mirror of
https://github.com/torvalds/linux.git
synced 2024-12-25 12:21:37 +00:00
9a4029fd34
When setting up the initial pagetable, which includes mappings of all low physical memory, ignore a mapping which tries to set the RW bit on an RO pte. An RO pte indicates a page which is part of the current pagetable, and so it cannot be allowed to become RW. Once xen_pagetable_setup_done is called, set_pte reverts to its normal behaviour. Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com> Acked-by: Chris Wright <chrisw@sous-sol.org> Cc: ebiederm@xmission.com (Eric W. Biederman)
849 lines
20 KiB
C
849 lines
20 KiB
C
/*
|
|
* Core of Xen paravirt_ops implementation.
|
|
*
|
|
* This file contains the xen_paravirt_ops structure itself, and the
|
|
* implementations for:
|
|
* - privileged instructions
|
|
* - interrupt flags
|
|
* - segment operations
|
|
* - booting and setup
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/start_kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include <xen/interface/xen.h>
|
|
#include <xen/interface/physdev.h>
|
|
#include <xen/interface/vcpu.h>
|
|
#include <xen/features.h>
|
|
#include <xen/page.h>
|
|
|
|
#include <asm/paravirt.h>
|
|
#include <asm/page.h>
|
|
#include <asm/xen/hypercall.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
#include "xen-ops.h"
|
|
#include "mmu.h"
|
|
#include "multicalls.h"
|
|
|
|
EXPORT_SYMBOL_GPL(hypercall_page);
|
|
|
|
DEFINE_PER_CPU(enum paravirt_lazy_mode, xen_lazy_mode);
|
|
|
|
DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
|
|
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
|
|
DEFINE_PER_CPU(unsigned long, xen_cr3);
|
|
|
|
struct start_info *xen_start_info;
|
|
EXPORT_SYMBOL_GPL(xen_start_info);
|
|
|
|
static void xen_vcpu_setup(int cpu)
|
|
{
|
|
per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
|
|
}
|
|
|
|
static void __init xen_banner(void)
|
|
{
|
|
printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
|
|
paravirt_ops.name);
|
|
printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic);
|
|
}
|
|
|
|
static void xen_cpuid(unsigned int *eax, unsigned int *ebx,
|
|
unsigned int *ecx, unsigned int *edx)
|
|
{
|
|
unsigned maskedx = ~0;
|
|
|
|
/*
|
|
* Mask out inconvenient features, to try and disable as many
|
|
* unsupported kernel subsystems as possible.
|
|
*/
|
|
if (*eax == 1)
|
|
maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
|
|
(1 << X86_FEATURE_ACPI) | /* disable ACPI */
|
|
(1 << X86_FEATURE_ACC)); /* thermal monitoring */
|
|
|
|
asm(XEN_EMULATE_PREFIX "cpuid"
|
|
: "=a" (*eax),
|
|
"=b" (*ebx),
|
|
"=c" (*ecx),
|
|
"=d" (*edx)
|
|
: "0" (*eax), "2" (*ecx));
|
|
*edx &= maskedx;
|
|
}
|
|
|
|
static void xen_set_debugreg(int reg, unsigned long val)
|
|
{
|
|
HYPERVISOR_set_debugreg(reg, val);
|
|
}
|
|
|
|
static unsigned long xen_get_debugreg(int reg)
|
|
{
|
|
return HYPERVISOR_get_debugreg(reg);
|
|
}
|
|
|
|
static unsigned long xen_save_fl(void)
|
|
{
|
|
struct vcpu_info *vcpu;
|
|
unsigned long flags;
|
|
|
|
preempt_disable();
|
|
vcpu = x86_read_percpu(xen_vcpu);
|
|
/* flag has opposite sense of mask */
|
|
flags = !vcpu->evtchn_upcall_mask;
|
|
preempt_enable();
|
|
|
|
/* convert to IF type flag
|
|
-0 -> 0x00000000
|
|
-1 -> 0xffffffff
|
|
*/
|
|
return (-flags) & X86_EFLAGS_IF;
|
|
}
|
|
|
|
static void xen_restore_fl(unsigned long flags)
|
|
{
|
|
struct vcpu_info *vcpu;
|
|
|
|
