goto no_zone;
}
/* First allocation attempt */
page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
if (likely(page))
goto out;
/*
* Runtime PM, block IO and its error handling path can deadlock
* because I/O on the device might not complete.
*/
alloc_mask = memalloc_noio_flags(gfp_mask);
ac.spread_dirty_pages = false;
/*
* Restore the original nodemask if it was potentially replaced with
* &cpuset_current_mems_allowed to optimize the fast-path attempt.
*/
if (cpusets_enabled())
ac.nodemask = nodemask;
page = __alloc_pages_slowpath(alloc_mask, order, &ac);
no_zone:
/*
* When updating a task's mems_allowed, it is possible to race with
* parallel threads in such a way that an allocation can fail while
* the mask is being updated. If a page allocation is about to fail,
* check if the cpuset changed during allocation and if so, retry.
*/
if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
alloc_mask = gfp_mask;
goto retry_cpuset;
}
out:
if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
__free_pages(page, order);
page = NULL;
}
if (kmemcheck_enabled && page)
kmemcheck_pagealloc_alloc(page, order, gfp_mask);
trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
return page;
}
EXPORT_SYMBOL(__alloc_pages_nodemask);
/*
* Common helper functions.
*/
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
{
struct page *page;
/*
* __get_free_pages() returns a 32-bit address, which cannot represent
* a highmem page
*/
VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
page = alloc_pages(gfp_mask, order);
if (!page)
return 0;
return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);
unsigned long get_zeroed_page(gfp_t gfp_mask)
{
return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
}
EXPORT_SYMBOL(get_zeroed_page);
void __free_pages(struct page *page, unsigned int order)
{
if (put_page_testzero(page)) {
if (order == 0)
free_hot_cold_page(page, false);
else
__free_pages_ok(page, order);
}
}
EXPORT_SYMBOL(__free_pages);
void free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
VM_BUG_ON(!virt_addr_valid((void *)addr));
__free_pages(virt_to_page((void *)addr), order);
}
}
EXPORT_SYMBOL(free_pages);
/*
* Page Fragment:
* An arbitrary-length arbitrary-offset area of memory which resides
* within a 0 or higher order page. Multiple fragments within that page
* are individually refcounted, in the page's reference counter.
*
* The page_frag functions below provide a simple allocation framework for
* page fragments. This is used by the network stack and network device
* drivers to provide a backing region of memory for use as either an
* sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
*/
static struct page *__page_frag_refill(struct page_frag_cache *nc,
gfp_t gfp_mask)
{
struct page *page = NULL;
gfp_t gfp = gfp_mask;
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
__GFP_NOMEMALLOC;
page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
PAGE_FRAG_CACHE_MAX_ORDER);
nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
if (unlikely(!page))
page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
nc->va = page ? page_address(page) : NULL;
return page;
}
void *__alloc_page_frag(struct page_frag_cache *nc,
unsigned int fragsz, gfp_t gfp_mask)
{
unsigned int size = PAGE_SIZE;
struct page *page;
int offset;
if (unlikely(!nc->va)) {
refill:
page = __page_frag_refill(nc, gfp_mask);
if (!page)
return NULL;
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
/* if size can vary use size else just use PAGE_SIZE */
size = nc->size;
#endif
/* Even if we own the page, we do not use atomic_set().
* This would break get_page_unless_zero() users.
*/
page_ref_add(page, size - 1);
/* reset page count bias and offset to start of new frag */
nc->pfmemalloc = page_is_pfmemalloc(page);
nc->pagecnt_bias = size;
nc->offset = size;
}
offset = nc->offset - fragsz;
if (unlikely(offset < 0)) {
page = virt_to_page(nc->va);
if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
goto refill;
#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
/* if size can vary use size else just use PAGE_SIZE */
size = nc->size;
#endif
/* OK, page count is 0, we can safely set it */
set_page_count(page, size);
/* reset page count bias and offset to start of new frag */
nc->pagecnt_bias = size;
offset = size - fragsz;
}
nc->pagecnt_bias--;
nc->offset = offset;
return nc->va + offset;
}
EXPORT_SYMBOL(__alloc_page_frag);
/*
* Frees a page fragment allocated out of either a compound or order 0 page.
*/
void __free_page_frag(void *addr)
{
struct page *page = virt_to_head_page(addr);
if (unlikely(put_page_testzero(page)))
__free_pages_ok(page, compound_order(page));
}
EXPORT_SYMBOL(__free_page_frag);
static void *make_alloc_exact(unsigned long addr, unsigned int order,
size_t size)
{
if (addr) {
unsigned long alloc_end = addr + (PAGE_SIZE << order);
unsigned long used = addr + PAGE_ALIGN(size);
split_page(virt_to_page((void *)addr), order);
while (used < alloc_end) {
free_page(used);
used += PAGE_SIZE;
}
}
return (void *)addr;
}
/**
* alloc_pages_exact - allocate an exact number physically-contiguous pages.
* @size: the number of bytes to allocate
* @gfp_mask: GFP flags for the allocation
*
* This function is similar to alloc_pages(), except that it allocates the
* minimum number of pages to satisfy the request. alloc_pages() can only
* allocate memory in power-of-two pages.
*
* This function is also limited by MAX_ORDER.
*
* Memory allocated by this function must be released by free_pages_exact().
*/
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
unsigned int order = get_order(size);
unsigned long addr;
addr = __get_free_pages(gfp_mask, order);
return make_alloc_exact(addr, order, size);
}
EXPORT_SYMBOL(alloc_pages_exact);
/**
* alloc_pages_exact_nid - allocate an exact number of physically-contiguous
* pages on a node.
* @nid: the preferred node ID where memory should be allocated
* @size: the number of bytes to allocate
* @gfp_mask: GFP flags for the allocation
*
* Like alloc_pages_exact(), but try to allocate on node nid first before falling
* back.
*/
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
{
unsigned int order = get_order(size);
struct page *p = alloc_pages_node(nid, gfp_mask, order);
if (!p)
return NULL;
return make_alloc_exact((unsigned long)page_address(p), order, size);
}
/**
* free_pages_exact - release memory allocated via alloc_pages_exact()
* @virt: the value returned by alloc_pages_exact.
* @size: size of allocation, same value as passed to alloc_pages_exact().
*
* Release the memory allocated by a previous call to alloc_pages_exact.
*/
void free_pages_exact(void *virt, size_t size)
{
unsigned long addr = (unsigned long)virt;
unsigned long end = addr + PAGE_ALIGN(size);
while (addr < end) {
free_page(addr);
addr += PAGE_SIZE;
}
}
EXPORT_SYMBOL(free_pages_exact);
/**
* nr_free_zone_pages - count number of pages beyond high watermark
* @offset: The zone index of the highest zone
*
* nr_free_zone_pages() counts the number of counts pages which are beyond the
* high watermark within all zones at or below a given zone index. For each
* zone, the number of pages is calculated as:
* managed_pages - high_pages
*/
static unsigned long nr_free_zone_pages(int offset)
{
struct zoneref *z;
struct zone *zone;
/* Just pick one node, since fallback list is circular */
unsigned long sum = 0;
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
for_each_zone_zonelist(zone, z, zonelist, offset) {
unsigned long size = zone->managed_pages;
unsigned long high = high_wmark_pages(zone);
if (size > high)
sum += size - high;
}
return sum;
}
/**
* nr_free_buffer_pages - count number of pages beyond high watermark
*
* nr_free_buffer_pages() counts the number of pages which are beyond the high
* watermark within ZONE_DMA and ZONE_NORMAL.
*/
unsigned long nr_free_buffer_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_USER));
}
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
/**
* nr_free_pagecache_pages - count number of pages beyond high watermark
*
* nr_free_pagecache_pages() counts the number of pages which are beyond the
* high watermark within all zones.
*/
unsigned long nr_free_pagecache_pages(void)
{
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
}
static inline void show_node(struct zone *zone)
{
if (IS_ENABLED(CONFIG_NUMA))
printk("Node %d ", zone_to_nid(zone));
}
long si_mem_available(void)
{
long available;
unsigned long pagecache;
unsigned long wmark_low = 0;
unsigned long pages[NR_LRU_LISTS];
struct zone *zone;
int lru;
for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
for_each_zone(zone)
wmark_low += zone->watermark[WMARK_LOW];
/*
* Estimate the amount of memory available for userspace allocations,
* without causing swapping.
*/
available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
/*
* Not all the page cache can be freed, otherwise the system will
* start swapping. Assume at least half of the page cache, or the
* low watermark worth of cache, needs to stay.
*/
pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
pagecache -= min(pagecache / 2, wmark_low);
available += pagecache;
/*
* Part of the reclaimable slab consists of items that are in use,
* and cannot be freed. Cap this estimate at the low watermark.
*/
available += global_page_state(NR_SLAB_RECLAIMABLE) -
min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
if (available < 0)
available = 0;
return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);
void si_meminfo(struct sysinfo *val)
{
val->totalram = totalram_pages;
val->sharedram = global_node_page_state(NR_SHMEM);
val->freeram = global_page_state(NR_FREE_PAGES);
val->bufferram = nr_blockdev_pages();
val->totalhigh = totalhigh_pages;
val->freehigh = nr_free_highpages();
val->mem_unit = PAGE_SIZE;
}
EXPORT_SYMBOL(si_meminfo);
#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
int zone_type; /* needs to be signed */
unsigned long managed_pages = 0;
unsigned long managed_highpages = 0;
unsigned long free_highpages = 0;
pg_data_t *pgdat = NODE_DATA(nid);
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
managed_pages += pgdat->node_zones[zone_type].managed_pages;
val->totalram = managed_pages;
val->sharedram = node_page_state(pgdat, NR_SHMEM);
val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
#ifdef CONFIG_HIGHMEM
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
struct zone *zone = &pgdat->node_zones[zone_type];
if (is_highmem(zone)) {
managed_highpages += zone->managed_pages;
free_highpages += zone_page_state(zone, NR_FREE_PAGES);
}
}
val->totalhigh = managed_highpages;
val->freehigh = free_highpages;
#else
val->totalhigh = managed_highpages;
val->freehigh = free_highpages;
#endif
val->mem_unit = PAGE_SIZE;
}
#endif
/*
* Determine whether the node should be displayed or not, depending on whether
* SHOW_MEM_FILTER_NODES was passed to show_free_areas().
*/
bool skip_free_areas_node(unsigned int flags, int nid)
{
bool ret = false;
unsigned int cpuset_mems_cookie;
if (!(flags & SHOW_MEM_FILTER_NODES))
goto out;
do {
cpuset_mems_cookie = read_mems_allowed_begin();
ret = !node_isset(nid, cpuset_current_mems_allowed);
} while (read_mems_allowed_retry(cpuset_mems_cookie));
out:
return ret;
}
#define K(x) ((x) << (PAGE_SHIFT-10))
static void show_migration_types(unsigned char type)
{
static const char types[MIGRATE_TYPES] = {
[MIGRATE_UNMOVABLE] = 'U',
[MIGRATE_MOVABLE] = 'M',
[MIGRATE_RECLAIMABLE] = 'E',
[MIGRATE_HIGHATOMIC] = 'H',
#ifdef CONFIG_CMA
[MIGRATE_CMA] = 'C',
#endif
#ifdef CONFIG_MEMORY_ISOLATION
[MIGRATE_ISOLATE] = 'I',
#endif
};
char tmp[MIGRATE_TYPES + 1];
char *p = tmp;
int i;
for (i = 0; i < MIGRATE_TYPES; i++) {
if (type & (1 << i))
*p++ = types[i];
}
*p = '\0';
printk("(%s) ", tmp);
}
/*
* Show free area list (used inside shift_scroll-lock stuff)
* We also calculate the percentage fragmentation. We do this by counting the
* memory on each free list with the exception of the first item on the list.
*
* Bits in @filter:
* SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
* cpuset.
