linux/drivers/crypto/marvell/cesa/cesa.h
Tom Rix 3f52c9aef2 crypto: marvell/cesa - change FPGA indirect article to an
Change use of 'a fpga' to 'an fpga'

Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-06-17 15:07:30 +08:00

916 lines
25 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __MARVELL_CESA_H__
#define __MARVELL_CESA_H__
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <linux/dma-direction.h>
#include <linux/dmapool.h>
#define CESA_ENGINE_OFF(i) (((i) * 0x2000))
#define CESA_TDMA_BYTE_CNT 0x800
#define CESA_TDMA_SRC_ADDR 0x810
#define CESA_TDMA_DST_ADDR 0x820
#define CESA_TDMA_NEXT_ADDR 0x830
#define CESA_TDMA_CONTROL 0x840
#define CESA_TDMA_DST_BURST GENMASK(2, 0)
#define CESA_TDMA_DST_BURST_32B 3
#define CESA_TDMA_DST_BURST_128B 4
#define CESA_TDMA_OUT_RD_EN BIT(4)
#define CESA_TDMA_SRC_BURST GENMASK(8, 6)
#define CESA_TDMA_SRC_BURST_32B (3 << 6)
#define CESA_TDMA_SRC_BURST_128B (4 << 6)
#define CESA_TDMA_CHAIN BIT(9)
#define CESA_TDMA_BYTE_SWAP BIT(11)
#define CESA_TDMA_NO_BYTE_SWAP BIT(11)
#define CESA_TDMA_EN BIT(12)
#define CESA_TDMA_FETCH_ND BIT(13)
#define CESA_TDMA_ACT BIT(14)
#define CESA_TDMA_CUR 0x870
#define CESA_TDMA_ERROR_CAUSE 0x8c8
#define CESA_TDMA_ERROR_MSK 0x8cc
#define CESA_TDMA_WINDOW_BASE(x) (((x) * 0x8) + 0xa00)
#define CESA_TDMA_WINDOW_CTRL(x) (((x) * 0x8) + 0xa04)
#define CESA_IVDIG(x) (0xdd00 + ((x) * 4) + \
(((x) < 5) ? 0 : 0x14))
#define CESA_SA_CMD 0xde00
#define CESA_SA_CMD_EN_CESA_SA_ACCL0 BIT(0)
#define CESA_SA_CMD_EN_CESA_SA_ACCL1 BIT(1)
#define CESA_SA_CMD_DISABLE_SEC BIT(2)
#define CESA_SA_DESC_P0 0xde04
#define CESA_SA_DESC_P1 0xde14
#define CESA_SA_CFG 0xde08
#define CESA_SA_CFG_STOP_DIG_ERR GENMASK(1, 0)
#define CESA_SA_CFG_DIG_ERR_CONT 0
#define CESA_SA_CFG_DIG_ERR_SKIP 1
#define CESA_SA_CFG_DIG_ERR_STOP 3
#define CESA_SA_CFG_CH0_W_IDMA BIT(7)
#define CESA_SA_CFG_CH1_W_IDMA BIT(8)
#define CESA_SA_CFG_ACT_CH0_IDMA BIT(9)
#define CESA_SA_CFG_ACT_CH1_IDMA BIT(10)
#define CESA_SA_CFG_MULTI_PKT BIT(11)
#define CESA_SA_CFG_PARA_DIS BIT(13)
#define CESA_SA_ACCEL_STATUS 0xde0c
#define CESA_SA_ST_ACT_0 BIT(0)
#define CESA_SA_ST_ACT_1 BIT(1)
/*
* CESA_SA_FPGA_INT_STATUS looks like an FPGA leftover and is documented only
* in Errata 4.12. It looks like that it was part of an IRQ-controller in FPGA
* and someone forgot to remove it while switching to the core and moving to
* CESA_SA_INT_STATUS.