preempt_disable();
|
|
|
|
/* convert from IF type flag */
|
|
flags = !(flags & X86_EFLAGS_IF);
|
|
vcpu = x86_read_percpu(xen_vcpu);
|
|
vcpu->evtchn_upcall_mask = flags;
|
|
|
|
if (flags == 0) {
|
|
/* Unmask then check (avoid races). We're only protecting
|
|
against updates by this CPU, so there's no need for
|
|
anything stronger. */
|
|
barrier();
|
|
|
|
if (unlikely(vcpu->evtchn_upcall_pending))
|
|
force_evtchn_callback();
|
|
preempt_enable();
|
|
} else
|
|
preempt_enable_no_resched();
|
|
}
|
|
|
|
static void xen_irq_disable(void)
|
|
{
|
|
struct vcpu_info *vcpu;
|
|
preempt_disable();
|
|
vcpu = x86_read_percpu(xen_vcpu);
|
|
vcpu->evtchn_upcall_mask = 1;
|
|
preempt_enable_no_resched();
|
|
}
|
|
|
|
static void xen_irq_enable(void)
|
|
{
|
|
struct vcpu_info *vcpu;
|
|
|
|
preempt_disable();
|
|
vcpu = x86_read_percpu(xen_vcpu);
|
|
vcpu->evtchn_upcall_mask = 0;
|
|
|
|
/* Unmask then check (avoid races). We're only protecting
|
|
against updates by this CPU, so there's no need for
|
|
anything stronger. */
|
|
barrier();
|
|
|
|
if (unlikely(vcpu->evtchn_upcall_pending))
|
|
force_evtchn_callback();
|
|
preempt_enable();
|
|
}
|
|
|
|
static void xen_safe_halt(void)
|
|
{
|
|
/* Blocking includes an implicit local_irq_enable(). */
|
|
if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0)
|
|
BUG();
|
|
}
|
|
|
|
static void xen_halt(void)
|
|
{
|
|
if (irqs_disabled())
|
|
HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
|
|
else
|
|
xen_safe_halt();
|
|
}
|
|
|
|
static void xen_set_lazy_mode(enum paravirt_lazy_mode mode)
|
|
{
|
|
switch (mode) {
|
|
case PARAVIRT_LAZY_NONE:
|
|
BUG_ON(x86_read_percpu(xen_lazy_mode) == PARAVIRT_LAZY_NONE);
|
|
break;
|
|
|
|
case PARAVIRT_LAZY_MMU:
|
|
case PARAVIRT_LAZY_CPU:
|
|
BUG_ON(x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE);
|
|
break;
|
|
|
|
case PARAVIRT_LAZY_FLUSH:
|
|
/* flush if necessary, but don't change state */
|
|
if (x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE)
|
|
xen_mc_flush();
|
|
return;
|
|
}
|
|
|
|
xen_mc_flush();
|
|
x86_write_percpu(xen_lazy_mode, mode);
|
|
}
|
|
|
|
static unsigned long xen_store_tr(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void xen_set_ldt(const void *addr, unsigned entries)
|
|
{
|
|
unsigned long linear_addr = (unsigned long)addr;
|
|
struct mmuext_op *op;
|
|
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
|
|
|
|
op = mcs.args;
|
|
op->cmd = MMUEXT_SET_LDT;
|
|
if (linear_addr) {
|
|
/* ldt my be vmalloced, use arbitrary_virt_to_machine */
|
|
xmaddr_t maddr;
|
|
maddr = arbitrary_virt_to_machine((unsigned long)addr);
|
|
linear_addr = (unsigned long)maddr.maddr;
|
|
}
|
|
op->arg1.linear_addr = linear_addr;
|
|
op->arg2.nr_ents = entries;
|
|
|
|
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_load_gdt(const struct Xgt_desc_struct *dtr)
|
|
{
|
|
unsigned long *frames;
|
|
unsigned long va = dtr->address;
|
|
unsigned int size = dtr->size + 1;
|
|
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
int f;
|
|
struct multicall_space mcs;
|
|
|
|
/* A GDT can be up to 64k in size, which corresponds to 8192
|
|
8-byte entries, or 16 4k pages.. */
|
|
|
|
BUG_ON(size > 65536);
|
|
BUG_ON(va & ~PAGE_MASK);
|
|
|
|
mcs = xen_mc_entry(sizeof(*frames) * pages);
|
|
frames = mcs.args;
|
|
|
|
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
|
|
frames[f] = virt_to_mfn(va);
|
|
