mirror of
https://github.com/torvalds/linux.git
synced 2025-01-01 07:42:07 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
479 lines
12 KiB
C
479 lines
12 KiB
C
/*
|
|
* Copyright (c) 2006, 2007 QLogic Corporation. All rights reserved.
|
|
* Copyright (c) 2005, 2006 PathScale, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "ipath_verbs.h"
|
|
|
|
/**
|
|
* ipath_cq_enter - add a new entry to the completion queue
|
|
* @cq: completion queue
|
|
* @entry: work completion entry to add
|
|
* @sig: true if @entry is a solicitated entry
|
|
*
|
|
* This may be called with qp->s_lock held.
|
|
*/
|
|
void ipath_cq_enter(struct ipath_cq *cq, struct ib_wc *entry, int solicited)
|
|
{
|
|
struct ipath_cq_wc *wc;
|
|
unsigned long flags;
|
|
u32 head;
|
|
u32 next;
|
|
|
|
spin_lock_irqsave(&cq->lock, flags);
|
|
|
|
/*
|
|
* Note that the head pointer might be writable by user processes.
|
|
* Take care to verify it is a sane value.
|
|
*/
|
|
wc = cq->queue;
|
|
head = wc->head;
|
|
if (head >= (unsigned) cq->ibcq.cqe) {
|
|
head = cq->ibcq.cqe;
|
|
next = 0;
|
|
} else
|
|
next = head + 1;
|
|
if (unlikely(next == wc->tail)) {
|
|
spin_unlock_irqrestore(&cq->lock, flags);
|
|
if (cq->ibcq.event_handler) {
|
|
struct ib_event ev;
|
|
|
|
ev.device = cq->ibcq.device;
|
|
ev.element.cq = &cq->ibcq;
|
|
ev.event = IB_EVENT_CQ_ERR;
|
|
cq->ibcq.event_handler(&ev, cq->ibcq.cq_context);
|
|
}
|
|
return;
|
|
}
|
|
if (cq->ip) {
|
|
wc->uqueue[head].wr_id = entry->wr_id;
|
|
wc->uqueue[head].status = entry->status;
|
|
wc->uqueue[head].opcode = entry->opcode;
|
|
wc->uqueue[head].vendor_err = entry->vendor_err;
|
|
wc->uqueue[head].byte_len = entry->byte_len;
|
|
wc->uqueue[head].ex.imm_data = (__u32 __force) entry->ex.imm_data;
|
|
wc->uqueue[head].qp_num = entry->qp->qp_num;
|
|
wc->uqueue[head].src_qp = entry->src_qp;
|
|
wc->uqueue[head].wc_flags = entry->wc_flags;
|
|
wc->uqueue[head].pkey_index = entry->pkey_index;
|
|
wc->uqueue[head].slid = entry->slid;
|
|
wc->uqueue[head].sl = entry->sl;
|
|
wc->uqueue[head].dlid_path_bits = entry->dlid_path_bits;
|
|
wc->uqueue[head].port_num = entry->port_num;
|
|
/* Make sure entry is written before the head index. */
|
|
smp_wmb();
|
|
} else
|
|
wc->kqueue[head] = *entry;
|
|
wc->head = next;
|
|
|
|
if (cq->notify == IB_CQ_NEXT_COMP ||
|
|
(cq->notify == IB_CQ_SOLICITED && solicited)) {
|
|
cq->notify = IB_CQ_NONE;
|
|
cq->triggered++;
|
|
/*
|
|
* This will cause send_complete() to be called in
|
|
* another thread.
|
|
*/
|
|
tasklet_hi_schedule(&cq->comptask);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&cq->lock, flags);
|
|
|
|
if (entry->status != IB_WC_SUCCESS)
|
|
to_idev(cq->ibcq.device)->n_wqe_errs++;
|
|
}
|
|
|
|
/**
|
|
* ipath_poll_cq - poll for work completion entries
|
|
* @ibcq: the completion queue to poll
|
|
* @num_entries: the maximum number of entries to return
|
|
* @entry: pointer to array where work completions are placed
|
|
*
|
|
* Returns the number of completion entries polled.
|
|
*
|
|
* This may be called from interrupt context. Also called by ib_poll_cq()
|
|
* in the generic verbs code.