*/
void show_free_areas(unsigned int filter)
{
unsigned long free_pcp = 0;
int cpu;
struct zone *zone;
pg_data_t *pgdat;
for_each_populated_zone(zone) {
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
for_each_online_cpu(cpu)
free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
}
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
" free:%lu free_pcp:%lu free_cma:%lu\n",
global_node_page_state(NR_ACTIVE_ANON),
global_node_page_state(NR_INACTIVE_ANON),
global_node_page_state(NR_ISOLATED_ANON),
global_node_page_state(NR_ACTIVE_FILE),
global_node_page_state(NR_INACTIVE_FILE),
global_node_page_state(NR_ISOLATED_FILE),
global_node_page_state(NR_UNEVICTABLE),
global_node_page_state(NR_FILE_DIRTY),
global_node_page_state(NR_WRITEBACK),
global_node_page_state(NR_UNSTABLE_NFS),
global_page_state(NR_SLAB_RECLAIMABLE),
global_page_state(NR_SLAB_UNRECLAIMABLE),
global_node_page_state(NR_FILE_MAPPED),
global_node_page_state(NR_SHMEM),
global_page_state(NR_PAGETABLE),
global_page_state(NR_BOUNCE),
global_page_state(NR_FREE_PAGES),
free_pcp,
global_page_state(NR_FREE_CMA_PAGES));
for_each_online_pgdat(pgdat) {
printk("Node %d"
" active_anon:%lukB"
" inactive_anon:%lukB"
" active_file:%lukB"
" inactive_file:%lukB"
" unevictable:%lukB"
" isolated(anon):%lukB"
" isolated(file):%lukB"
" mapped:%lukB"
" dirty:%lukB"
" writeback:%lukB"
" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
" shmem_thp: %lukB"
" shmem_pmdmapped: %lukB"
" anon_thp: %lukB"
#endif
" writeback_tmp:%lukB"
" unstable:%lukB"
" pages_scanned:%lu"
" all_unreclaimable? %s"
"\n",
pgdat->node_id,
K(node_page_state(pgdat, NR_ACTIVE_ANON)),
K(node_page_state(pgdat, NR_INACTIVE_ANON)),
K(node_page_state(pgdat, NR_ACTIVE_FILE)),
K(node_page_state(pgdat, NR_INACTIVE_FILE)),
K(node_page_state(pgdat, NR_UNEVICTABLE)),
K(node_page_state(pgdat, NR_ISOLATED_ANON)),
K(node_page_state(pgdat, NR_ISOLATED_FILE)),
K(node_page_state(pgdat, NR_FILE_MAPPED)),
K(node_page_state(pgdat, NR_FILE_DIRTY)),
K(node_page_state(pgdat, NR_WRITEBACK)),
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
* HPAGE_PMD_NR),
K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
K(node_page_state(pgdat, NR_SHMEM)),
K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
node_page_state(pgdat, NR_PAGES_SCANNED),
!pgdat_reclaimable(pgdat) ? "yes" : "no");
}
for_each_populated_zone(zone) {
int i;
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
free_pcp = 0;
for_each_online_cpu(cpu)
free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
show_node(zone);
printk("%s"
" free:%lukB"
" min:%lukB"
" low:%lukB"
" high:%lukB"
" active_anon:%lukB"
" inactive_anon:%lukB"
" active_file:%lukB"
" inactive_file:%lukB"
" unevictable:%lukB"
" writepending:%lukB"
" present:%lukB"
" managed:%lukB"
" mlocked:%lukB"
" slab_reclaimable:%lukB"
" slab_unreclaimable:%lukB"
" kernel_stack:%lukB"
" pagetables:%lukB"
" bounce:%lukB"
" free_pcp:%lukB"
" local_pcp:%ukB"
" free_cma:%lukB"
"\n",
zone->name,
K(zone_page_state(zone, NR_FREE_PAGES)),
K(min_wmark_pages(zone)),
K(low_wmark_pages(zone)),
K(high_wmark_pages(zone)),
K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
K(zone->present_pages),
K(zone->managed_pages),
K(zone_page_state(zone, NR_MLOCK)),
K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
zone_page_state(zone, NR_KERNEL_STACK_KB),
K(zone_page_state(zone, NR_PAGETABLE)),
K(zone_page_state(zone, NR_BOUNCE)),
K(free_pcp),
K(this_cpu_read(zone->pageset->pcp.count)),
K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
printk("lowmem_reserve[]:");
for (i = 0; i < MAX_NR_ZONES; i++)
printk(" %ld", zone->lowmem_reserve[i]);
printk("\n");
}
for_each_populated_zone(zone) {
unsigned int order;
unsigned long nr[MAX_ORDER], flags, total = 0;
unsigned char types[MAX_ORDER];
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
show_node(zone);
printk("%s: ", zone->name);
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
struct free_area *area = &zone->free_area[order];
int type;
nr[order] = area->nr_free;
total += nr[order] << order;
types[order] = 0;
for (type = 0; type < MIGRATE_TYPES; type++) {
if (!list_empty(&area->free_list[type]))
types[order] |= 1 << type;
}
}
spin_unlock_irqrestore(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
printk("%lu*%lukB ", nr[order], K(1UL) << order);
if (nr[order])
show_migration_types(types[order]);
}
printk("= %lukB\n", K(total));
}
hugetlb_show_meminfo();
printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
show_swap_cache_info();
}
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
zoneref->zone = zone;
zoneref->zone_idx = zone_idx(zone);
}
/*
* Builds allocation fallback zone lists.
*
* Add all populated zones of a node to the zonelist.
*/
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
int nr_zones)
{
struct zone *zone;
enum zone_type zone_type = MAX_NR_ZONES;
do {
zone_type--;
zone = pgdat->node_zones + zone_type;
if (managed_zone(zone)) {
zoneref_set_zone(zone,
&zonelist->_zonerefs[nr_zones++]);
check_highest_zone(zone_type);
}
} while (zone_type);
return nr_zones;
}
/*
* zonelist_order:
* 0 = automatic detection of better ordering.
* 1 = order by ([node] distance, -zonetype)
* 2 = order by (-zonetype, [node] distance)
*
* If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
* the same zonelist. So only NUMA can configure this param.
*/
#define ZONELIST_ORDER_DEFAULT 0
#define ZONELIST_ORDER_NODE 1
#define ZONELIST_ORDER_ZONE 2
/* zonelist order in the kernel.
* set_zonelist_order() will set this to NODE or ZONE.
*/
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
#ifdef CONFIG_NUMA
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN 16
char numa_zonelist_order[16] = "default";
/*
* interface for configure zonelist ordering.
* command line option "numa_zonelist_order"
* = "[dD]efault - default, automatic configuration.
* = "[nN]ode - order by node locality, then by zone within node
* = "[zZ]one - order by zone, then by locality within zone
*/
static int __parse_numa_zonelist_order(char *s)
{
if (*s == 'd' || *s == 'D') {
user_zonelist_order = ZONELIST_ORDER_DEFAULT;
} else if (*s == 'n' || *s == 'N') {
user_zonelist_order = ZONELIST_ORDER_NODE;
} else if (*s == 'z' || *s == 'Z') {
user_zonelist_order = ZONELIST_ORDER_ZONE;
} else {
pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
return -EINVAL;
}
return 0;
}
static __init int setup_numa_zonelist_order(char *s)
{
int ret;
if (!s)
return 0;
ret = __parse_numa_zonelist_order(s);
if (ret == 0)
strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
return ret;
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);
/*
* sysctl handler for numa_zonelist_order
*/
int numa_zonelist_order_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length,
loff_t *ppos)
{
char saved_string[NUMA_ZONELIST_ORDER_LEN];
int ret;
static DEFINE_MUTEX(zl_order_mutex);
mutex_lock(&zl_order_mutex);
if (write) {
if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
ret = -EINVAL;
goto out;
}
strcpy(saved_string, (char *)table->data);
}
ret = proc_dostring(table, write, buffer, length, ppos);
if (ret)
goto out;
if (write) {
int oldval = user_zonelist_order;
ret = __parse_numa_zonelist_order((char *)table->data);
if (ret) {
/*
* bogus value. restore saved string
*/
strncpy((char *)table->data, saved_string,
NUMA_ZONELIST_ORDER_LEN);
user_zonelist_order = oldval;
} else if (oldval != user_zonelist_order) {
mutex_lock(&zonelists_mutex);
build_all_zonelists(NULL, NULL);
mutex_unlock(&zonelists_mutex);
}
}
out:
mutex_unlock(&zl_order_mutex);
return ret;
}
#define MAX_NODE_LOAD (nr_online_nodes)
static int node_load[MAX_NUMNODES];
/**
* find_next_best_node - find the next node that should appear in a given node's fallback list
* @node: node whose fallback list we're appending
* @used_node_mask: nodemask_t of already used nodes
*
* We use a number of factors to determine which is the next node that should
* appear on a given node's fallback list. The node should not have appeared
* already in @node's fallback list, and it should be the next closest node
* according to the distance array (which contains arbitrary distance values
* from each node to each node in the system), and should also prefer nodes
* with no CPUs, since presumably they'll have very little allocation pressure
* on them otherwise.
* It returns -1 if no node is found.
*/
static int find_next_best_node(int node, nodemask_t *used_node_mask)
{
int n, val;
int min_val = INT_MAX;
int best_node = NUMA_NO_NODE;
const struct cpumask *tmp = cpumask_of_node(0);
/* Use the local node if we haven't already */
if (!node_isset(node, *used_node_mask)) {
node_set(node, *used_node_mask);
return node;
}
for_each_node_state(n, N_MEMORY) {
/* Don't want a node to appear more than once */
if (node_isset(n, *used_node_mask))
continue;
/* Use the distance array to find the distance */
val = node_distance(node, n);
/* Penalize nodes under us ("prefer the next node") */
val += (n < node);
/* Give preference to headless and unused nodes */
tmp = cpumask_of_node(n);
if (!cpumask_empty(tmp))
val += PENALTY_FOR_NODE_WITH_CPUS;
/* Slight preference for less loaded node */
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
val += node_load[n];
if (val < min_val) {
min_val = val;
best_node = n;
}
}
if (best_node >= 0)
node_set(best_node, *used_node_mask);
return best_node;
}
/*
* Build zonelists ordered by node and zones within node.
* This results in maximum locality--normal zone overflows into local
* DMA zone, if any--but risks exhausting DMA zone.
*/
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
{
int j;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
;
j = build_zonelists_node(NODE_DATA(node), zonelist, j);
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/*
* Build gfp_thisnode zonelists
*/
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
int j;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
j = build_zonelists_node(pgdat, zonelist, 0);
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
/*
* Build zonelists ordered by zone and nodes within zones.
* This results in conserving DMA zone[s] until all Normal memory is
* exhausted, but results in overflowing to remote node while memory
* may still exist in local DMA zone.
*/
static int node_order[MAX_NUMNODES];
static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
int pos, j, node;
int zone_type; /* needs to be signed */
struct zone *z;
struct zonelist *zonelist;
zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
pos = 0;
for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
for (j = 0; j < nr_nodes; j++) {
node = node_order[j];
z = &NODE_DATA(node)->node_zones[zone_type];
if (managed_zone(z)) {
zoneref_set_zone(z,
&zonelist->_zonerefs[pos++]);
check_highest_zone(zone_type);
}
}
}
zonelist->_zonerefs[pos].zone = NULL;
zonelist->_zonerefs[pos].zone_idx = 0;
}
#if defined(CONFIG_64BIT)
/*
* Devices that require DMA32/DMA are relatively rare and do not justify a
* penalty to every machine in case the specialised case applies. Default
* to Node-ordering on 64-bit NUMA machines
*/
static int default_zonelist_order(void)
{
return ZONELIST_ORDER_NODE;
}
#else
/*
* On 32-bit, the Normal zone needs to be preserved for allocations accessible
* by the kernel. If processes running on node 0 deplete the low memory zone
* then reclaim will occur more frequency increasing stalls and potentially
* be easier to OOM if a large percentage of the zone is under writeback or
* dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
* Hence, default to zone ordering on 32-bit.