make_lowmem_page_readonly((void *)va);
|
|
}
|
|
|
|
MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void load_TLS_descriptor(struct thread_struct *t,
|
|
unsigned int cpu, unsigned int i)
|
|
{
|
|
struct desc_struct *gdt = get_cpu_gdt_table(cpu);
|
|
xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
|
|
struct multicall_space mc = __xen_mc_entry(0);
|
|
|
|
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
|
|
}
|
|
|
|
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
|
|
{
|
|
xen_mc_batch();
|
|
|
|
load_TLS_descriptor(t, cpu, 0);
|
|
load_TLS_descriptor(t, cpu, 1);
|
|
load_TLS_descriptor(t, cpu, 2);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
|
|
u32 low, u32 high)
|
|
{
|
|
unsigned long lp = (unsigned long)&dt[entrynum];
|
|
xmaddr_t mach_lp = virt_to_machine(lp);
|
|
u64 entry = (u64)high << 32 | low;
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
|
|
BUG();
|
|
}
|
|
|
|
static int cvt_gate_to_trap(int vector, u32 low, u32 high,
|
|
struct trap_info *info)
|
|
{
|
|
u8 type, dpl;
|
|
|
|
type = (high >> 8) & 0x1f;
|
|
dpl = (high >> 13) & 3;
|
|
|
|
if (type != 0xf && type != 0xe)
|
|
return 0;
|
|
|
|
info->vector = vector;
|
|
info->address = (high & 0xffff0000) | (low & 0x0000ffff);
|
|
info->cs = low >> 16;
|
|
info->flags = dpl;
|
|
/* interrupt gates clear IF */
|
|
if (type == 0xe)
|
|
info->flags |= 4;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Locations of each CPU's IDT */
|
|
static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc);
|
|
|
|
/* Set an IDT entry. If the entry is part of the current IDT, then
|
|
also update Xen. */
|
|
static void xen_write_idt_entry(struct desc_struct *dt, int entrynum,
|
|
u32 low, u32 high)
|
|
{
|
|
|
|
int cpu = smp_processor_id();
|
|
unsigned long p = (unsigned long)&dt[entrynum];
|
|
unsigned long start = per_cpu(idt_desc, cpu).address;
|
|
unsigned long end = start + per_cpu(idt_desc, cpu).size + 1;
|
|
|
|
xen_mc_flush();
|
|
|
|
write_dt_entry(dt, entrynum, low, high);
|
|
|
|
if (p >= start && (p + 8) <= end) {
|
|
struct trap_info info[2];
|
|
|
|
info[1].address = 0;
|
|
|
|
if (cvt_gate_to_trap(entrynum, low, high, &info[0]))
|
|
if (HYPERVISOR_set_trap_table(info))
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
|
|
hold a spinlock to protect the static traps[] array (static because
|
|
it avoids allocation, and saves stack space). */
|
|
static void xen_load_idt(const struct Xgt_desc_struct *desc)
|
|
{
|
|
static DEFINE_SPINLOCK(lock);
|
|
static struct trap_info traps[257];
|
|
|
|
int cpu = smp_processor_id();
|
|
unsigned in, out, count;
|
|
|
|
per_cpu(idt_desc, cpu) = *desc;
|
|
|
|
count = (desc->size+1) / 8;
|
|
BUG_ON(count > 256);
|
|
|
|
spin_lock(&lock);
|
|
for (in = out = 0; in < count; in++) {
|
|
const u32 *entry = (u32 *)(desc->address + in * 8);
|
|
|
|
if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out]))
|
|
out++;
|
|
}
|
|
traps[out].address = 0;
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_set_trap_table(traps))
|
|
BUG();
|
|
|
|
spin_unlock(&lock);
|
|
}
|
|
|
|
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
|
|
they're handled differently. */
|
|
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
|
|
u32 low, u32 high)
|
|
{
|
|
switch ((high >> 8) & 0xff) {
|
|
case DESCTYPE_LDT:
|
|
case DESCTYPE_TSS:
|
|
/* ignore */
|
|
break;
|
|
|
|
default: {
|
|
xmaddr_t maddr = virt_to_machine(&dt[entry]);