|
|
*/
|
|
int ipath_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry)
|
|
{
|
|
struct ipath_cq *cq = to_icq(ibcq);
|
|
struct ipath_cq_wc *wc;
|
|
unsigned long flags;
|
|
int npolled;
|
|
u32 tail;
|
|
|
|
/* The kernel can only poll a kernel completion queue */
|
|
if (cq->ip) {
|
|
npolled = -EINVAL;
|
|
goto bail;
|
|
}
|
|
|
|
spin_lock_irqsave(&cq->lock, flags);
|
|
|
|
wc = cq->queue;
|
|
tail = wc->tail;
|
|
if (tail > (u32) cq->ibcq.cqe)
|
|
tail = (u32) cq->ibcq.cqe;
|
|
for (npolled = 0; npolled < num_entries; ++npolled, ++entry) {
|
|
if (tail == wc->head)
|
|
break;
|
|
/* The kernel doesn't need a RMB since it has the lock. */
|
|
*entry = wc->kqueue[tail];
|
|
if (tail >= cq->ibcq.cqe)
|
|
tail = 0;
|
|
else
|
|
tail++;
|
|
}
|
|
wc->tail = tail;
|
|
|
|
spin_unlock_irqrestore(&cq->lock, flags);
|
|
|
|
bail:
|
|
return npolled;
|
|
}
|
|
|
|
static void send_complete(unsigned long data)
|
|
{
|
|
struct ipath_cq *cq = (struct ipath_cq *)data;
|
|
|
|
/*
|
|
* The completion handler will most likely rearm the notification
|
|
* and poll for all pending entries. If a new completion entry
|
|
* is added while we are in this routine, tasklet_hi_schedule()
|
|
* won't call us again until we return so we check triggered to
|
|
* see if we need to call the handler again.
|
|
*/
|
|
for (;;) {
|
|
u8 triggered = cq->triggered;
|
|
|
|
cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context);
|
|
|
|
if (cq->triggered == triggered)
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ipath_create_cq - create a completion queue
|
|
* @ibdev: the device this completion queue is attached to
|
|
* @entries: the minimum size of the completion queue
|
|
* @context: unused by the InfiniPath driver
|
|
* @udata: unused by the InfiniPath driver
|
|
*
|
|
* Returns a pointer to the completion queue or negative errno values
|
|
* for failure.
|
|
*
|
|
* Called by ib_create_cq() in the generic verbs code.
|
|
*/
|
|
struct ib_cq *ipath_create_cq(struct ib_device *ibdev, int entries, int comp_vector,
|
|
struct ib_ucontext *context,
|
|
struct ib_udata *udata)
|
|
{
|
|
struct ipath_ibdev *dev = to_idev(ibdev);
|
|
struct ipath_cq *cq;
|
|
struct ipath_cq_wc *wc;
|
|
struct ib_cq *ret;
|
|
u32 sz;
|
|
|
|
if (entries < 1 || entries > ib_ipath_max_cqes) {
|
|
ret = ERR_PTR(-EINVAL);
|
|
goto done;
|
|
}
|
|
|
|
/* Allocate the completion queue structure. */
|
|
cq = kmalloc(sizeof(*cq), GFP_KERNEL);
|
|
if (!cq) {
|
|
ret = ERR_PTR(-ENOMEM);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Allocate the completion queue entries and head/tail pointers.
|
|
* This is allocated separately so that it can be resized and
|
|
* also mapped into user space.
|
|
* We need to use vmalloc() in order to support mmap and large
|
|
* numbers of entries.
|
|
*/
|
|
sz = sizeof(*wc);
|
|
if (udata && udata->outlen >= sizeof(__u64))
|
|
sz += sizeof(struct ib_uverbs_wc) * (entries + 1);
|
|
else
|
|
sz += sizeof(struct ib_wc) * (entries + 1);
|
|
wc = vmalloc_user(sz);
|
|
if (!wc) {
|
|
ret = ERR_PTR(-ENOMEM);
|
|
goto bail_cq;
|
|
}
|
|
|
|
/*
|
|
* Return the address of the WC as the offset to mmap.
|
|
* See ipath_mmap() for details.