*/
static int default_zonelist_order(void)
{
return ZONELIST_ORDER_ZONE;
}
#endif /* CONFIG_64BIT */
static void set_zonelist_order(void)
{
if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
current_zonelist_order = default_zonelist_order();
else
current_zonelist_order = user_zonelist_order;
}
static void build_zonelists(pg_data_t *pgdat)
{
int i, node, load;
nodemask_t used_mask;
int local_node, prev_node;
struct zonelist *zonelist;
unsigned int order = current_zonelist_order;
/* initialize zonelists */
for (i = 0; i < MAX_ZONELISTS; i++) {
zonelist = pgdat->node_zonelists + i;
zonelist->_zonerefs[0].zone = NULL;
zonelist->_zonerefs[0].zone_idx = 0;
}
/* NUMA-aware ordering of nodes */
local_node = pgdat->node_id;
load = nr_online_nodes;
prev_node = local_node;
nodes_clear(used_mask);
memset(node_order, 0, sizeof(node_order));
i = 0;
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
/*
* We don't want to pressure a particular node.
* So adding penalty to the first node in same
* distance group to make it round-robin.
*/
if (node_distance(local_node, node) !=
node_distance(local_node, prev_node))
node_load[node] = load;
prev_node = node;
load--;
if (order == ZONELIST_ORDER_NODE)
build_zonelists_in_node_order(pgdat, node);
else
node_order[i++] = node; /* remember order */
}
if (order == ZONELIST_ORDER_ZONE) {
/* calculate node order -- i.e., DMA last! */
build_zonelists_in_zone_order(pgdat, i);
}
build_thisnode_zonelists(pgdat);
}
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* Return node id of node used for "local" allocations.
* I.e., first node id of first zone in arg node's generic zonelist.
* Used for initializing percpu 'numa_mem', which is used primarily
* for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
*/
int local_memory_node(int node)
{
struct zoneref *z;
z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
gfp_zone(GFP_KERNEL),
NULL);
return z->zone->node;
}
#endif
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
#else /* CONFIG_NUMA */
static void set_zonelist_order(void)
{
current_zonelist_order = ZONELIST_ORDER_ZONE;
}
static void build_zonelists(pg_data_t *pgdat)
{
int node, local_node;
enum zone_type j;
struct zonelist *zonelist;
local_node = pgdat->node_id;
zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
j = build_zonelists_node(pgdat, zonelist, 0);
/*
* Now we build the zonelist so that it contains the zones
* of all the other nodes.
* We don't want to pressure a particular node, so when
* building the zones for node N, we make sure that the
* zones coming right after the local ones are those from
* node N+1 (modulo N)
*/
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j);
}
for (node = 0; node < local_node; node++) {
if (!node_online(node))
continue;
j = build_zonelists_node(NODE_DATA(node), zonelist, j);
}
zonelist->_zonerefs[j].zone = NULL;
zonelist->_zonerefs[j].zone_idx = 0;
}
#endif /* CONFIG_NUMA */
/*
* Boot pageset table. One per cpu which is going to be used for all
* zones and all nodes. The parameters will be set in such a way
* that an item put on a list will immediately be handed over to
* the buddy list. This is safe since pageset manipulation is done
* with interrupts disabled.
*
* The boot_pagesets must be kept even after bootup is complete for
* unused processors and/or zones. They do play a role for bootstrapping
* hotplugged processors.
*
* zoneinfo_show() and maybe other functions do
* not check if the processor is online before following the pageset pointer.
* Other parts of the kernel may not check if the zone is available.
*/
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
static void setup_zone_pageset(struct zone *zone);
/*
* Global mutex to protect against size modification of zonelists
* as well as to serialize pageset setup for the new populated zone.
*/
DEFINE_MUTEX(zonelists_mutex);
/* return values int ....just for stop_machine() */
static int __build_all_zonelists(void *data)
{
int nid;
int cpu;
pg_data_t *self = data;
#ifdef CONFIG_NUMA
memset(node_load, 0, sizeof(node_load));
#endif
if (self && !node_online(self->node_id)) {
build_zonelists(self);
}
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
build_zonelists(pgdat);
}
/*
* Initialize the boot_pagesets that are going to be used
* for bootstrapping processors. The real pagesets for
* each zone will be allocated later when the per cpu
* allocator is available.
*
* boot_pagesets are used also for bootstrapping offline
* cpus if the system is already booted because the pagesets
* are needed to initialize allocators on a specific cpu too.
* F.e. the percpu allocator needs the page allocator which
* needs the percpu allocator in order to allocate its pagesets
* (a chicken-egg dilemma).
*/
for_each_possible_cpu(cpu) {
setup_pageset(&per_cpu(boot_pageset, cpu), 0);
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
* We now know the "local memory node" for each node--
* i.e., the node of the first zone in the generic zonelist.
* Set up numa_mem percpu variable for on-line cpus. During
* boot, only the boot cpu should be on-line; we'll init the
* secondary cpus' numa_mem as they come on-line. During
* node/memory hotplug, we'll fixup all on-line cpus.
*/
if (cpu_online(cpu))
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
}
return 0;
}
static noinline void __init
build_all_zonelists_init(void)
{
__build_all_zonelists(NULL);
mminit_verify_zonelist();
cpuset_init_current_mems_allowed();
}
/*
* Called with zonelists_mutex held always
* unless system_state == SYSTEM_BOOTING.
*
* __ref due to (1) call of __meminit annotated setup_zone_pageset
* [we're only called with non-NULL zone through __meminit paths] and
* (2) call of __init annotated helper build_all_zonelists_init
* [protected by SYSTEM_BOOTING].
*/
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
{
set_zonelist_order();
if (system_state == SYSTEM_BOOTING) {
build_all_zonelists_init();
} else {
#ifdef CONFIG_MEMORY_HOTPLUG
if (zone)
setup_zone_pageset(zone);
#endif
/* we have to stop all cpus to guarantee there is no user
of zonelist */
stop_machine(__build_all_zonelists, pgdat, NULL);
/* cpuset refresh routine should be here */
}
vm_total_pages = nr_free_pagecache_pages();
/*
* Disable grouping by mobility if the number of pages in the
* system is too low to allow the mechanism to work. It would be
* more accurate, but expensive to check per-zone. This check is
* made on memory-hotadd so a system can start with mobility
* disabled and enable it later
*/
if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
page_group_by_mobility_disabled = 1;
else
page_group_by_mobility_disabled = 0;
pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
nr_online_nodes,
zonelist_order_name[current_zonelist_order],
page_group_by_mobility_disabled ? "off" : "on",
vm_total_pages);
#ifdef CONFIG_NUMA
pr_info("Policy zone: %s\n", zone_names[policy_zone]);
#endif
}
/*
* Helper functions to size the waitqueue hash table.
* Essentially these want to choose hash table sizes sufficiently
* large so that collisions trying to wait on pages are rare.
* But in fact, the number of active page waitqueues on typical
* systems is ridiculously low, less than 200. So this is even
* conservative, even though it seems large.
*
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
* waitqueues, i.e. the size of the waitq table given the number of pages.
*/
#define PAGES_PER_WAITQUEUE 256
#ifndef CONFIG_MEMORY_HOTPLUG
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
unsigned long size = 1;
pages /= PAGES_PER_WAITQUEUE;
while (size < pages)
size <<= 1;
/*
* Once we have dozens or even hundreds of threads sleeping
* on IO we've got bigger problems than wait queue collision.
* Limit the size of the wait table to a reasonable size.
*/
size = min(size, 4096UL);
return max(size, 4UL);
}
#else
/*
* A zone's size might be changed by hot-add, so it is not possible to determine
* a suitable size for its wait_table. So we use the maximum size now.
*
* The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
*
* i386 (preemption config) : 4096 x 16 = 64Kbyte.
* ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
* ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
*
* The maximum entries are prepared when a zone's memory is (512K + 256) pages
* or more by the traditional way. (See above). It equals:
*
* i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
* ia64(16K page size) : = ( 8G + 4M)byte.
* powerpc (64K page size) : = (32G +16M)byte.
*/
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
{
return 4096UL;
}
#endif
/*
* This is an integer logarithm so that shifts can be used later
* to extract the more random high bits from the multiplicative
* hash function before the remainder is taken.
*/
static inline unsigned long wait_table_bits(unsigned long size)
{
return ffz(~size);
}
/*
* Initially all pages are reserved - free ones are freed
* up by free_all_bootmem() once the early boot process is
* done. Non-atomic initialization, single-pass.
*/
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn, enum memmap_context context)
{
struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
unsigned long end_pfn = start_pfn + size;
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long pfn;
unsigned long nr_initialised = 0;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
struct memblock_region *r = NULL, *tmp;
#endif
if (highest_memmap_pfn < end_pfn - 1)
highest_memmap_pfn = end_pfn - 1;
/*
* Honor reservation requested by the driver for this ZONE_DEVICE
* memory
*/
if (altmap && start_pfn == altmap->base_pfn)
start_pfn += altmap->reserve;
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
/*
* There can be holes in boot-time mem_map[]s handed to this
* function. They do not exist on hotplugged memory.
*/
if (context != MEMMAP_EARLY)
goto not_early;
if (!early_pfn_valid(pfn))
continue;
if (!early_pfn_in_nid(pfn, nid))
continue;
if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
break;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
* Check given memblock attribute by firmware which can affect
* kernel memory layout. If zone==ZONE_MOVABLE but memory is
* mirrored, it's an overlapped memmap init. skip it.
*/
if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
for_each_memblock(memory, tmp)
if (pfn < memblock_region_memory_end_pfn(tmp))
break;
r = tmp;
}
if (pfn >= memblock_region_memory_base_pfn(r) &&
memblock_is_mirror(r)) {
/* already initialized as NORMAL */
pfn = memblock_region_memory_end_pfn(r);
continue;
}
}
#endif
not_early:
/*
* Mark the block movable so that blocks are reserved for
* movable at startup. This will force kernel allocations
* to reserve their blocks rather than leaking throughout
* the address space during boot when many long-lived
* kernel allocations are made.
*
* bitmap is created for zone's valid pfn range. but memmap
* can be created for invalid pages (for alignment)
* check here not to call set_pageblock_migratetype() against
* pfn out of zone.
*/
if (!(pfn & (pageblock_nr_pages - 1))) {
struct page *page = pfn_to_page(pfn);
__init_single_page(page, pfn, zone, nid);
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
} else {
__init_single_pfn(pfn, zone, nid);
}
}
}
static void __meminit zone_init_free_lists(struct zone *zone)
{
unsigned int order, t;
for_each_migratetype_order(order, t) {
INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
zone->free_area[order].nr_free = 0;
}
}
#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
#endif
static int zone_batchsize(struct zone *zone)
{
#ifdef CONFIG_MMU
int batch;
/*
* The per-cpu-pages pools are set to around 1000th of the
* size of the zone. But no more than 1/2 of a meg.
*
* OK, so we don't know how big the cache is. So guess.
*/
batch = zone->managed_pages / 1024;
if (batch * PAGE_SIZE > 512 * 1024)
batch = (512 * 1024) / PAGE_SIZE;
batch /= 4; /* We effectively *= 4 below */
if (batch < 1)
batch = 1;
/*
* Clamp the batch to a 2^n - 1 value. Having a power
* of 2 value was found to be more likely to have
* suboptimal cache aliasing properties in some cases.
*
* For example if 2 tasks are alternately allocating
* batches of pages, one task can end up with a lot
* of pages of one half of the possible page colors
* and the other with pages of the other colors.
*/
batch = rounddown_pow_of_two(batch + batch/2) - 1;
return batch;
#else
/* The deferral and batching of frees should be suppressed under NOMMU
* conditions.