*/
#define CESA_SA_FPGA_INT_STATUS 0xdd68
#define CESA_SA_INT_STATUS 0xde20
#define CESA_SA_INT_AUTH_DONE BIT(0)
#define CESA_SA_INT_DES_E_DONE BIT(1)
#define CESA_SA_INT_AES_E_DONE BIT(2)
#define CESA_SA_INT_AES_D_DONE BIT(3)
#define CESA_SA_INT_ENC_DONE BIT(4)
#define CESA_SA_INT_ACCEL0_DONE BIT(5)
#define CESA_SA_INT_ACCEL1_DONE BIT(6)
#define CESA_SA_INT_ACC0_IDMA_DONE BIT(7)
#define CESA_SA_INT_ACC1_IDMA_DONE BIT(8)
#define CESA_SA_INT_IDMA_DONE BIT(9)
#define CESA_SA_INT_IDMA_OWN_ERR BIT(10)
#define CESA_SA_INT_MSK 0xde24
#define CESA_SA_DESC_CFG_OP_MAC_ONLY 0
#define CESA_SA_DESC_CFG_OP_CRYPT_ONLY 1
#define CESA_SA_DESC_CFG_OP_MAC_CRYPT 2
#define CESA_SA_DESC_CFG_OP_CRYPT_MAC 3
#define CESA_SA_DESC_CFG_OP_MSK GENMASK(1, 0)
#define CESA_SA_DESC_CFG_MACM_SHA256 (1 << 4)
#define CESA_SA_DESC_CFG_MACM_HMAC_SHA256 (3 << 4)
#define CESA_SA_DESC_CFG_MACM_MD5 (4 << 4)
#define CESA_SA_DESC_CFG_MACM_SHA1 (5 << 4)
#define CESA_SA_DESC_CFG_MACM_HMAC_MD5 (6 << 4)
#define CESA_SA_DESC_CFG_MACM_HMAC_SHA1 (7 << 4)
#define CESA_SA_DESC_CFG_MACM_MSK GENMASK(6, 4)
#define CESA_SA_DESC_CFG_CRYPTM_DES (1 << 8)
#define CESA_SA_DESC_CFG_CRYPTM_3DES (2 << 8)
#define CESA_SA_DESC_CFG_CRYPTM_AES (3 << 8)
#define CESA_SA_DESC_CFG_CRYPTM_MSK GENMASK(9, 8)
#define CESA_SA_DESC_CFG_DIR_ENC (0 << 12)
#define CESA_SA_DESC_CFG_DIR_DEC (1 << 12)
#define CESA_SA_DESC_CFG_CRYPTCM_ECB (0 << 16)
#define CESA_SA_DESC_CFG_CRYPTCM_CBC (1 << 16)
#define CESA_SA_DESC_CFG_CRYPTCM_MSK BIT(16)
#define CESA_SA_DESC_CFG_3DES_EEE (0 << 20)
#define CESA_SA_DESC_CFG_3DES_EDE (1 << 20)
#define CESA_SA_DESC_CFG_AES_LEN_128 (0 << 24)
#define CESA_SA_DESC_CFG_AES_LEN_192 (1 << 24)
#define CESA_SA_DESC_CFG_AES_LEN_256 (2 << 24)
#define CESA_SA_DESC_CFG_AES_LEN_MSK GENMASK(25, 24)
#define CESA_SA_DESC_CFG_NOT_FRAG (0 << 30)
#define CESA_SA_DESC_CFG_FIRST_FRAG (1 << 30)
#define CESA_SA_DESC_CFG_LAST_FRAG (2 << 30)
#define CESA_SA_DESC_CFG_MID_FRAG (3 << 30)
#define CESA_SA_DESC_CFG_FRAG_MSK GENMASK(31, 30)
/*
* /-----------\ 0
* | ACCEL CFG | 4 * 8
* |-----------| 0x20
* | CRYPT KEY | 8 * 4
* |-----------| 0x40
* | IV IN | 4 * 4
* |-----------| 0x40 (inplace)
* | IV BUF | 4 * 4
* |-----------| 0x80
* | DATA IN | 16 * x (max ->max_req_size)
* |-----------| 0x80 (inplace operation)
* | DATA OUT | 16 * x (max ->max_req_size)
* \-----------/ SRAM size
*/
/*
* Hashing memory map:
* /-----------\ 0
* | ACCEL CFG | 4 * 8
* |-----------| 0x20
* | Inner IV | 8 * 4
* |-----------| 0x40
* | Outer IV | 8 * 4
* |-----------| 0x60
* | Output BUF| 8 * 4
* |-----------| 0x80
* | DATA IN | 64 * x (max ->max_req_size)
* \-----------/ SRAM size