|
|
*/
|
|
if (udata && udata->outlen >= sizeof(__u64)) {
|
|
int err;
|
|
|
|
cq->ip = ipath_create_mmap_info(dev, sz, context, wc);
|
|
if (!cq->ip) {
|
|
ret = ERR_PTR(-ENOMEM);
|
|
goto bail_wc;
|
|
}
|
|
|
|
err = ib_copy_to_udata(udata, &cq->ip->offset,
|
|
sizeof(cq->ip->offset));
|
|
if (err) {
|
|
ret = ERR_PTR(err);
|
|
goto bail_ip;
|
|
}
|
|
} else
|
|
cq->ip = NULL;
|
|
|
|
spin_lock(&dev->n_cqs_lock);
|
|
if (dev->n_cqs_allocated == ib_ipath_max_cqs) {
|
|
spin_unlock(&dev->n_cqs_lock);
|
|
ret = ERR_PTR(-ENOMEM);
|
|
goto bail_ip;
|
|
}
|
|
|
|
dev->n_cqs_allocated++;
|
|
spin_unlock(&dev->n_cqs_lock);
|
|
|
|
if (cq->ip) {
|
|
spin_lock_irq(&dev->pending_lock);
|
|
list_add(&cq->ip->pending_mmaps, &dev->pending_mmaps);
|
|
spin_unlock_irq(&dev->pending_lock);
|
|
}
|
|
|
|
/*
|
|
* ib_create_cq() will initialize cq->ibcq except for cq->ibcq.cqe.
|
|
* The number of entries should be >= the number requested or return
|
|
* an error.
|
|
*/
|
|
cq->ibcq.cqe = entries;
|
|
cq->notify = IB_CQ_NONE;
|
|
cq->triggered = 0;
|
|
spin_lock_init(&cq->lock);
|
|
tasklet_init(&cq->comptask, send_complete, (unsigned long)cq);
|
|
wc->head = 0;
|
|
wc->tail = 0;
|
|
cq->queue = wc;
|
|
|
|
ret = &cq->ibcq;
|
|
|
|
goto done;
|
|
|
|
bail_ip:
|
|
kfree(cq->ip);
|
|
bail_wc:
|
|
vfree(wc);
|
|
bail_cq:
|
|
kfree(cq);
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ipath_destroy_cq - destroy a completion queue
|
|
* @ibcq: the completion queue to destroy.
|
|
*
|
|
* Returns 0 for success.
|
|
*
|
|
* Called by ib_destroy_cq() in the generic verbs code.
|
|
*/
|
|
int ipath_destroy_cq(struct ib_cq *ibcq)
|
|
{
|
|
struct ipath_ibdev *dev = to_idev(ibcq->device);
|
|
struct ipath_cq *cq = to_icq(ibcq);
|
|
|
|
tasklet_kill(&cq->comptask);
|
|
spin_lock(&dev->n_cqs_lock);
|
|
dev->n_cqs_allocated--;
|
|
spin_unlock(&dev->n_cqs_lock);
|
|
if (cq->ip)
|
|
kref_put(&cq->ip->ref, ipath_release_mmap_info);
|
|
else
|
|
vfree(cq->queue);
|
|
kfree(cq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ipath_req_notify_cq - change the notification type for a completion queue
|
|
* @ibcq: the completion queue
|
|
* @notify_flags: the type of notification to request
|
|
*
|
|
* Returns 0 for success.
|
|
*
|
|
* This may be called from interrupt context. Also called by
|
|
* ib_req_notify_cq() in the generic verbs code.
|
|
*/
|
|
int ipath_req_notify_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags notify_flags)
|
|
{
|
|
struct ipath_cq *cq = to_icq(ibcq);
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&cq->lock, flags);
|
|
/*
|
|
* Don't change IB_CQ_NEXT_COMP to IB_CQ_SOLICITED but allow
|
|
* any other transitions (see C11-31 and C11-32 in ch. 11.4.2.2).
|
|
*/
|
|
if (cq->notify != IB_CQ_NEXT_COMP)
|
|
cq->notify = notify_flags & IB_CQ_SOLICITED_MASK;
|
|
|
|
if ((notify_flags & IB_CQ_REPORT_MISSED_EVENTS) &&
|
|
cq->queue->head != cq->queue->tail)
|
|
ret = 1;
|
|
|
|
spin_unlock_irqrestore(&cq->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ipath_resize_cq - change the size of the CQ
|
|
* @ibcq: the completion queue
|
|
*
|
|
* Returns 0 for success.