*
* The problem is that NOMMU needs to be able to allocate large chunks
* of contiguous memory as there's no hardware page translation to
* assemble apparent contiguous memory from discontiguous pages.
*
* Queueing large contiguous runs of pages for batching, however,
* causes the pages to actually be freed in smaller chunks. As there
* can be a significant delay between the individual batches being
* recycled, this leads to the once large chunks of space being
* fragmented and becoming unavailable for high-order allocations.
*/
return 0;
#endif
}
/*
* pcp->high and pcp->batch values are related and dependent on one another:
* ->batch must never be higher then ->high.
* The following function updates them in a safe manner without read side
* locking.
*
* Any new users of pcp->batch and pcp->high should ensure they can cope with
* those fields changing asynchronously (acording the the above rule).
*
* mutex_is_locked(&pcp_batch_high_lock) required when calling this function
* outside of boot time (or some other assurance that no concurrent updaters
* exist).
*/
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
unsigned long batch)
{
/* start with a fail safe value for batch */
pcp->batch = 1;
smp_wmb();
/* Update high, then batch, in order */
pcp->high = high;
smp_wmb();
pcp->batch = batch;
}
/* a companion to pageset_set_high() */
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
}
static void pageset_init(struct per_cpu_pageset *p)
{
struct per_cpu_pages *pcp;
int migratetype;
memset(p, 0, sizeof(*p));
pcp = &p->pcp;
pcp->count = 0;
for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
INIT_LIST_HEAD(&pcp->lists[migratetype]);
}
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
pageset_init(p);
pageset_set_batch(p, batch);
}
/*
* pageset_set_high() sets the high water mark for hot per_cpu_pagelist
* to the value high for the pageset p.
*/
static void pageset_set_high(struct per_cpu_pageset *p,
unsigned long high)
{
unsigned long batch = max(1UL, high / 4);
if ((high / 4) > (PAGE_SHIFT * 8))
batch = PAGE_SHIFT * 8;
pageset_update(&p->pcp, high, batch);
}
static void pageset_set_high_and_batch(struct zone *zone,
struct per_cpu_pageset *pcp)
{
if (percpu_pagelist_fraction)
pageset_set_high(pcp,
(zone->managed_pages /
percpu_pagelist_fraction));
else
pageset_set_batch(pcp, zone_batchsize(zone));
}
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
pageset_init(pcp);
pageset_set_high_and_batch(zone, pcp);
}
static void __meminit setup_zone_pageset(struct zone *zone)
{
int cpu;
zone->pageset = alloc_percpu(struct per_cpu_pageset);
for_each_possible_cpu(cpu)
zone_pageset_init(zone, cpu);
}
/*
* Allocate per cpu pagesets and initialize them.
* Before this call only boot pagesets were available.
*/
void __init setup_per_cpu_pageset(void)
{
struct pglist_data *pgdat;
struct zone *zone;
for_each_populated_zone(zone)
setup_zone_pageset(zone);
for_each_online_pgdat(pgdat)
pgdat->per_cpu_nodestats =
alloc_percpu(struct per_cpu_nodestat);
}
static noinline __ref
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
{
int i;
size_t alloc_size;
/*
* The per-page waitqueue mechanism uses hashed waitqueues
* per zone.
*/
zone->wait_table_hash_nr_entries =
wait_table_hash_nr_entries(zone_size_pages);
zone->wait_table_bits =
wait_table_bits(zone->wait_table_hash_nr_entries);
alloc_size = zone->wait_table_hash_nr_entries
* sizeof(wait_queue_head_t);
if (!slab_is_available()) {
zone->wait_table = (wait_queue_head_t *)
memblock_virt_alloc_node_nopanic(
alloc_size, zone->zone_pgdat->node_id);
} else {
/*
* This case means that a zone whose size was 0 gets new memory
* via memory hot-add.
* But it may be the case that a new node was hot-added. In
* this case vmalloc() will not be able to use this new node's
* memory - this wait_table must be initialized to use this new
* node itself as well.
* To use this new node's memory, further consideration will be
* necessary.
*/
zone->wait_table = vmalloc(alloc_size);
}
if (!zone->wait_table)
return -ENOMEM;
for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
init_waitqueue_head(zone->wait_table + i);
return 0;
}
static __meminit void zone_pcp_init(struct zone *zone)
{
/*
* per cpu subsystem is not up at this point. The following code
* relies on the ability of the linker to provide the
* offset of a (static) per cpu variable into the per cpu area.
*/
zone->pageset = &boot_pageset;
if (populated_zone(zone))
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
zone->name, zone->present_pages,
zone_batchsize(zone));
}
int __meminit init_currently_empty_zone(struct zone *zone,
unsigned long zone_start_pfn,
unsigned long size)
{
struct pglist_data *pgdat = zone->zone_pgdat;
int ret;
ret = zone_wait_table_init(zone, size);
if (ret)
return ret;
pgdat->nr_zones = zone_idx(zone) + 1;
zone->zone_start_pfn = zone_start_pfn;
mminit_dprintk(MMINIT_TRACE, "memmap_init",
"Initialising map node %d zone %lu pfns %lu -> %lu\n",
pgdat->node_id,
(unsigned long)zone_idx(zone),
zone_start_pfn, (zone_start_pfn + size));
zone_init_free_lists(zone);
return 0;
}
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
/*
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
*/
int __meminit __early_pfn_to_nid(unsigned long pfn,
struct mminit_pfnnid_cache *state)
{
unsigned long start_pfn, end_pfn;
int nid;
if (state->last_start <= pfn && pfn < state->last_end)
return state->last_nid;
nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
if (nid != -1) {
state->last_start = start_pfn;
state->last_end = end_pfn;
state->last_nid = nid;
}
return nid;
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
/**
* free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
* @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
* @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
*
* If an architecture guarantees that all ranges registered contain no holes
* and may be freed, this this function may be used instead of calling
* memblock_free_early_nid() manually.
*/
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
{
unsigned long start_pfn, end_pfn;
int i, this_nid;
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
start_pfn = min(start_pfn, max_low_pfn);
end_pfn = min(end_pfn, max_low_pfn);
if (start_pfn < end_pfn)
memblock_free_early_nid(PFN_PHYS(start_pfn),
(end_pfn - start_pfn) << PAGE_SHIFT,
this_nid);
}
}
/**
* sparse_memory_present_with_active_regions - Call memory_present for each active range
* @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
*
* If an architecture guarantees that all ranges registered contain no holes and may
* be freed, this function may be used instead of calling memory_present() manually.
*/
void __init sparse_memory_present_with_active_regions(int nid)
{
unsigned long start_pfn, end_pfn;
int i, this_nid;
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
memory_present(this_nid, start_pfn, end_pfn);
}
/**
* get_pfn_range_for_nid - Return the start and end page frames for a node
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
*
* It returns the start and end page frame of a node based on information
* provided by memblock_set_node(). If called for a node
* with no available memory, a warning is printed and the start and end
* PFNs will be 0.
*/
void __meminit get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
unsigned long this_start_pfn, this_end_pfn;
int i;
*start_pfn = -1UL;
*end_pfn = 0;
for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
*start_pfn = min(*start_pfn, this_start_pfn);
*end_pfn = max(*end_pfn, this_end_pfn);
}
if (*start_pfn == -1UL)
*start_pfn = 0;
}
/*
* This finds a zone that can be used for ZONE_MOVABLE pages. The
* assumption is made that zones within a node are ordered in monotonic
* increasing memory addresses so that the "highest" populated zone is used
*/
static void __init find_usable_zone_for_movable(void)
{
int zone_index;
for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
if (zone_index == ZONE_MOVABLE)
continue;
if (arch_zone_highest_possible_pfn[zone_index] >
arch_zone_lowest_possible_pfn[zone_index])
break;
}
VM_BUG_ON(zone_index == -1);
movable_zone = zone_index;
}
/*
* The zone ranges provided by the architecture do not include ZONE_MOVABLE
* because it is sized independent of architecture. Unlike the other zones,
* the starting point for ZONE_MOVABLE is not fixed. It may be different
* in each node depending on the size of each node and how evenly kernelcore
* is distributed. This helper function adjusts the zone ranges
* provided by the architecture for a given node by using the end of the
* highest usable zone for ZONE_MOVABLE. This preserves the assumption that
* zones within a node are in order of monotonic increases memory addresses
*/
static void __meminit adjust_zone_range_for_zone_movable(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *zone_start_pfn,
unsigned long *zone_end_pfn)
{
/* Only adjust if ZONE_MOVABLE is on this node */
if (zone_movable_pfn[nid]) {
/* Size ZONE_MOVABLE */
if (zone_type == ZONE_MOVABLE) {
*zone_start_pfn = zone_movable_pfn[nid];
*zone_end_pfn = min(node_end_pfn,
arch_zone_highest_possible_pfn[movable_zone]);
/* Adjust for ZONE_MOVABLE starting within this range */
} else if (!mirrored_kernelcore &&
*zone_start_pfn < zone_movable_pfn[nid] &&
*zone_end_pfn > zone_movable_pfn[nid]) {
*zone_end_pfn = zone_movable_pfn[nid];
/* Check if this whole range is within ZONE_MOVABLE */
} else if (*zone_start_pfn >= zone_movable_pfn[nid])
*zone_start_pfn = *zone_end_pfn;
}
}
/*
* Return the number of pages a zone spans in a node, including holes
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
*/
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *zone_start_pfn,
unsigned long *zone_end_pfn,
unsigned long *ignored)
{
/* When hotadd a new node from cpu_up(), the node should be empty */
if (!node_start_pfn && !node_end_pfn)
return 0;
/* Get the start and end of the zone */
*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
adjust_zone_range_for_zone_movable(nid, zone_type,
node_start_pfn, node_end_pfn,
zone_start_pfn, zone_end_pfn);
/* Check that this node has pages within the zone's required range */
if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
return 0;
/* Move the zone boundaries inside the node if necessary */
*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
/* Return the spanned pages */
return *zone_end_pfn - *zone_start_pfn;
}
/*
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
* then all holes in the requested range will be accounted for.
*/
unsigned long __meminit __absent_pages_in_range(int nid,
unsigned long range_start_pfn,
unsigned long range_end_pfn)
{
unsigned long nr_absent = range_end_pfn - range_start_pfn;
unsigned long start_pfn, end_pfn;
int i;
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
nr_absent -= end_pfn - start_pfn;
}
return nr_absent;
}
/**
* absent_pages_in_range - Return number of page frames in holes within a range
* @start_pfn: The start PFN to start searching for holes
* @end_pfn: The end PFN to stop searching for holes
*
* It returns the number of pages frames in memory holes within a range.
*/
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn)
{
return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}
/* Return the number of page frames in holes in a zone on a node */
static unsigned long __meminit zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *ignored)
{
unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
unsigned long zone_start_pfn, zone_end_pfn;
unsigned long nr_absent;
/* When hotadd a new node from cpu_up(), the node should be empty */
if (!node_start_pfn && !node_end_pfn)
return 0;
zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
adjust_zone_range_for_zone_movable(nid, zone_type,
node_start_pfn, node_end_pfn,
&zone_start_pfn, &zone_end_pfn);
nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
/*
* ZONE_MOVABLE handling.
* Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
* and vice versa.