*/
#define CESA_SA_CFG_SRAM_OFFSET 0x00
#define CESA_SA_DATA_SRAM_OFFSET 0x80
#define CESA_SA_CRYPT_KEY_SRAM_OFFSET 0x20
#define CESA_SA_CRYPT_IV_SRAM_OFFSET 0x40
#define CESA_SA_MAC_IIV_SRAM_OFFSET 0x20
#define CESA_SA_MAC_OIV_SRAM_OFFSET 0x40
#define CESA_SA_MAC_DIG_SRAM_OFFSET 0x60
#define CESA_SA_DESC_CRYPT_DATA(offset) \
cpu_to_le32((CESA_SA_DATA_SRAM_OFFSET + (offset)) | \
((CESA_SA_DATA_SRAM_OFFSET + (offset)) << 16))
#define CESA_SA_DESC_CRYPT_IV(offset) \
cpu_to_le32((CESA_SA_CRYPT_IV_SRAM_OFFSET + (offset)) | \
((CESA_SA_CRYPT_IV_SRAM_OFFSET + (offset)) << 16))
#define CESA_SA_DESC_CRYPT_KEY(offset) \
cpu_to_le32(CESA_SA_CRYPT_KEY_SRAM_OFFSET + (offset))
#define CESA_SA_DESC_MAC_DATA(offset) \
cpu_to_le32(CESA_SA_DATA_SRAM_OFFSET + (offset))
#define CESA_SA_DESC_MAC_DATA_MSK cpu_to_le32(GENMASK(15, 0))
#define CESA_SA_DESC_MAC_TOTAL_LEN(total_len) cpu_to_le32((total_len) << 16)
#define CESA_SA_DESC_MAC_TOTAL_LEN_MSK cpu_to_le32(GENMASK(31, 16))
#define CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX 0xffff
#define CESA_SA_DESC_MAC_DIGEST(offset) \
cpu_to_le32(CESA_SA_MAC_DIG_SRAM_OFFSET + (offset))
#define CESA_SA_DESC_MAC_DIGEST_MSK cpu_to_le32(GENMASK(15, 0))
#define CESA_SA_DESC_MAC_FRAG_LEN(frag_len) cpu_to_le32((frag_len) << 16)
#define CESA_SA_DESC_MAC_FRAG_LEN_MSK cpu_to_le32(GENMASK(31, 16))
#define CESA_SA_DESC_MAC_IV(offset) \
cpu_to_le32((CESA_SA_MAC_IIV_SRAM_OFFSET + (offset)) | \
((CESA_SA_MAC_OIV_SRAM_OFFSET + (offset)) << 16))
#define CESA_SA_SRAM_SIZE 2048
#define CESA_SA_SRAM_PAYLOAD_SIZE (cesa_dev->sram_size - \
CESA_SA_DATA_SRAM_OFFSET)
#define CESA_SA_DEFAULT_SRAM_SIZE 2048
#define CESA_SA_MIN_SRAM_SIZE 1024
#define CESA_SA_SRAM_MSK (2048 - 1)
#define CESA_MAX_HASH_BLOCK_SIZE 64
#define CESA_HASH_BLOCK_SIZE_MSK (CESA_MAX_HASH_BLOCK_SIZE - 1)
/**
* struct mv_cesa_sec_accel_desc - security accelerator descriptor
* @config: engine config
* @enc_p: input and output data pointers for a cipher operation
* @enc_len: cipher operation length
* @enc_key_p: cipher key pointer
* @enc_iv: cipher IV pointers
* @mac_src_p: input pointer and total hash length
* @mac_digest: digest pointer and hash operation length
* @mac_iv: hmac IV pointers
*
* Structure passed to the CESA engine to describe the crypto operation
* to be executed.
*/
struct mv_cesa_sec_accel_desc {
__le32 config;
__le32 enc_p;
__le32 enc_len;
__le32 enc_key_p;
__le32 enc_iv;
__le32 mac_src_p;
__le32 mac_digest;
__le32 mac_iv;
};
/**
* struct mv_cesa_skcipher_op_ctx - cipher operation context
* @key: cipher key
* @iv: cipher IV
*
* Context associated to a cipher operation.