|
|
*/
|
|
int ipath_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata)
|
|
{
|
|
struct ipath_cq *cq = to_icq(ibcq);
|
|
struct ipath_cq_wc *old_wc;
|
|
struct ipath_cq_wc *wc;
|
|
u32 head, tail, n;
|
|
int ret;
|
|
u32 sz;
|
|
|
|
if (cqe < 1 || cqe > ib_ipath_max_cqes) {
|
|
ret = -EINVAL;
|
|
goto bail;
|
|
}
|
|
|
|
/*
|
|
* Need to use vmalloc() if we want to support large #s of entries.
|
|
*/
|
|
sz = sizeof(*wc);
|
|
if (udata && udata->outlen >= sizeof(__u64))
|
|
sz += sizeof(struct ib_uverbs_wc) * (cqe + 1);
|
|
else
|
|
sz += sizeof(struct ib_wc) * (cqe + 1);
|
|
wc = vmalloc_user(sz);
|
|
if (!wc) {
|
|
ret = -ENOMEM;
|
|
goto bail;
|
|
}
|
|
|
|
/* Check that we can write the offset to mmap. */
|
|
if (udata && udata->outlen >= sizeof(__u64)) {
|
|
__u64 offset = 0;
|
|
|
|
ret = ib_copy_to_udata(udata, &offset, sizeof(offset));
|
|
if (ret)
|
|
goto bail_free;
|
|
}
|
|
|
|
spin_lock_irq(&cq->lock);
|
|
/*
|
|
* Make sure head and tail are sane since they
|
|
* might be user writable.
|
|
*/
|
|
old_wc = cq->queue;
|
|
head = old_wc->head;
|
|
if (head > (u32) cq->ibcq.cqe)
|
|
head = (u32) cq->ibcq.cqe;
|
|
tail = old_wc->tail;
|
|
if (tail > (u32) cq->ibcq.cqe)
|
|
tail = (u32) cq->ibcq.cqe;
|
|
if (head < tail)
|
|
n = cq->ibcq.cqe + 1 + head - tail;
|
|
else
|
|
n = head - tail;
|
|
if (unlikely((u32)cqe < n)) {
|
|
ret = -EINVAL;
|
|
goto bail_unlock;
|
|
}
|
|
for (n = 0; tail != head; n++) {
|
|
if (cq->ip)
|
|
wc->uqueue[n] = old_wc->uqueue[tail];
|
|
else
|
|
wc->kqueue[n] = old_wc->kqueue[tail];
|
|
if (tail == (u32) cq->ibcq.cqe)
|
|
tail = 0;
|
|
else
|
|
tail++;
|
|
}
|
|
cq->ibcq.cqe = cqe;
|
|
wc->head = n;
|
|
wc->tail = 0;
|
|
cq->queue = wc;
|
|
spin_unlock_irq(&cq->lock);
|
|
|
|
vfree(old_wc);
|
|
|
|
if (cq->ip) {
|
|
struct ipath_ibdev *dev = to_idev(ibcq->device);
|
|
struct ipath_mmap_info *ip = cq->ip;
|
|
|
|
ipath_update_mmap_info(dev, ip, sz, wc);
|
|
|
|
/*
|
|
* Return the offset to mmap.
|
|
* See ipath_mmap() for details.
|
|
*/
|
|
if (udata && udata->outlen >= sizeof(__u64)) {
|
|
ret = ib_copy_to_udata(udata, &ip->offset,
|
|
sizeof(ip->offset));
|
|
if (ret)
|
|
goto bail;
|
|
}
|
|
|
|
spin_lock_irq(&dev->pending_lock);
|
|
if (list_empty(&ip->pending_mmaps))
|
|
list_add(&ip->pending_mmaps, &dev->pending_mmaps);
|
|
spin_unlock_irq(&dev->pending_lock);
|
|
}
|
|
|
|
ret = 0;
|
|
goto bail;
|
|
|
|
bail_unlock:
|
|
spin_unlock_irq(&cq->lock);
|
|
bail_free:
|
|
vfree(wc);
|
|
bail:
|
|
return ret;
|
|
}
|