*/
if (mirrored_kernelcore && zone_movable_pfn[nid]) {
unsigned long start_pfn, end_pfn;
struct memblock_region *r;
for_each_memblock(memory, r) {
start_pfn = clamp(memblock_region_memory_base_pfn(r),
zone_start_pfn, zone_end_pfn);
end_pfn = clamp(memblock_region_memory_end_pfn(r),
zone_start_pfn, zone_end_pfn);
if (zone_type == ZONE_MOVABLE &&
memblock_is_mirror(r))
nr_absent += end_pfn - start_pfn;
if (zone_type == ZONE_NORMAL &&
!memblock_is_mirror(r))
nr_absent += end_pfn - start_pfn;
}
}
return nr_absent;
}
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *zone_start_pfn,
unsigned long *zone_end_pfn,
unsigned long *zones_size)
{
unsigned int zone;
*zone_start_pfn = node_start_pfn;
for (zone = 0; zone < zone_type; zone++)
*zone_start_pfn += zones_size[zone];
*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
return zones_size[zone_type];
}
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *zholes_size)
{
if (!zholes_size)
return 0;
return zholes_size[zone_type];
}
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
unsigned long node_start_pfn,
unsigned long node_end_pfn,
unsigned long *zones_size,
unsigned long *zholes_size)
{
unsigned long realtotalpages = 0, totalpages = 0;
enum zone_type i;
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zone *zone = pgdat->node_zones + i;
unsigned long zone_start_pfn, zone_end_pfn;
unsigned long size, real_size;
size = zone_spanned_pages_in_node(pgdat->node_id, i,
node_start_pfn,
node_end_pfn,
&zone_start_pfn,
&zone_end_pfn,
zones_size);
real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
node_start_pfn, node_end_pfn,
zholes_size);
if (size)
zone->zone_start_pfn = zone_start_pfn;
else
zone->zone_start_pfn = 0;
zone->spanned_pages = size;
zone->present_pages = real_size;
totalpages += size;
realtotalpages += real_size;
}
pgdat->node_spanned_pages = totalpages;
pgdat->node_present_pages = realtotalpages;
printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
realtotalpages);
}
#ifndef CONFIG_SPARSEMEM
/*
* Calculate the size of the zone->blockflags rounded to an unsigned long
* Start by making sure zonesize is a multiple of pageblock_order by rounding
* up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
* round what is now in bits to nearest long in bits, then return it in
* bytes.
*/
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
{
unsigned long usemapsize;
zonesize += zone_start_pfn & (pageblock_nr_pages-1);
usemapsize = roundup(zonesize, pageblock_nr_pages);
usemapsize = usemapsize >> pageblock_order;
usemapsize *= NR_PAGEBLOCK_BITS;
usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
return usemapsize / 8;
}
static void __init setup_usemap(struct pglist_data *pgdat,
struct zone *zone,
unsigned long zone_start_pfn,
unsigned long zonesize)
{
unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
zone->pageblock_flags = NULL;
if (usemapsize)
zone->pageblock_flags =
memblock_virt_alloc_node_nopanic(usemapsize,
pgdat->node_id);
}
#else
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
unsigned long zone_start_pfn, unsigned long zonesize) {}
#endif /* CONFIG_SPARSEMEM */
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
void __paginginit set_pageblock_order(void)
{
unsigned int order;
/* Check that pageblock_nr_pages has not already been setup */
if (pageblock_order)
return;
if (HPAGE_SHIFT > PAGE_SHIFT)
order = HUGETLB_PAGE_ORDER;
else
order = MAX_ORDER - 1;
/*
* Assume the largest contiguous order of interest is a huge page.
* This value may be variable depending on boot parameters on IA64 and
* powerpc.
*/
pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
/*
* When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
* is unused as pageblock_order is set at compile-time. See
* include/linux/pageblock-flags.h for the values of pageblock_order based on
* the kernel config
*/
void __paginginit set_pageblock_order(void)
{
}
#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
unsigned long present_pages)
{
unsigned long pages = spanned_pages;
/*
* Provide a more accurate estimation if there are holes within
* the zone and SPARSEMEM is in use. If there are holes within the
* zone, each populated memory region may cost us one or two extra
* memmap pages due to alignment because memmap pages for each
* populated regions may not naturally algined on page boundary.
* So the (present_pages >> 4) heuristic is a tradeoff for that.
*/
if (spanned_pages > present_pages + (present_pages >> 4) &&
IS_ENABLED(CONFIG_SPARSEMEM))
pages = present_pages;
return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}
/*
* Set up the zone data structures:
* - mark all pages reserved
* - mark all memory queues empty
* - clear the memory bitmaps
*
* NOTE: pgdat should get zeroed by caller.
*/
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
{
enum zone_type j;
int nid = pgdat->node_id;
int ret;
pgdat_resize_init(pgdat);
#ifdef CONFIG_NUMA_BALANCING
spin_lock_init(&pgdat->numabalancing_migrate_lock);
pgdat->numabalancing_migrate_nr_pages = 0;
pgdat->numabalancing_migrate_next_window = jiffies;
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
spin_lock_init(&pgdat->split_queue_lock);
INIT_LIST_HEAD(&pgdat->split_queue);
pgdat->split_queue_len = 0;
#endif
init_waitqueue_head(&pgdat->kswapd_wait);
init_waitqueue_head(&pgdat->pfmemalloc_wait);
#ifdef CONFIG_COMPACTION
init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
pgdat_page_ext_init(pgdat);
spin_lock_init(&pgdat->lru_lock);
lruvec_init(node_lruvec(pgdat));
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long size, realsize, freesize, memmap_pages;
unsigned long zone_start_pfn = zone->zone_start_pfn;
size = zone->spanned_pages;
realsize = freesize = zone->present_pages;
/*
* Adjust freesize so that it accounts for how much memory
* is used by this zone for memmap. This affects the watermark
* and per-cpu initialisations
*/
memmap_pages = calc_memmap_size(size, realsize);
if (!is_highmem_idx(j)) {
if (freesize >= memmap_pages) {
freesize -= memmap_pages;
if (memmap_pages)
printk(KERN_DEBUG
" %s zone: %lu pages used for memmap\n",
zone_names[j], memmap_pages);
} else
pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
zone_names[j], memmap_pages, freesize);
}
/* Account for reserved pages */
if (j == 0 && freesize > dma_reserve) {
freesize -= dma_reserve;
printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
zone_names[0], dma_reserve);
}
if (!is_highmem_idx(j))
nr_kernel_pages += freesize;
/* Charge for highmem memmap if there are enough kernel pages */
else if (nr_kernel_pages > memmap_pages * 2)
nr_kernel_pages -= memmap_pages;
nr_all_pages += freesize;
/*
* Set an approximate value for lowmem here, it will be adjusted
* when the bootmem allocator frees pages into the buddy system.
* And all highmem pages will be managed by the buddy system.
*/
zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
#ifdef CONFIG_NUMA
zone->node = nid;
#endif
zone->name = zone_names[j];
zone->zone_pgdat = pgdat;
spin_lock_init(&zone->lock);
zone_seqlock_init(zone);
zone_pcp_init(zone);
if (!size)
continue;
set_pageblock_order();
setup_usemap(pgdat, zone, zone_start_pfn, size);
ret = init_currently_empty_zone(zone, zone_start_pfn, size);
BUG_ON(ret);
memmap_init(size, nid, j, zone_start_pfn);
}
}
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
{
unsigned long __maybe_unused start = 0;
unsigned long __maybe_unused offset = 0;
/* Skip empty nodes */
if (!pgdat->node_spanned_pages)
return;
#ifdef CONFIG_FLAT_NODE_MEM_MAP
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
offset = pgdat->node_start_pfn - start;
/* ia64 gets its own node_mem_map, before this, without bootmem */
if (!pgdat->node_mem_map) {
unsigned long size, end;
struct page *map;
/*
* The zone's endpoints aren't required to be MAX_ORDER
* aligned but the node_mem_map endpoints must be in order
* for the buddy allocator to function correctly.
*/
end = pgdat_end_pfn(pgdat);
end = ALIGN(end, MAX_ORDER_NR_PAGES);
size = (end - start) * sizeof(struct page);
map = alloc_remap(pgdat->node_id, size);
if (!map)
map = memblock_virt_alloc_node_nopanic(size,
pgdat->node_id);
pgdat->node_mem_map = map + offset;
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
/*
* With no DISCONTIG, the global mem_map is just set as node 0's
*/
if (pgdat == NODE_DATA(0)) {
mem_map = NODE_DATA(0)->node_mem_map;
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
mem_map -= offset;
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
}
#endif
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
}
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
unsigned long node_start_pfn, unsigned long *zholes_size)
{
pg_data_t *pgdat = NODE_DATA(nid);
unsigned long start_pfn = 0;
unsigned long end_pfn = 0;
/* pg_data_t should be reset to zero when it's allocated */
WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
reset_deferred_meminit(pgdat);
pgdat->node_id = nid;
pgdat->node_start_pfn = node_start_pfn;
pgdat->per_cpu_nodestats = NULL;
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
(u64)start_pfn << PAGE_SHIFT,
end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
#else
start_pfn = node_start_pfn;
#endif
calculate_node_totalpages(pgdat, start_pfn, end_pfn,
zones_size, zholes_size);
alloc_node_mem_map(pgdat);
#ifdef CONFIG_FLAT_NODE_MEM_MAP
printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
nid, (unsigned long)pgdat,
(unsigned long)pgdat->node_mem_map);
#endif
free_area_init_core(pgdat);
}
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
#if MAX_NUMNODES > 1
/*
* Figure out the number of possible node ids.
*/
void __init setup_nr_node_ids(void)
{
unsigned int highest;
highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
nr_node_ids = highest + 1;
}
#endif
/**
* node_map_pfn_alignment - determine the maximum internode alignment
*
* This function should be called after node map is populated and sorted.
* It calculates the maximum power of two alignment which can distinguish
* all the nodes.
*
* For example, if all nodes are 1GiB and aligned to 1GiB, the return value
* would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
* nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
* shifted, 1GiB is enough and this function will indicate so.
*
* This is used to test whether pfn -> nid mapping of the chosen memory
* model has fine enough granularity to avoid incorrect mapping for the
* populated node map.
*
* Returns the determined alignment in pfn's. 0 if there is no alignment
* requirement (single node).
*/
unsigned long __init node_map_pfn_alignment(void)
{
unsigned long accl_mask = 0, last_end = 0;
unsigned long start, end, mask;
int last_nid = -1;
int i, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
if (!start || last_nid < 0 || last_nid == nid) {
last_nid = nid;
last_end = end;
continue;
}
/*
* Start with a mask granular enough to pin-point to the
* start pfn and tick off bits one-by-one until it becomes
* too coarse to separate the current node from the last.
*/
mask = ~((1 << __ffs(start)) - 1);
while (mask && last_end <= (start & (mask << 1)))
mask <<= 1;
/* accumulate all internode masks */
accl_mask |= mask;
}
/* convert mask to number of pages */
return ~accl_mask + 1;
}
/* Find the lowest pfn for a node */
static unsigned long __init find_min_pfn_for_node(int nid)
{
unsigned long min_pfn = ULONG_MAX;
unsigned long start_pfn;
int i;
for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
min_pfn = min(min_pfn, start_pfn);
if (min_pfn == ULONG_MAX) {
pr_warn("Could not find start_pfn for node %d\n", nid);
return 0;
}
return min_pfn;
}
/**
* find_min_pfn_with_active_regions - Find the minimum PFN registered
*
* It returns the minimum PFN based on information provided via
* memblock_set_node().
*/
unsigned long __init find_min_pfn_with_active_regions(void)
{
return find_min_pfn_for_node(MAX_NUMNODES);
}
/*
* early_calculate_totalpages()
* Sum pages in active regions for movable zone.
* Populate N_MEMORY for calculating usable_nodes.
*/
static unsigned long __init early_calculate_totalpages(void)
{
unsigned long totalpages = 0;
unsigned long start_pfn, end_pfn;
int i, nid;
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
unsigned long pages = end_pfn - start_pfn;
totalpages += pages;
if (pages)
node_set_state(nid, N_MEMORY);
}
return totalpages;
}
/*
* Find the PFN the Movable zone begins in each node. Kernel memory
* is spread evenly between nodes as long as the nodes have enough
* memory. When they don't, some nodes will have more kernelcore than
* others
*/
static void __init find_zone_movable_pfns_for_nodes(void)
{
int i, nid;
unsigned long usable_startpfn;
unsigned long kernelcore_node, kernelcore_remaining;
/* save the state before borrow the nodemask */
nodemask_t saved_node_state = node_states[N_MEMORY];
unsigned long totalpages = early_calculate_totalpages();
int usable_nodes = nodes_weight(node_states[N_MEMORY]);
struct memblock_region *r;
/* Need to find movable_zone earlier when movable_node is specified. */
find_usable_zone_for_movable();
/*
* If movable_node is specified, ignore kernelcore and movablecore
* options.