*/
struct mv_cesa_skcipher_op_ctx {
__le32 key[8];
u32 iv[4];
};
/**
* struct mv_cesa_hash_op_ctx - hash or hmac operation context
* @key: cipher key
* @iv: cipher IV
*
* Context associated to an hash or hmac operation.
*/
struct mv_cesa_hash_op_ctx {
u32 iv[16];
__le32 hash[8];
};
/**
* struct mv_cesa_op_ctx - crypto operation context
* @desc: CESA descriptor
* @ctx: context associated to the crypto operation
*
* Context associated to a crypto operation.
*/
struct mv_cesa_op_ctx {
struct mv_cesa_sec_accel_desc desc;
union {
struct mv_cesa_skcipher_op_ctx skcipher;
struct mv_cesa_hash_op_ctx hash;
} ctx;
};
/* TDMA descriptor flags */
#define CESA_TDMA_DST_IN_SRAM BIT(31)
#define CESA_TDMA_SRC_IN_SRAM BIT(30)
#define CESA_TDMA_END_OF_REQ BIT(29)
#define CESA_TDMA_BREAK_CHAIN BIT(28)
#define CESA_TDMA_SET_STATE BIT(27)
#define CESA_TDMA_TYPE_MSK GENMASK(26, 0)
#define CESA_TDMA_DUMMY 0
#define CESA_TDMA_DATA 1
#define CESA_TDMA_OP 2
#define CESA_TDMA_RESULT 3
/**
* struct mv_cesa_tdma_desc - TDMA descriptor
* @byte_cnt: number of bytes to transfer
* @src: DMA address of the source
* @dst: DMA address of the destination
* @next_dma: DMA address of the next TDMA descriptor
* @cur_dma: DMA address of this TDMA descriptor
* @next: pointer to the next TDMA descriptor
* @op: CESA operation attached to this TDMA descriptor
* @data: raw data attached to this TDMA descriptor
* @flags: flags describing the TDMA transfer. See the
* "TDMA descriptor flags" section above
*
* TDMA descriptor used to create a transfer chain describing a crypto
* operation.
*/
struct mv_cesa_tdma_desc {
__le32 byte_cnt;
union {
__le32 src;
u32 src_dma;
};
union {
__le32 dst;
u32 dst_dma;
};
__le32 next_dma;
/* Software state */
dma_addr_t cur_dma;
struct mv_cesa_tdma_desc *next;
union {
struct mv_cesa_op_ctx *op;
void *data;
};
u32 flags;
};
/**
* struct mv_cesa_sg_dma_iter - scatter-gather iterator
* @dir: transfer direction
* @sg: scatter list
* @offset: current position in the scatter list
* @op_offset: current position in the crypto operation
*
* Iterator used to iterate over a scatterlist while creating a TDMA chain for
* a crypto operation.
*/
struct mv_cesa_sg_dma_iter {
enum dma_data_direction dir;
struct scatterlist *sg;
unsigned int offset;
unsigned int op_offset;
};
/**
* struct mv_cesa_dma_iter - crypto operation iterator
* @len: the crypto operation length
* @offset: current position in the crypto operation
* @op_len: sub-operation length (the crypto engine can only act on 2kb
* chunks)
*
* Iterator used to create a TDMA chain for a given crypto operation.
*/
struct mv_cesa_dma_iter {
unsigned int len;
unsigned int offset;
unsigned int op_len;
};
/**
* struct mv_cesa_tdma_chain - TDMA chain
* @first: first entry in the TDMA chain
* @last: last entry in the TDMA chain
*
* Stores a TDMA chain for a specific crypto operation.
*/
struct mv_cesa_tdma_chain {
struct mv_cesa_tdma_desc *first;
struct mv_cesa_tdma_desc *last;
};
struct mv_cesa_engine;
/**
* struct mv_cesa_caps - CESA device capabilities
* @engines: number of engines
* @has_tdma: whether this device has a TDMA block
* @cipher_algs: supported cipher algorithms
* @ncipher_algs: number of supported cipher algorithms
* @ahash_algs: supported hash algorithms
* @nahash_algs: number of supported hash algorithms
*
* Structure used to describe CESA device capabilities.