|
|
u64 desc = (u64)high << 32 | low;
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_update_descriptor(maddr.maddr, desc))
|
|
BUG();
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void xen_load_esp0(struct tss_struct *tss,
|
|
struct thread_struct *thread)
|
|
{
|
|
struct multicall_space mcs = xen_mc_entry(0);
|
|
MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0);
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_set_iopl_mask(unsigned mask)
|
|
{
|
|
struct physdev_set_iopl set_iopl;
|
|
|
|
/* Force the change at ring 0. */
|
|
set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
|
|
HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
|
|
}
|
|
|
|
static void xen_io_delay(void)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
static unsigned long xen_apic_read(unsigned long reg)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void xen_flush_tlb(void)
|
|
{
|
|
struct mmuext_op op;
|
|
|
|
op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
|
|
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
|
|
BUG();
|
|
}
|
|
|
|
static void xen_flush_tlb_single(unsigned long addr)
|
|
{
|
|
struct mmuext_op op;
|
|
|
|
op.cmd = MMUEXT_INVLPG_LOCAL;
|
|
op.arg1.linear_addr = addr & PAGE_MASK;
|
|
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
|
|
BUG();
|
|
}
|
|
|
|
static unsigned long xen_read_cr2(void)
|
|
{
|
|
return x86_read_percpu(xen_vcpu)->arch.cr2;
|
|
}
|
|
|
|
static void xen_write_cr4(unsigned long cr4)
|
|
{
|
|
/* never allow TSC to be disabled */
|
|
native_write_cr4(cr4 & ~X86_CR4_TSD);
|
|
}
|
|
|
|
/*
|
|
* Page-directory addresses above 4GB do not fit into architectural %cr3.
|
|
* When accessing %cr3, or equivalent field in vcpu_guest_context, guests
|
|
* must use the following accessor macros to pack/unpack valid MFNs.
|
|
*
|
|
* Note that Xen is using the fact that the pagetable base is always
|
|
* page-aligned, and putting the 12 MSB of the address into the 12 LSB
|
|
* of cr3.
|
|
*/
|
|
#define xen_pfn_to_cr3(pfn) (((unsigned)(pfn) << 12) | ((unsigned)(pfn) >> 20))
|
|
#define xen_cr3_to_pfn(cr3) (((unsigned)(cr3) >> 12) | ((unsigned)(cr3) << 20))
|
|
|
|
static unsigned long xen_read_cr3(void)
|
|
{
|
|
return x86_read_percpu(xen_cr3);
|
|
}
|
|
|
|
static void xen_write_cr3(unsigned long cr3)
|
|
{
|
|
if (cr3 == x86_read_percpu(xen_cr3)) {
|
|
/* just a simple tlb flush */
|
|
xen_flush_tlb();
|
|
return;
|
|
}
|
|
|
|
x86_write_percpu(xen_cr3, cr3);
|
|
|
|
|
|
{
|
|
struct mmuext_op *op;
|
|
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
|
|
unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3));
|
|
|
|
op = mcs.args;
|
|
op->cmd = MMUEXT_NEW_BASEPTR;
|
|
op->arg1.mfn = mfn;
|
|
|
|
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
}
|
|
|
|
/* Early in boot, while setting up the initial pagetable, assume
|
|
everything is pinned. */
|
|
static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn)
|
|
{
|
|
BUG_ON(mem_map); /* should only be used early */
|
|
make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
|
|
}
|
|
|
|
/* This needs to make sure the new pte page is pinned iff its being
|
|
attached to a pinned pagetable. */
|
|
static void xen_alloc_pt(struct mm_struct *mm, u32 pfn)
|
|
{
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (PagePinned(virt_to_page(mm->pgd))) {
|
|
SetPagePinned(page);
|
|
|
|