*/
if (movable_node_is_enabled()) {
for_each_memblock(memory, r) {
if (!memblock_is_hotpluggable(r))
continue;
nid = r->nid;
usable_startpfn = PFN_DOWN(r->base);
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
min(usable_startpfn, zone_movable_pfn[nid]) :
usable_startpfn;
}
goto out2;
}
/*
* If kernelcore=mirror is specified, ignore movablecore option
*/
if (mirrored_kernelcore) {
bool mem_below_4gb_not_mirrored = false;
for_each_memblock(memory, r) {
if (memblock_is_mirror(r))
continue;
nid = r->nid;
usable_startpfn = memblock_region_memory_base_pfn(r);
if (usable_startpfn < 0x100000) {
mem_below_4gb_not_mirrored = true;
continue;
}
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
min(usable_startpfn, zone_movable_pfn[nid]) :
usable_startpfn;
}
if (mem_below_4gb_not_mirrored)
pr_warn("This configuration results in unmirrored kernel memory.");
goto out2;
}
/*
* If movablecore=nn[KMG] was specified, calculate what size of
* kernelcore that corresponds so that memory usable for
* any allocation type is evenly spread. If both kernelcore
* and movablecore are specified, then the value of kernelcore
* will be used for required_kernelcore if it's greater than
* what movablecore would have allowed.
*/
if (required_movablecore) {
unsigned long corepages;
/*
* Round-up so that ZONE_MOVABLE is at least as large as what
* was requested by the user
*/
required_movablecore =
roundup(required_movablecore, MAX_ORDER_NR_PAGES);
required_movablecore = min(totalpages, required_movablecore);
corepages = totalpages - required_movablecore;
required_kernelcore = max(required_kernelcore, corepages);
}
/*
* If kernelcore was not specified or kernelcore size is larger
* than totalpages, there is no ZONE_MOVABLE.
*/
if (!required_kernelcore || required_kernelcore >= totalpages)
goto out;
/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
restart:
/* Spread kernelcore memory as evenly as possible throughout nodes */
kernelcore_node = required_kernelcore / usable_nodes;
for_each_node_state(nid, N_MEMORY) {
unsigned long start_pfn, end_pfn;
/*
* Recalculate kernelcore_node if the division per node
* now exceeds what is necessary to satisfy the requested
* amount of memory for the kernel
*/
if (required_kernelcore < kernelcore_node)
kernelcore_node = required_kernelcore / usable_nodes;
/*
* As the map is walked, we track how much memory is usable
* by the kernel using kernelcore_remaining. When it is
* 0, the rest of the node is usable by ZONE_MOVABLE
*/
kernelcore_remaining = kernelcore_node;
/* Go through each range of PFNs within this node */
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
unsigned long size_pages;
start_pfn = max(start_pfn, zone_movable_pfn[nid]);
if (start_pfn >= end_pfn)
continue;
/* Account for what is only usable for kernelcore */
if (start_pfn < usable_startpfn) {
unsigned long kernel_pages;
kernel_pages = min(end_pfn, usable_startpfn)
- start_pfn;
kernelcore_remaining -= min(kernel_pages,
kernelcore_remaining);
required_kernelcore -= min(kernel_pages,
required_kernelcore);
/* Continue if range is now fully accounted */
if (end_pfn <= usable_startpfn) {
/*
* Push zone_movable_pfn to the end so
* that if we have to rebalance
* kernelcore across nodes, we will
* not double account here
*/
zone_movable_pfn[nid] = end_pfn;
continue;
}
start_pfn = usable_startpfn;
}
/*
* The usable PFN range for ZONE_MOVABLE is from
* start_pfn->end_pfn. Calculate size_pages as the
* number of pages used as kernelcore
*/
size_pages = end_pfn - start_pfn;
if (size_pages > kernelcore_remaining)
size_pages = kernelcore_remaining;
zone_movable_pfn[nid] = start_pfn + size_pages;
/*
* Some kernelcore has been met, update counts and
* break if the kernelcore for this node has been
* satisfied
*/
required_kernelcore -= min(required_kernelcore,
size_pages);
kernelcore_remaining -= size_pages;
if (!kernelcore_remaining)
break;
}
}
/*
* If there is still required_kernelcore, we do another pass with one
* less node in the count. This will push zone_movable_pfn[nid] further
* along on the nodes that still have memory until kernelcore is
* satisfied
*/
usable_nodes--;
if (usable_nodes && required_kernelcore > usable_nodes)
goto restart;
out2:
/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
for (nid = 0; nid < MAX_NUMNODES; nid++)
zone_movable_pfn[nid] =
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
out:
/* restore the node_state */
node_states[N_MEMORY] = saved_node_state;
}
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
{
enum zone_type zone_type;
if (N_MEMORY == N_NORMAL_MEMORY)
return;
for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
struct zone *zone = &pgdat->node_zones[zone_type];
if (populated_zone(zone)) {
node_set_state(nid, N_HIGH_MEMORY);
if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
zone_type <= ZONE_NORMAL)
node_set_state(nid, N_NORMAL_MEMORY);
break;
}
}
}
/**
* free_area_init_nodes - Initialise all pg_data_t and zone data
* @max_zone_pfn: an array of max PFNs for each zone
*
* This will call free_area_init_node() for each active node in the system.
* Using the page ranges provided by memblock_set_node(), the size of each
* zone in each node and their holes is calculated. If the maximum PFN
* between two adjacent zones match, it is assumed that the zone is empty.
* For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
* that arch_max_dma32_pfn has no pages. It is also assumed that a zone
* starts where the previous one ended. For example, ZONE_DMA32 starts
* at arch_max_dma_pfn.
*/
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
unsigned long start_pfn, end_pfn;
int i, nid;
/* Record where the zone boundaries are */
memset(arch_zone_lowest_possible_pfn, 0,
sizeof(arch_zone_lowest_possible_pfn));
memset(arch_zone_highest_possible_pfn, 0,
sizeof(arch_zone_highest_possible_pfn));
start_pfn = find_min_pfn_with_active_regions();
for (i = 0; i < MAX_NR_ZONES; i++) {
if (i == ZONE_MOVABLE)
continue;
end_pfn = max(max_zone_pfn[i], start_pfn);
arch_zone_lowest_possible_pfn[i] = start_pfn;
arch_zone_highest_possible_pfn[i] = end_pfn;
start_pfn = end_pfn;
}
arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
/* Find the PFNs that ZONE_MOVABLE begins at in each node */
memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
find_zone_movable_pfns_for_nodes();
/* Print out the zone ranges */
pr_info("Zone ranges:\n");
for (i = 0; i < MAX_NR_ZONES; i++) {
if (i == ZONE_MOVABLE)
continue;
pr_info(" %-8s ", zone_names[i]);
if (arch_zone_lowest_possible_pfn[i] ==
arch_zone_highest_possible_pfn[i])
pr_cont("empty\n");
else
pr_cont("[mem %#018Lx-%#018Lx]\n",
(u64)arch_zone_lowest_possible_pfn[i]
<< PAGE_SHIFT,
((u64)arch_zone_highest_possible_pfn[i]
<< PAGE_SHIFT) - 1);
}
/* Print out the PFNs ZONE_MOVABLE begins at in each node */
pr_info("Movable zone start for each node\n");
for (i = 0; i < MAX_NUMNODES; i++) {
if (zone_movable_pfn[i])
pr_info(" Node %d: %#018Lx\n", i,
(u64)zone_movable_pfn[i] << PAGE_SHIFT);
}
/* Print out the early node map */
pr_info("Early memory node ranges\n");
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
(u64)start_pfn << PAGE_SHIFT,
((u64)end_pfn << PAGE_SHIFT) - 1);
/* Initialise every node */
mminit_verify_pageflags_layout();
setup_nr_node_ids();
for_each_online_node(nid) {
pg_data_t *pgdat = NODE_DATA(nid);
free_area_init_node(nid, NULL,
find_min_pfn_for_node(nid), NULL);
/* Any memory on that node */
if (pgdat->node_present_pages)
node_set_state(nid, N_MEMORY);
check_for_memory(pgdat, nid);
}
}
static int __init cmdline_parse_core(char *p, unsigned long *core)
{
unsigned long long coremem;
if (!p)
return -EINVAL;
coremem = memparse(p, &p);
*core = coremem >> PAGE_SHIFT;
/* Paranoid check that UL is enough for the coremem value */
WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
return 0;
}
/*
* kernelcore=size sets the amount of memory for use for allocations that
* cannot be reclaimed or migrated.
*/
static int __init cmdline_parse_kernelcore(char *p)
{
/* parse kernelcore=mirror */
if (parse_option_str(p, "mirror")) {
mirrored_kernelcore = true;
return 0;
}
return cmdline_parse_core(p, &required_kernelcore);
}
/*
* movablecore=size sets the amount of memory for use for allocations that
* can be reclaimed or migrated.
*/
static int __init cmdline_parse_movablecore(char *p)
{
return cmdline_parse_core(p, &required_movablecore);
}
early_param("kernelcore", cmdline_parse_kernelcore);
early_param("movablecore", cmdline_parse_movablecore);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
void adjust_managed_page_count(struct page *page, long count)
{
spin_lock(&managed_page_count_lock);
page_zone(page)->managed_pages += count;
totalram_pages += count;
#ifdef CONFIG_HIGHMEM
if (PageHighMem(page))
totalhigh_pages += count;
#endif
spin_unlock(&managed_page_count_lock);
}
EXPORT_SYMBOL(adjust_managed_page_count);
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
{
void *pos;
unsigned long pages = 0;
start = (void *)PAGE_ALIGN((unsigned long)start);
end = (void *)((unsigned long)end & PAGE_MASK);
for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
if ((unsigned int)poison <= 0xFF)
memset(pos, poison, PAGE_SIZE);
free_reserved_page(virt_to_page(pos));
}
if (pages && s)
pr_info("Freeing %s memory: %ldK (%p - %p)\n",
s, pages << (PAGE_SHIFT - 10), start, end);
return pages;
}
EXPORT_SYMBOL(free_reserved_area);
#ifdef CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
__free_reserved_page(page);
totalram_pages++;
page_zone(page)->managed_pages++;
totalhigh_pages++;
}
#endif
void __init mem_init_print_info(const char *str)
{
unsigned long physpages, codesize, datasize, rosize, bss_size;
unsigned long init_code_size, init_data_size;
physpages = get_num_physpages();
codesize = _etext - _stext;
datasize = _edata - _sdata;
rosize = __end_rodata - __start_rodata;
bss_size = __bss_stop - __bss_start;
init_data_size = __init_end - __init_begin;
init_code_size = _einittext - _sinittext;
/*
* Detect special cases and adjust section sizes accordingly:
* 1) .init.* may be embedded into .data sections
* 2) .init.text.* may be out of [__init_begin, __init_end],
* please refer to arch/tile/kernel/vmlinux.lds.S.
* 3) .rodata.* may be embedded into .text or .data sections.