*/
struct mv_cesa_caps {
int nengines;
bool has_tdma;
struct skcipher_alg **cipher_algs;
int ncipher_algs;
struct ahash_alg **ahash_algs;
int nahash_algs;
};
/**
* struct mv_cesa_dev_dma - DMA pools
* @tdma_desc_pool: TDMA desc pool
* @op_pool: crypto operation pool
* @cache_pool: data cache pool (used by hash implementation when the
* hash request is smaller than the hash block size)
* @padding_pool: padding pool (used by hash implementation when hardware
* padding cannot be used)
*
* Structure containing the different DMA pools used by this driver.
*/
struct mv_cesa_dev_dma {
struct dma_pool *tdma_desc_pool;
struct dma_pool *op_pool;
struct dma_pool *cache_pool;
struct dma_pool *padding_pool;
};
/**
* struct mv_cesa_dev - CESA device
* @caps: device capabilities
* @regs: device registers
* @sram_size: usable SRAM size
* @lock: device lock
* @engines: array of engines
* @dma: dma pools
*
* Structure storing CESA device information.
*/
struct mv_cesa_dev {
const struct mv_cesa_caps *caps;
void __iomem *regs;
struct device *dev;
unsigned int sram_size;
spinlock_t lock;
struct mv_cesa_engine *engines;
struct mv_cesa_dev_dma *dma;
};
/**
* struct mv_cesa_engine - CESA engine
* @id: engine id
* @regs: engine registers
* @sram: SRAM memory region
* @sram_pool: SRAM memory region from pool
* @sram_dma: DMA address of the SRAM memory region
* @lock: engine lock
* @req: current crypto request
* @clk: engine clk
* @zclk: engine zclk
* @max_req_len: maximum chunk length (useful to create the TDMA chain)
* @int_mask: interrupt mask cache
* @pool: memory pool pointing to the memory region reserved in
* SRAM
* @queue: fifo of the pending crypto requests
* @load: engine load counter, useful for load balancing
* @chain: list of the current tdma descriptors being processed
* by this engine.
* @complete_queue: fifo of the processed requests by the engine
*
* Structure storing CESA engine information.
*/
struct mv_cesa_engine {
int id;
void __iomem *regs;
union {
void __iomem *sram;
void *sram_pool;
};
dma_addr_t sram_dma;
spinlock_t lock;
struct crypto_async_request *req;
struct clk *clk;
struct clk *zclk;
size_t max_req_len;
u32 int_mask;
struct gen_pool *pool;
struct crypto_queue queue;
atomic_t load;
struct mv_cesa_tdma_chain chain;
struct list_head complete_queue;
int irq;
};
/**
* struct mv_cesa_req_ops - CESA request operations
* @process: process a request chunk result (should return 0 if the
* operation, -EINPROGRESS if it needs more steps or an error
* code)
* @step: launch the crypto operation on the next chunk
* @cleanup: cleanup the crypto request (release associated data)
* @complete: complete the request, i.e copy result or context from sram when
* needed.
*/
struct mv_cesa_req_ops {
int (*process)(struct crypto_async_request *req, u32 status);
void (*step)(struct crypto_async_request *req);
void (*cleanup)(struct crypto_async_request *req);
void (*complete)(struct crypto_async_request *req);
};
/**
* struct mv_cesa_ctx - CESA operation context
* @ops: crypto operations
*
* Base context structure inherited by operation specific ones.
*/
struct mv_cesa_ctx {
const struct mv_cesa_req_ops *ops;
};
/**
* struct mv_cesa_hash_ctx - CESA hash operation context
* @base: base context structure
*
* Hash context structure.
*/
struct mv_cesa_hash_ctx {
struct mv_cesa_ctx base;
};
/**
* struct mv_cesa_hash_ctx - CESA hmac operation context
* @base: base context structure
* @iv: initialization vectors
*
* HMAC context structure.