if (!PageHighMem(page))
|
|
make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
|
|
else
|
|
/* make sure there are no stray mappings of
|
|
this page */
|
|
kmap_flush_unused();
|
|
}
|
|
}
|
|
|
|
/* This should never happen until we're OK to use struct page */
|
|
static void xen_release_pt(u32 pfn)
|
|
{
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (PagePinned(page)) {
|
|
if (!PageHighMem(page))
|
|
make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
static void *xen_kmap_atomic_pte(struct page *page, enum km_type type)
|
|
{
|
|
pgprot_t prot = PAGE_KERNEL;
|
|
|
|
if (PagePinned(page))
|
|
prot = PAGE_KERNEL_RO;
|
|
|
|
if (0 && PageHighMem(page))
|
|
printk("mapping highpte %lx type %d prot %s\n",
|
|
page_to_pfn(page), type,
|
|
(unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ");
|
|
|
|
return kmap_atomic_prot(page, type, prot);
|
|
}
|
|
#endif
|
|
|
|
static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
|
|
{
|
|
/* If there's an existing pte, then don't allow _PAGE_RW to be set */
|
|
if (pte_val_ma(*ptep) & _PAGE_PRESENT)
|
|
pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
|
|
pte_val_ma(pte));
|
|
|
|
return pte;
|
|
}
|
|
|
|
/* Init-time set_pte while constructing initial pagetables, which
|
|
doesn't allow RO pagetable pages to be remapped RW */
|
|
static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
|
|
{
|
|
pte = mask_rw_pte(ptep, pte);
|
|
|
|
xen_set_pte(ptep, pte);
|
|
}
|
|
|
|
static __init void xen_pagetable_setup_start(pgd_t *base)
|
|
{
|
|
pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base;
|
|
|
|
/* special set_pte for pagetable initialization */
|
|
paravirt_ops.set_pte = xen_set_pte_init;
|
|
|
|
init_mm.pgd = base;
|
|
/*
|
|
* copy top-level of Xen-supplied pagetable into place. For
|
|
* !PAE we can use this as-is, but for PAE it is a stand-in
|
|
* while we copy the pmd pages.
|
|
*/
|
|
memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t));
|
|
|
|
if (PTRS_PER_PMD > 1) {
|
|
int i;
|
|
/*
|
|
* For PAE, need to allocate new pmds, rather than
|
|
* share Xen's, since Xen doesn't like pmd's being
|
|
* shared between address spaces.
|
|
*/
|
|
for (i = 0; i < PTRS_PER_PGD; i++) {
|
|
if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) {
|
|
pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE);
|
|
|
|
memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]),
|
|
PAGE_SIZE);
|
|
|
|
make_lowmem_page_readonly(pmd);
|
|
|
|
set_pgd(&base[i], __pgd(1 + __pa(pmd)));
|
|
} else
|
|
pgd_clear(&base[i]);
|
|
}
|
|
}
|
|
|
|
/* make sure zero_page is mapped RO so we can use it in pagetables */
|
|
make_lowmem_page_readonly(empty_zero_page);
|
|
make_lowmem_page_readonly(base);
|
|
/*
|
|
* Switch to new pagetable. This is done before
|
|
* pagetable_init has done anything so that the new pages
|
|
* added to the table can be prepared properly for Xen.
|
|
*/
|
|
xen_write_cr3(__pa(base));
|
|
}
|
|
|
|
static __init void xen_pagetable_setup_done(pgd_t *base)
|
|
{
|
|
/* This will work as long as patching hasn't happened yet
|
|
(which it hasn't) */
|
|
paravirt_ops.alloc_pt = xen_alloc_pt;
|
|
paravirt_ops.set_pte = xen_set_pte;
|
|
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
|
|
/*
|
|
* Create a mapping for the shared info page.
|
|
* Should be set_fixmap(), but shared_info is a machine
|
|
* address with no corresponding pseudo-phys address.