*/
#define adj_init_size(start, end, size, pos, adj) \
do { \
if (start <= pos && pos < end && size > adj) \
size -= adj; \
} while (0)
adj_init_size(__init_begin, __init_end, init_data_size,
_sinittext, init_code_size);
adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
#undef adj_init_size
pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
#ifdef CONFIG_HIGHMEM
", %luK highmem"
#endif
"%s%s)\n",
nr_free_pages() << (PAGE_SHIFT - 10),
physpages << (PAGE_SHIFT - 10),
codesize >> 10, datasize >> 10, rosize >> 10,
(init_data_size + init_code_size) >> 10, bss_size >> 10,
(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
totalcma_pages << (PAGE_SHIFT - 10),
#ifdef CONFIG_HIGHMEM
totalhigh_pages << (PAGE_SHIFT - 10),
#endif
str ? ", " : "", str ? str : "");
}
/**
* set_dma_reserve - set the specified number of pages reserved in the first zone
* @new_dma_reserve: The number of pages to mark reserved
*
* The per-cpu batchsize and zone watermarks are determined by managed_pages.
* In the DMA zone, a significant percentage may be consumed by kernel image
* and other unfreeable allocations which can skew the watermarks badly. This
* function may optionally be used to account for unfreeable pages in the
* first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
* smaller per-cpu batchsize.
*/
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
dma_reserve = new_dma_reserve;
}
void __init free_area_init(unsigned long *zones_size)
{
free_area_init_node(0, zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}
static int page_alloc_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
int cpu = (unsigned long)hcpu;
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
lru_add_drain_cpu(cpu);
drain_pages(cpu);
/*
* Spill the event counters of the dead processor
* into the current processors event counters.
* This artificially elevates the count of the current
* processor.
*/
vm_events_fold_cpu(cpu);
/*
* Zero the differential counters of the dead processor
* so that the vm statistics are consistent.
*
* This is only okay since the processor is dead and cannot
* race with what we are doing.
*/
cpu_vm_stats_fold(cpu);
}
return NOTIFY_OK;
}
void __init page_alloc_init(void)
{
hotcpu_notifier(page_alloc_cpu_notify, 0);
}
/*
* calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
* or min_free_kbytes changes.
*/
static void calculate_totalreserve_pages(void)
{
struct pglist_data *pgdat;
unsigned long reserve_pages = 0;
enum zone_type i, j;
for_each_online_pgdat(pgdat) {
pgdat->totalreserve_pages = 0;
for (i = 0; i < MAX_NR_ZONES; i++) {
struct zone *zone = pgdat->node_zones + i;
long max = 0;
/* Find valid and maximum lowmem_reserve in the zone */
for (j = i; j < MAX_NR_ZONES; j++) {
if (zone->lowmem_reserve[j] > max)
max = zone->lowmem_reserve[j];
}
/* we treat the high watermark as reserved pages. */
max += high_wmark_pages(zone);
if (max > zone->managed_pages)
max = zone->managed_pages;
pgdat->totalreserve_pages += max;
reserve_pages += max;
}
}
totalreserve_pages = reserve_pages;
}
/*
* setup_per_zone_lowmem_reserve - called whenever
* sysctl_lowmem_reserve_ratio changes. Ensures that each zone
* has a correct pages reserved value, so an adequate number of
* pages are left in the zone after a successful __alloc_pages().
*/
static void setup_per_zone_lowmem_reserve(void)
{
struct pglist_data *pgdat;
enum zone_type j, idx;
for_each_online_pgdat(pgdat) {
for (j = 0; j < MAX_NR_ZONES; j++) {
struct zone *zone = pgdat->node_zones + j;
unsigned long managed_pages = zone->managed_pages;
zone->lowmem_reserve[j] = 0;
idx = j;
while (idx) {
struct zone *lower_zone;
idx--;
if (sysctl_lowmem_reserve_ratio[idx] < 1)
sysctl_lowmem_reserve_ratio[idx] = 1;
lower_zone = pgdat->node_zones + idx;
lower_zone->lowmem_reserve[j] = managed_pages /
sysctl_lowmem_reserve_ratio[idx];
managed_pages += lower_zone->managed_pages;
}
}
}
/* update totalreserve_pages */
calculate_totalreserve_pages();
}
static void __setup_per_zone_wmarks(void)
{
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
unsigned long lowmem_pages = 0;
struct zone *zone;
unsigned long flags;
/* Calculate total number of !ZONE_HIGHMEM pages */
for_each_zone(zone) {
if (!is_highmem(zone))
lowmem_pages += zone->managed_pages;
}
for_each_zone(zone) {
u64 tmp;
spin_lock_irqsave(&zone->lock, flags);
tmp = (u64)pages_min * zone->managed_pages;
do_div(tmp, lowmem_pages);
if (is_highmem(zone)) {
/*
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
* need highmem pages, so cap pages_min to a small
* value here.
*
* The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
* deltas control asynch page reclaim, and so should
* not be capped for highmem.
*/
unsigned long min_pages;
min_pages = zone->managed_pages / 1024;
min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
zone->watermark[WMARK_MIN] = min_pages;
} else {
/*
* If it's a lowmem zone, reserve a number of pages
* proportionate to the zone's size.
*/
zone->watermark[WMARK_MIN] = tmp;
}
/*
* Set the kswapd watermarks distance according to the
* scale factor in proportion to available memory, but
* ensure a minimum size on small systems.
*/
tmp = max_t(u64, tmp >> 2,
mult_frac(zone->managed_pages,
watermark_scale_factor, 10000));
zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
spin_unlock_irqrestore(&zone->lock, flags);
}
/* update totalreserve_pages */
calculate_totalreserve_pages();
}
/**
* setup_per_zone_wmarks - called when min_free_kbytes changes
* or when memory is hot-{added|removed}
*
* Ensures that the watermark[min,low,high] values for each zone are set
* correctly with respect to min_free_kbytes.
*/
void setup_per_zone_wmarks(void)
{
mutex_lock(&zonelists_mutex);
__setup_per_zone_wmarks();
mutex_unlock(&zonelists_mutex);
}
/*
* Initialise min_free_kbytes.
*
* For small machines we want it small (128k min). For large machines
* we want it large (64MB max). But it is not linear, because network
* bandwidth does not increase linearly with machine size. We use
*
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
*
* which yields
*
* 16MB: 512k
* 32MB: 724k
* 64MB: 1024k
* 128MB: 1448k
* 256MB: 2048k
* 512MB: 2896k
* 1024MB: 4096k
* 2048MB: 5792k
* 4096MB: 8192k
* 8192MB: 11584k
* 16384MB: 16384k
*/
int __meminit init_per_zone_wmark_min(void)
{
unsigned long lowmem_kbytes;
int new_min_free_kbytes;
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
if (new_min_free_kbytes > user_min_free_kbytes) {
min_free_kbytes = new_min_free_kbytes;
if (min_free_kbytes < 128)
min_free_kbytes = 128;
if (min_free_kbytes > 65536)
min_free_kbytes = 65536;
} else {
pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
new_min_free_kbytes, user_min_free_kbytes);
}
setup_per_zone_wmarks();
refresh_zone_stat_thresholds();
setup_per_zone_lowmem_reserve();
#ifdef CONFIG_NUMA
setup_min_unmapped_ratio();
setup_min_slab_ratio();
#endif
return 0;
}
core_initcall(init_per_zone_wmark_min)
/*
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
* that we can call two helper functions whenever min_free_kbytes
* changes.
*/
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
int rc;
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (rc)
return rc;
if (write) {
user_min_free_kbytes = min_free_kbytes;
setup_per_zone_wmarks();
}
return 0;
}
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
int rc;
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (rc)
return rc;
if (write)
setup_per_zone_wmarks();
return 0;
}
#ifdef CONFIG_NUMA
static void setup_min_unmapped_ratio(void)
{
pg_data_t *pgdat;
struct zone *zone;
for_each_online_pgdat(pgdat)
pgdat->min_unmapped_pages = 0;
for_each_zone(zone)
zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
sysctl_min_unmapped_ratio) / 100;
}
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
int rc;
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (rc)
return rc;
setup_min_unmapped_ratio();
return 0;
}
static void setup_min_slab_ratio(void)
{
pg_data_t *pgdat;
struct zone *zone;
for_each_online_pgdat(pgdat)
pgdat->min_slab_pages = 0;
for_each_zone(zone)
zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
sysctl_min_slab_ratio) / 100;
}
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
int rc;
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (rc)
return rc;
setup_min_slab_ratio();
return 0;
}
#endif
/*
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
* proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
* whenever sysctl_lowmem_reserve_ratio changes.
*
* The reserve ratio obviously has absolutely no relation with the
* minimum watermarks. The lowmem reserve ratio can only make sense
* if in function of the boot time zone sizes.
*/
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec_minmax(table, write, buffer, length, ppos);
setup_per_zone_lowmem_reserve();
return 0;
}
/*
* percpu_pagelist_fraction - changes the pcp->high for each zone on each
* cpu. It is the fraction of total pages in each zone that a hot per cpu
* pagelist can have before it gets flushed back to buddy allocator.
*/
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
struct zone *zone;
int old_percpu_pagelist_fraction;
int ret;
mutex_lock(&pcp_batch_high_lock);
old_percpu_pagelist_fraction = percpu_pagelist_fraction;
ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
if (!write || ret < 0)
goto out;
/* Sanity checking to avoid pcp imbalance */
if (percpu_pagelist_fraction &&
percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
percpu_pagelist_fraction = old_percpu_pagelist_fraction;
ret = -EINVAL;
goto out;
}
/* No change? */
if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
goto out;
for_each_populated_zone(zone) {
unsigned int cpu;
for_each_possible_cpu(cpu)
pageset_set_high_and_batch(zone,
per_cpu_ptr(zone->pageset, cpu));
}
out:
mutex_unlock(&pcp_batch_high_lock);
return ret;
}
#ifdef CONFIG_NUMA
int hashdist = HASHDIST_DEFAULT;
static int __init set_hashdist(char *str)
{
if (!str)
return 0;
hashdist = simple_strtoul(str, &str, 0);
return 1;
}
__setup("hashdist=", set_hashdist);
#endif
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
* Returns the number of pages that arch has reserved but
* is not known to alloc_large_system_hash().
*/
static unsigned long __init arch_reserved_kernel_pages(void)
{
return 0;
}
#endif
/*
* allocate a large system hash table from bootmem
* - it is assumed that the hash table must contain an exact power-of-2
* quantity of entries
* - limit is the number of hash buckets, not the total allocation size
*/
void *__init alloc_large_system_hash(const char *tablename,
unsigned long bucketsize,
unsigned long numentries,
int scale,
int flags,
unsigned int *_hash_shift,
unsigned int *_hash_mask,
unsigned long low_limit,
unsigned long high_limit)
{
unsigned long long max = high_limit;
unsigned long log2qty, size;
void *table = NULL;
/* allow the kernel cmdline to have a say */
if (!numentries) {
/* round applicable memory size up to nearest megabyte */
numentries = nr_kernel_pages;
numentries -= arch_reserved_kernel_pages();
/* It isn't necessary when PAGE_SIZE >= 1MB */
if (PAGE_SHIFT < 20)
numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
/* limit to 1 bucket per 2^scale bytes of low memory */
if (scale > PAGE_SHIFT)
numentries >>= (scale - PAGE_SHIFT);
else
numentries <<= (PAGE_SHIFT - scale);
/* Make sure we've got at least a 0-order allocation.. */
if (unlikely(flags & HASH_SMALL)) {
/* Makes no sense without HASH_EARLY */
WARN_ON(!(flags & HASH_EARLY));
if (!(numentries >> *_hash_shift)) {
numentries = 1UL << *_hash_shift;
BUG_ON(!numentries);
}
} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
numentries = PAGE_SIZE / bucketsize;
}
numentries = roundup_pow_of_two(numentries);
/* limit allocation size to 1/16 total memory by default */
if (max == 0) {
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
do_div(max, bucketsize);
}
max = min(max, 0x80000000ULL);
if (numentries < low_limit)
numentries = low_limit;
if (numentries > max)
numentries = max;
log2qty = ilog2(numentries);
do {
size = bucketsize << log2qty;
if (flags & HASH_EARLY)
table = memblock_virt_alloc_nopanic(size, 0);
else if (hashdist)
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
else {
/*
* If bucketsize is not a power-of-two, we may free
* some pages at the end of hash table which
* alloc_pages_exact() automatically does
*/
if (get_order(size) < MAX_ORDER) {
table = alloc_pages_exact(size, GFP_ATOMIC);
kmemleak_alloc(table, size, 1, GFP_ATOMIC);
}
}
} while (!table && size > PAGE_SIZE && --log2qty);
if (!table)
panic("Failed to allocate %s hash table\n", tablename);
pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
if (_hash_shift)
*_hash_shift = log2qty;
if (_hash_mask)
*_hash_mask = (1 << log2qty) - 1;
return table;
}
/*
* This function checks whether pageblock includes unmovable pages or not.