*/
struct mv_cesa_hmac_ctx {
struct mv_cesa_ctx base;
__be32 iv[16];
};
/**
* enum mv_cesa_req_type - request type definitions
* @CESA_STD_REQ: standard request
* @CESA_DMA_REQ: DMA request
*/
enum mv_cesa_req_type {
CESA_STD_REQ,
CESA_DMA_REQ,
};
/**
* struct mv_cesa_req - CESA request
* @engine: engine associated with this request
* @chain: list of tdma descriptors associated with this request
*/
struct mv_cesa_req {
struct mv_cesa_engine *engine;
struct mv_cesa_tdma_chain chain;
};
/**
* struct mv_cesa_sg_std_iter - CESA scatter-gather iterator for standard
* requests
* @iter: sg mapping iterator
* @offset: current offset in the SG entry mapped in memory
*/
struct mv_cesa_sg_std_iter {
struct sg_mapping_iter iter;
unsigned int offset;
};
/**
* struct mv_cesa_skcipher_std_req - cipher standard request
* @op: operation context
* @offset: current operation offset
* @size: size of the crypto operation
*/
struct mv_cesa_skcipher_std_req {
struct mv_cesa_op_ctx op;
unsigned int offset;
unsigned int size;
bool skip_ctx;
};
/**
* struct mv_cesa_skcipher_req - cipher request
* @req: type specific request information
* @src_nents: number of entries in the src sg list
* @dst_nents: number of entries in the dest sg list
*/
struct mv_cesa_skcipher_req {
struct mv_cesa_req base;
struct mv_cesa_skcipher_std_req std;
int src_nents;
int dst_nents;
};
/**
* struct mv_cesa_ahash_std_req - standard hash request
* @offset: current operation offset
*/
struct mv_cesa_ahash_std_req {
unsigned int offset;
};
/**
* struct mv_cesa_ahash_dma_req - DMA hash request
* @padding: padding buffer
* @padding_dma: DMA address of the padding buffer
* @cache_dma: DMA address of the cache buffer
*/
struct mv_cesa_ahash_dma_req {
u8 *padding;
dma_addr_t padding_dma;
u8 *cache;
dma_addr_t cache_dma;
};
/**
* struct mv_cesa_ahash_req - hash request
* @req: type specific request information
* @cache: cache buffer
* @cache_ptr: write pointer in the cache buffer
* @len: hash total length
* @src_nents: number of entries in the scatterlist
* @last_req: define whether the current operation is the last one
* or not
* @state: hash state
*/
struct mv_cesa_ahash_req {
struct mv_cesa_req base;
union {
struct mv_cesa_ahash_dma_req dma;
struct mv_cesa_ahash_std_req std;
} req;
struct mv_cesa_op_ctx op_tmpl;
u8 cache[CESA_MAX_HASH_BLOCK_SIZE];
unsigned int cache_ptr;
u64 len;
int src_nents;
bool last_req;
bool algo_le;
u32 state[8];
};
/* CESA functions */
extern struct mv_cesa_dev *cesa_dev;
static inline void
mv_cesa_engine_enqueue_complete_request(struct mv_cesa_engine *engine,
struct crypto_async_request *req)
{
list_add_tail(&req->list, &engine->complete_queue);
}
static inline struct crypto_async_request *
mv_cesa_engine_dequeue_complete_request(struct mv_cesa_engine *engine)
{
struct crypto_async_request *req;
req = list_first_entry_or_null(&engine->complete_queue,
struct crypto_async_request,
list);
if (req)
list_del(&req->list);
return req;
}
static inline enum mv_cesa_req_type
mv_cesa_req_get_type(struct mv_cesa_req *req)
{
return req->chain.first ? CESA_DMA_REQ : CESA_STD_REQ;
}
static inline void mv_cesa_update_op_cfg(struct mv_cesa_op_ctx *op,