|
|
*/
|
|
set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP),
|
|
PFN_DOWN(xen_start_info->shared_info),
|
|
PAGE_KERNEL);
|
|
|
|
HYPERVISOR_shared_info =
|
|
(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
|
|
|
|
} else
|
|
HYPERVISOR_shared_info =
|
|
(struct shared_info *)__va(xen_start_info->shared_info);
|
|
|
|
/* Actually pin the pagetable down, but we can't set PG_pinned
|
|
yet because the page structures don't exist yet. */
|
|
{
|
|
struct mmuext_op op;
|
|
#ifdef CONFIG_X86_PAE
|
|
op.cmd = MMUEXT_PIN_L3_TABLE;
|
|
#else
|
|
op.cmd = MMUEXT_PIN_L3_TABLE;
|
|
#endif
|
|
op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(base)));
|
|
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
|
|
BUG();
|
|
}
|
|
|
|
xen_vcpu_setup(smp_processor_id());
|
|
}
|
|
|
|
static const struct paravirt_ops xen_paravirt_ops __initdata = {
|
|
.paravirt_enabled = 1,
|
|
.shared_kernel_pmd = 0,
|
|
|
|
.name = "Xen",
|
|
.banner = xen_banner,
|
|
|
|
.patch = paravirt_patch_default,
|
|
|
|
.memory_setup = xen_memory_setup,
|
|
.arch_setup = xen_arch_setup,
|
|
.init_IRQ = xen_init_IRQ,
|
|
.post_allocator_init = xen_mark_init_mm_pinned,
|
|
|
|
.time_init = xen_time_init,
|
|
.set_wallclock = xen_set_wallclock,
|
|
.get_wallclock = xen_get_wallclock,
|
|
.get_cpu_khz = xen_cpu_khz,
|
|
.sched_clock = xen_clocksource_read,
|
|
|
|
.cpuid = xen_cpuid,
|
|
|
|
.set_debugreg = xen_set_debugreg,
|
|
.get_debugreg = xen_get_debugreg,
|
|
|
|
.clts = native_clts,
|
|
|
|
.read_cr0 = native_read_cr0,
|
|
.write_cr0 = native_write_cr0,
|
|
|
|
.read_cr2 = xen_read_cr2,
|
|
.write_cr2 = native_write_cr2,
|
|
|
|
.read_cr3 = xen_read_cr3,
|
|
.write_cr3 = xen_write_cr3,
|
|
|
|
.read_cr4 = native_read_cr4,
|
|
.read_cr4_safe = native_read_cr4_safe,
|
|
.write_cr4 = xen_write_cr4,
|
|
|
|
.save_fl = xen_save_fl,
|
|
.restore_fl = xen_restore_fl,
|
|
.irq_disable = xen_irq_disable,
|
|
.irq_enable = xen_irq_enable,
|
|
.safe_halt = xen_safe_halt,
|
|
.halt = xen_halt,
|
|
.wbinvd = native_wbinvd,
|
|
|
|
.read_msr = native_read_msr_safe,
|
|
.write_msr = native_write_msr_safe,
|
|
.read_tsc = native_read_tsc,
|
|
.read_pmc = native_read_pmc,
|
|
|
|
.iret = (void *)&hypercall_page[__HYPERVISOR_iret],
|
|
.irq_enable_sysexit = NULL, /* never called */
|
|
|
|
.load_tr_desc = paravirt_nop,
|
|
.set_ldt = xen_set_ldt,
|
|
.load_gdt = xen_load_gdt,
|
|
.load_idt = xen_load_idt,
|
|
.load_tls = xen_load_tls,
|
|
|
|
.store_gdt = native_store_gdt,
|
|
.store_idt = native_store_idt,
|
|
.store_tr = xen_store_tr,
|
|
|
|
.write_ldt_entry = xen_write_ldt_entry,
|
|
.write_gdt_entry = xen_write_gdt_entry,
|
|
.write_idt_entry = xen_write_idt_entry,
|
|
.load_esp0 = xen_load_esp0,
|
|
|
|
.set_iopl_mask = xen_set_iopl_mask,
|
|
.io_delay = xen_io_delay,
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
.apic_write = paravirt_nop,
|
|
.apic_write_atomic = paravirt_nop,
|