* If @count is not zero, it is okay to include less @count unmovable pages
*
* PageLRU check without isolation or lru_lock could race so that
* MIGRATE_MOVABLE block might include unmovable pages. It means you can't
* expect this function should be exact.
*/
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
bool skip_hwpoisoned_pages)
{
unsigned long pfn, iter, found;
int mt;
/*
* For avoiding noise data, lru_add_drain_all() should be called
* If ZONE_MOVABLE, the zone never contains unmovable pages
*/
if (zone_idx(zone) == ZONE_MOVABLE)
return false;
mt = get_pageblock_migratetype(page);
if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
return false;
pfn = page_to_pfn(page);
for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
unsigned long check = pfn + iter;
if (!pfn_valid_within(check))
continue;
page = pfn_to_page(check);
/*
* Hugepages are not in LRU lists, but they're movable.
* We need not scan over tail pages bacause we don't
* handle each tail page individually in migration.
*/
if (PageHuge(page)) {
iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
continue;
}
/*
* We can't use page_count without pin a page
* because another CPU can free compound page.
* This check already skips compound tails of THP
* because their page->_refcount is zero at all time.
*/
if (!page_ref_count(page)) {
if (PageBuddy(page))
iter += (1 << page_order(page)) - 1;
continue;
}
/*
* The HWPoisoned page may be not in buddy system, and
* page_count() is not 0.
*/
if (skip_hwpoisoned_pages && PageHWPoison(page))
continue;
if (!PageLRU(page))
found++;
/*
* If there are RECLAIMABLE pages, we need to check
* it. But now, memory offline itself doesn't call
* shrink_node_slabs() and it still to be fixed.
*/
/*
* If the page is not RAM, page_count()should be 0.
* we don't need more check. This is an _used_ not-movable page.
*
* The problematic thing here is PG_reserved pages. PG_reserved
* is set to both of a memory hole page and a _used_ kernel
* page at boot.
*/
if (found > count)
return true;
}
return false;
}
bool is_pageblock_removable_nolock(struct page *page)
{
struct zone *zone;
unsigned long pfn;
/*
* We have to be careful here because we are iterating over memory
* sections which are not zone aware so we might end up outside of
* the zone but still within the section.
* We have to take care about the node as well. If the node is offline
* its NODE_DATA will be NULL - see page_zone.
*/
if (!node_online(page_to_nid(page)))
return false;
zone = page_zone(page);
pfn = page_to_pfn(page);
if (!zone_spans_pfn(zone, pfn))
return false;
return !has_unmovable_pages(zone, page, 0, true);
}
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
static unsigned long pfn_max_align_down(unsigned long pfn)
{
return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
pageblock_nr_pages) - 1);
}
static unsigned long pfn_max_align_up(unsigned long pfn)
{
return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
pageblock_nr_pages));
}
/* [start, end) must belong to a single zone. */
static int __alloc_contig_migrate_range(struct compact_control *cc,
unsigned long start, unsigned long end)
{
/* This function is based on compact_zone() from compaction.c. */
unsigned long nr_reclaimed;
unsigned long pfn = start;
unsigned int tries = 0;
int ret = 0;
migrate_prep();
while (pfn < end || !list_empty(&cc->migratepages)) {
if (fatal_signal_pending(current)) {
ret = -EINTR;
break;
}
if (list_empty(&cc->migratepages)) {
cc->nr_migratepages = 0;
pfn = isolate_migratepages_range(cc, pfn, end);
if (!pfn) {
ret = -EINTR;
break;
}
tries = 0;
} else if (++tries == 5) {
ret = ret < 0 ? ret : -EBUSY;
break;
}
nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
&cc->migratepages);
cc->nr_migratepages -= nr_reclaimed;
ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
NULL, 0, cc->mode, MR_CMA);
}
if (ret < 0) {
putback_movable_pages(&cc->migratepages);
return ret;
}
return 0;
}
/**
* alloc_contig_range() -- tries to allocate given range of pages
* @start: start PFN to allocate
* @end: one-past-the-last PFN to allocate
* @migratetype: migratetype of the underlaying pageblocks (either
* #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
* in range must have the same migratetype and it must
* be either of the two.
*
* The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
* aligned, however it's the caller's responsibility to guarantee that
* we are the only thread that changes migrate type of pageblocks the
* pages fall in.
*
* The PFN range must belong to a single zone.
*
* Returns zero on success or negative error code. On success all
* pages which PFN is in [start, end) are allocated for the caller and
* need to be freed with free_contig_range().
*/
int alloc_contig_range(unsigned long start, unsigned long end,
unsigned migratetype)
{
unsigned long outer_start, outer_end;
unsigned int order;
int ret = 0;
struct compact_control cc = {
.nr_migratepages = 0,
.order = -1,
.zone = page_zone(pfn_to_page(start)),
.mode = MIGRATE_SYNC,
.ignore_skip_hint = true,
};
INIT_LIST_HEAD(&cc.migratepages);
/*
* What we do here is we mark all pageblocks in range as
* MIGRATE_ISOLATE. Because pageblock and max order pages may
* have different sizes, and due to the way page allocator
* work, we align the range to biggest of the two pages so
* that page allocator won't try to merge buddies from
* different pageblocks and change MIGRATE_ISOLATE to some
* other migration type.
*
* Once the pageblocks are marked as MIGRATE_ISOLATE, we
* migrate the pages from an unaligned range (ie. pages that
* we are interested in). This will put all the pages in
* range back to page allocator as MIGRATE_ISOLATE.
*
* When this is done, we take the pages in range from page
* allocator removing them from the buddy system. This way
* page allocator will never consider using them.
*
* This lets us mark the pageblocks back as
* MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
* aligned range but not in the unaligned, original range are
* put back to page allocator so that buddy can use them.
*/
ret = start_isolate_page_range(pfn_max_align_down(start),
pfn_max_align_up(end), migratetype,
false);
if (ret)
return ret;
/*
* In case of -EBUSY, we'd like to know which page causes problem.
* So, just fall through. We will check it in test_pages_isolated().
*/
ret = __alloc_contig_migrate_range(&cc, start, end);
if (ret && ret != -EBUSY)
goto done;
/*
* Pages from [start, end) are within a MAX_ORDER_NR_PAGES
* aligned blocks that are marked as MIGRATE_ISOLATE. What's
* more, all pages in [start, end) are free in page allocator.
* What we are going to do is to allocate all pages from
* [start, end) (that is remove them from page allocator).
*
* The only problem is that pages at the beginning and at the
* end of interesting range may be not aligned with pages that
* page allocator holds, ie. they can be part of higher order
* pages. Because of this, we reserve the bigger range and
* once this is done free the pages we are not interested in.
*
* We don't have to hold zone->lock here because the pages are
* isolated thus they won't get removed from buddy.
*/
lru_add_drain_all();
drain_all_pages(cc.zone);
order = 0;
outer_start = start;
while (!PageBuddy(pfn_to_page(outer_start))) {
if (++order >= MAX_ORDER) {
outer_start = start;
break;
}
outer_start &= ~0UL << order;
}
if (outer_start != start) {
order = page_order(pfn_to_page(outer_start));
/*
* outer_start page could be small order buddy page and
* it doesn't include start page. Adjust outer_start
* in this case to report failed page properly
* on tracepoint in test_pages_isolated()
*/
if (outer_start + (1UL << order) <= start)
outer_start = start;
}
/* Make sure the range is really isolated. */
if (test_pages_isolated(outer_start, end, false)) {
pr_info("%s: [%lx, %lx) PFNs busy\n",
__func__, outer_start, end);
ret = -EBUSY;
goto done;
}
/* Grab isolated pages from freelists. */
outer_end = isolate_freepages_range(&cc, outer_start, end);
if (!outer_end) {
ret = -EBUSY;
goto done;
}
/* Free head and tail (if any) */
if (start != outer_start)
free_contig_range(outer_start, start - outer_start);
if (end != outer_end)
free_contig_range(end, outer_end - end);
done:
undo_isolate_page_range(pfn_max_align_down(start),
pfn_max_align_up(end), migratetype);
return ret;
}
void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
unsigned int count = 0;
for (; nr_pages--; pfn++) {
struct page *page = pfn_to_page(pfn);
count += page_count(page) != 1;
__free_page(page);
}
WARN(count != 0, "%d pages are still in use!\n", count);
}
#endif
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* The zone indicated has a new number of managed_pages; batch sizes and percpu
* page high values need to be recalulated.
*/
void __meminit zone_pcp_update(struct zone *zone)
{
unsigned cpu;
mutex_lock(&pcp_batch_high_lock);
for_each_possible_cpu(cpu)
pageset_set_high_and_batch(zone,
per_cpu_ptr(zone->pageset, cpu));
mutex_unlock(&pcp_batch_high_lock);
}
#endif
void zone_pcp_reset(struct zone *zone)
{
unsigned long flags;
int cpu;
struct per_cpu_pageset *pset;
/* avoid races with drain_pages() */
local_irq_save(flags);
if (zone->pageset != &boot_pageset) {
for_each_online_cpu(cpu) {
pset = per_cpu_ptr(zone->pageset, cpu);
drain_zonestat(zone, pset);
}
free_percpu(zone->pageset);
zone->pageset = &boot_pageset;
}
local_irq_restore(flags);
}
#ifdef CONFIG_MEMORY_HOTREMOVE
/*
* All pages in the range must be in a single zone and isolated
* before calling this.
*/
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
struct page *page;
struct zone *zone;
unsigned int order, i;
unsigned long pfn;
unsigned long flags;
/* find the first valid pfn */
for (pfn = start_pfn; pfn < end_pfn; pfn++)
if (pfn_valid(pfn))
break;
if (pfn == end_pfn)
return;
zone = page_zone(pfn_to_page(pfn));
spin_lock_irqsave(&zone->lock, flags);
pfn = start_pfn;
while (pfn < end_pfn) {
if (!pfn_valid(pfn)) {
pfn++;
continue;
}
page = pfn_to_page(pfn);
/*
* The HWPoisoned page may be not in buddy system, and
* page_count() is not 0.
*/
if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
pfn++;
SetPageReserved(page);
continue;
}
BUG_ON(page_count(page));
BUG_ON(!PageBuddy(page));
order = page_order(page);
#ifdef CONFIG_DEBUG_VM
pr_info("remove from free list %lx %d %lx\n",
pfn, 1 << order, end_pfn);
#endif
list_del(&page->lru);
rmv_page_order(page);
zone->free_area[order].nr_free--;
for (i = 0; i < (1 << order); i++)
SetPageReserved((page+i));
pfn += (1 << order);
}
spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
bool is_free_buddy_page(struct page *page)
{
struct zone *zone = page_zone(page);
unsigned long pfn = page_to_pfn(page);
unsigned long flags;
unsigned int order;
spin_lock_irqsave(&zone->lock, flags);
for (order = 0; order < MAX_ORDER; order++) {
struct page *page_head = page - (pfn & ((1 << order) - 1));
if (PageBuddy(page_head) && page_order(page_head) >= order)
break;
}
spin_unlock_irqrestore(&zone->lock, flags);
return order < MAX_ORDER;
}