u32 cfg, u32 mask)
{
op->desc.config &= cpu_to_le32(~mask);
op->desc.config |= cpu_to_le32(cfg);
}
static inline u32 mv_cesa_get_op_cfg(const struct mv_cesa_op_ctx *op)
{
return le32_to_cpu(op->desc.config);
}
static inline void mv_cesa_set_op_cfg(struct mv_cesa_op_ctx *op, u32 cfg)
{
op->desc.config = cpu_to_le32(cfg);
}
static inline void mv_cesa_adjust_op(struct mv_cesa_engine *engine,
struct mv_cesa_op_ctx *op)
{
u32 offset = engine->sram_dma & CESA_SA_SRAM_MSK;
op->desc.enc_p = CESA_SA_DESC_CRYPT_DATA(offset);
op->desc.enc_key_p = CESA_SA_DESC_CRYPT_KEY(offset);
op->desc.enc_iv = CESA_SA_DESC_CRYPT_IV(offset);
op->desc.mac_src_p &= ~CESA_SA_DESC_MAC_DATA_MSK;
op->desc.mac_src_p |= CESA_SA_DESC_MAC_DATA(offset);
op->desc.mac_digest &= ~CESA_SA_DESC_MAC_DIGEST_MSK;
op->desc.mac_digest |= CESA_SA_DESC_MAC_DIGEST(offset);
op->desc.mac_iv = CESA_SA_DESC_MAC_IV(offset);
}
static inline void mv_cesa_set_crypt_op_len(struct mv_cesa_op_ctx *op, int len)
{
op->desc.enc_len = cpu_to_le32(len);
}
static inline void mv_cesa_set_mac_op_total_len(struct mv_cesa_op_ctx *op,
int len)
{
op->desc.mac_src_p &= ~CESA_SA_DESC_MAC_TOTAL_LEN_MSK;
op->desc.mac_src_p |= CESA_SA_DESC_MAC_TOTAL_LEN(len);
}
static inline void mv_cesa_set_mac_op_frag_len(struct mv_cesa_op_ctx *op,
int len)
{
op->desc.mac_digest &= ~CESA_SA_DESC_MAC_FRAG_LEN_MSK;
op->desc.mac_digest |= CESA_SA_DESC_MAC_FRAG_LEN(len);
}
static inline void mv_cesa_set_int_mask(struct mv_cesa_engine *engine,
u32 int_mask)
{
if (int_mask == engine->int_mask)
return;
writel_relaxed(int_mask, engine->regs + CESA_SA_INT_MSK);
engine->int_mask = int_mask;
}
static inline u32 mv_cesa_get_int_mask(struct mv_cesa_engine *engine)
{
return engine->int_mask;
}
static inline bool mv_cesa_mac_op_is_first_frag(const struct mv_cesa_op_ctx *op)
{
return (mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK) ==
CESA_SA_DESC_CFG_FIRST_FRAG;
}
int mv_cesa_queue_req(struct crypto_async_request *req,
struct mv_cesa_req *creq);
struct crypto_async_request *
mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine,
struct crypto_async_request **backlog);
static inline struct mv_cesa_engine *mv_cesa_select_engine(int weight)
{
int i;
u32 min_load = U32_MAX;
struct mv_cesa_engine *selected = NULL;
for (i = 0; i < cesa_dev->caps->nengines; i++) {
struct mv_cesa_engine *engine = cesa_dev->engines + i;
u32 load = atomic_read(&engine->load);
if (load < min_load) {
min_load = load;
selected = engine;
}
}
atomic_add(weight, &selected->load);
return selected;
}
/*
* Helper function that indicates whether a crypto request needs to be
* cleaned up or not after being enqueued using mv_cesa_queue_req().
*/
static inline int mv_cesa_req_needs_cleanup(struct crypto_async_request *req,
int ret)
{
/*
* The queue still had some space, the request was queued
* normally, so there's no need to clean it up.
*/
if (ret == -EINPROGRESS)
return false;
/*
* The queue had not space left, but since the request is
* flagged with CRYPTO_TFM_REQ_MAY_BACKLOG, it was added to
* the backlog and will be processed later. There's no need to
* clean it up.