|
.apic_read = xen_apic_read,
|
|
.setup_boot_clock = paravirt_nop,
|
|
.setup_secondary_clock = paravirt_nop,
|
|
.startup_ipi_hook = paravirt_nop,
|
|
#endif
|
|
|
|
.flush_tlb_user = xen_flush_tlb,
|
|
.flush_tlb_kernel = xen_flush_tlb,
|
|
.flush_tlb_single = xen_flush_tlb_single,
|
|
|
|
.pte_update = paravirt_nop,
|
|
.pte_update_defer = paravirt_nop,
|
|
|
|
.pagetable_setup_start = xen_pagetable_setup_start,
|
|
.pagetable_setup_done = xen_pagetable_setup_done,
|
|
|
|
.alloc_pt = xen_alloc_pt_init,
|
|
.release_pt = xen_release_pt,
|
|
.alloc_pd = paravirt_nop,
|
|
.alloc_pd_clone = paravirt_nop,
|
|
.release_pd = paravirt_nop,
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
.kmap_atomic_pte = xen_kmap_atomic_pte,
|
|
#endif
|
|
|
|
.set_pte = NULL, /* see xen_pagetable_setup_* */
|
|
.set_pte_at = xen_set_pte_at,
|
|
.set_pmd = xen_set_pmd,
|
|
|
|
.pte_val = xen_pte_val,
|
|
.pgd_val = xen_pgd_val,
|
|
|
|
.make_pte = xen_make_pte,
|
|
.make_pgd = xen_make_pgd,
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
.set_pte_atomic = xen_set_pte_atomic,
|
|
.set_pte_present = xen_set_pte_at,
|
|
.set_pud = xen_set_pud,
|
|
.pte_clear = xen_pte_clear,
|
|
.pmd_clear = xen_pmd_clear,
|
|
|
|
.make_pmd = xen_make_pmd,
|
|
.pmd_val = xen_pmd_val,
|
|
#endif /* PAE */
|
|
|
|
.activate_mm = xen_activate_mm,
|
|
.dup_mmap = xen_dup_mmap,
|
|
.exit_mmap = xen_exit_mmap,
|
|
|
|
.set_lazy_mode = xen_set_lazy_mode,
|
|
};
|
|
|
|
/* First C function to be called on Xen boot */
|
|
asmlinkage void __init xen_start_kernel(void)
|
|
{
|
|
pgd_t *pgd;
|
|
|
|
if (!xen_start_info)
|
|
return;
|
|
|
|
BUG_ON(memcmp(xen_start_info->magic, "xen-3.0", 7) != 0);
|
|
|
|
/* Install Xen paravirt ops */
|
|
paravirt_ops = xen_paravirt_ops;
|
|
|
|
xen_setup_features();
|
|
|
|
/* Get mfn list */
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
|
phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list;
|
|
|
|
pgd = (pgd_t *)xen_start_info->pt_base;
|
|
|
|
init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE;
|
|
|
|
init_mm.pgd = pgd; /* use the Xen pagetables to start */
|
|
|
|
/* keep using Xen gdt for now; no urgent need to change it */
|
|
|
|
x86_write_percpu(xen_cr3, __pa(pgd));
|
|
xen_vcpu_setup(0);
|
|
|
|
paravirt_ops.kernel_rpl = 1;
|
|
if (xen_feature(XENFEAT_supervisor_mode_kernel))
|
|
paravirt_ops.kernel_rpl = 0;
|
|
|
|
/* set the limit of our address space */
|
|
reserve_top_address(-HYPERVISOR_VIRT_START + 2 * PAGE_SIZE);
|
|
|
|
/* set up basic CPUID stuff */
|
|
cpu_detect(&new_cpu_data);
|
|
new_cpu_data.hard_math = 1;
|
|
new_cpu_data.x86_capability[0] = cpuid_edx(1);
|
|
|
|
/* Poke various useful things into boot_params */
|
|
LOADER_TYPE = (9 << 4) | 0;
|
|
INITRD_START = xen_start_info->mod_start ? __pa(xen_start_info->mod_start) : 0;
|
|
INITRD_SIZE = xen_start_info->mod_len;
|
|
|
|
/* Start the world */
|
|
start_kernel();
|
|
}
|