*/
if (ret == -EBUSY)
return false;
/* Request wasn't queued, we need to clean it up */
return true;
}
/* TDMA functions */
static inline void mv_cesa_req_dma_iter_init(struct mv_cesa_dma_iter *iter,
unsigned int len)
{
iter->len = len;
iter->op_len = min(len, CESA_SA_SRAM_PAYLOAD_SIZE);
iter->offset = 0;
}
static inline void mv_cesa_sg_dma_iter_init(struct mv_cesa_sg_dma_iter *iter,
struct scatterlist *sg,
enum dma_data_direction dir)
{
iter->op_offset = 0;
iter->offset = 0;
iter->sg = sg;
iter->dir = dir;
}
static inline unsigned int
mv_cesa_req_dma_iter_transfer_len(struct mv_cesa_dma_iter *iter,
struct mv_cesa_sg_dma_iter *sgiter)
{
return min(iter->op_len - sgiter->op_offset,
sg_dma_len(sgiter->sg) - sgiter->offset);
}
bool mv_cesa_req_dma_iter_next_transfer(struct mv_cesa_dma_iter *chain,
struct mv_cesa_sg_dma_iter *sgiter,
unsigned int len);
static inline bool mv_cesa_req_dma_iter_next_op(struct mv_cesa_dma_iter *iter)
{
iter->offset += iter->op_len;
iter->op_len = min(iter->len - iter->offset,
CESA_SA_SRAM_PAYLOAD_SIZE);
return iter->op_len;
}
void mv_cesa_dma_step(struct mv_cesa_req *dreq);
static inline int mv_cesa_dma_process(struct mv_cesa_req *dreq,
u32 status)
{
if (!(status & CESA_SA_INT_ACC0_IDMA_DONE))
return -EINPROGRESS;
if (status & CESA_SA_INT_IDMA_OWN_ERR)
return -EINVAL;
return 0;
}
void mv_cesa_dma_prepare(struct mv_cesa_req *dreq,
struct mv_cesa_engine *engine);
void mv_cesa_dma_cleanup(struct mv_cesa_req *dreq);
void mv_cesa_tdma_chain(struct mv_cesa_engine *engine,
struct mv_cesa_req *dreq);
int mv_cesa_tdma_process(struct mv_cesa_engine *engine, u32 status);
static inline void
mv_cesa_tdma_desc_iter_init(struct mv_cesa_tdma_chain *chain)
{
memset(chain, 0, sizeof(*chain));
}
int mv_cesa_dma_add_result_op(struct mv_cesa_tdma_chain *chain, dma_addr_t src,
u32 size, u32 flags, gfp_t gfp_flags);
struct mv_cesa_op_ctx *mv_cesa_dma_add_op(struct mv_cesa_tdma_chain *chain,
const struct mv_cesa_op_ctx *op_templ,
bool skip_ctx,
gfp_t flags);
int mv_cesa_dma_add_data_transfer(struct mv_cesa_tdma_chain *chain,
dma_addr_t dst, dma_addr_t src, u32 size,
u32 flags, gfp_t gfp_flags);
int mv_cesa_dma_add_dummy_launch(struct mv_cesa_tdma_chain *chain, gfp_t flags);
int mv_cesa_dma_add_dummy_end(struct mv_cesa_tdma_chain *chain, gfp_t flags);
int mv_cesa_dma_add_op_transfers(struct mv_cesa_tdma_chain *chain,
struct mv_cesa_dma_iter *dma_iter,
struct mv_cesa_sg_dma_iter *sgiter,
gfp_t gfp_flags);
size_t mv_cesa_sg_copy(struct mv_cesa_engine *engine,
struct scatterlist *sgl, unsigned int nents,
unsigned int sram_off, size_t buflen, off_t skip,
bool to_sram);
static inline size_t mv_cesa_sg_copy_to_sram(struct mv_cesa_engine *engine,
struct scatterlist *sgl,
unsigned int nents,
unsigned int sram_off,
size_t buflen, off_t skip)
{
return mv_cesa_sg_copy(engine, sgl, nents, sram_off, buflen, skip,
true);
}
static inline size_t mv_cesa_sg_copy_from_sram(struct mv_cesa_engine *engine,
struct scatterlist *sgl,
unsigned int nents,
unsigned int sram_off,
size_t buflen, off_t skip)
{
return mv_cesa_sg_copy(engine, sgl, nents, sram_off, buflen, skip,
false);
}
/* Algorithm definitions */
extern struct ahash_alg mv_md5_alg;
extern struct ahash_alg mv_sha1_alg;
extern struct ahash_alg mv_sha256_alg;
extern struct ahash_alg mv_ahmac_md5_alg;
extern struct ahash_alg mv_ahmac_sha1_alg;
extern struct ahash_alg mv_ahmac_sha256_alg;
extern struct skcipher_alg mv_cesa_ecb_des_alg;
extern struct skcipher_alg mv_cesa_cbc_des_alg;
extern struct skcipher_alg mv_cesa_ecb_des3_ede_alg;
extern struct skcipher_alg mv_cesa_cbc_des3_ede_alg;
extern struct skcipher_alg mv_cesa_ecb_aes_alg;
extern struct skcipher_alg mv_cesa_cbc_aes_alg;
#endif /* __MARVELL_CESA_H__ */