linux/drivers/mtd/nand/mxc_nand.c
Uwe Kleine-König 98ebb52109 mtd: mxc-nand: Warn on unimplemented commands
The PARAM command was long unimplemented and it probably wasn't
noticed because chip probing using only the few bytes returned by the
READID command are good enough in most cases to determine the chip in
use.

Still to notice such a shortcoming earlier in the future would be nice
in case it's something more vital.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2015-03-11 15:20:42 -07:00

1650 lines
43 KiB
C

/*
* Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
* Copyright 2008 Sascha Hauer, kernel@pengutronix.de
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_mtd.h>
#include <asm/mach/flash.h>
#include <linux/platform_data/mtd-mxc_nand.h>
#define DRIVER_NAME "mxc_nand"
/* Addresses for NFC registers */
#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
#define NFC_V1_V2_CONFIG (host->regs + 0x0a)
#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
#define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
#define NFC_V1_V2_WRPROT (host->regs + 0x12)
#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
#define NFC_V1_V2_CONFIG1_BIG (1 << 5)
#define NFC_V1_V2_CONFIG1_RST (1 << 6)
#define NFC_V1_V2_CONFIG1_CE (1 << 7)
#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
#define NFC_V2_CONFIG1_FP_INT (1 << 11)
#define NFC_V1_V2_CONFIG2_INT (1 << 15)
/*
* Operation modes for the NFC. Valid for v1, v2 and v3
* type controllers.
*/
#define NFC_CMD (1 << 0)
#define NFC_ADDR (1 << 1)
#define NFC_INPUT (1 << 2)
#define NFC_OUTPUT (1 << 3)
#define NFC_ID (1 << 4)
#define NFC_STATUS (1 << 5)
#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
#define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
#define NFC_V3_CONFIG1_SP_EN (1 << 0)
#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
#define NFC_V3_LAUNCH (host->regs_axi + 0x40)
#define NFC_V3_WRPROT (host->regs_ip + 0x0)
#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
#define NFC_V3_WRPROT_LOCK (1 << 1)
#define NFC_V3_WRPROT_UNLOCK (1 << 2)
#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
#define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
#define NFC_V3_CONFIG2_PS_512 (0 << 0)
#define NFC_V3_CONFIG2_PS_2048 (1 << 0)
#define NFC_V3_CONFIG2_PS_4096 (2 << 0)
#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
#define NFC_V3_CONFIG2_ECC_EN (1 << 3)
#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
#define NFC_V3_CONFIG2_INT_MSK (1 << 15)
#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
#define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
#define NFC_V3_CONFIG3_FW8 (1 << 3)
#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
#define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
#define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
#define NFC_V3_IPC (host->regs_ip + 0x2C)
#define NFC_V3_IPC_CREQ (1 << 0)
#define NFC_V3_IPC_INT (1 << 31)
#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
struct mxc_nand_host;
struct mxc_nand_devtype_data {
void (*preset)(struct mtd_info *);
void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
void (*send_page)(struct mtd_info *, unsigned int);
void (*send_read_id)(struct mxc_nand_host *);
uint16_t (*get_dev_status)(struct mxc_nand_host *);
int (*check_int)(struct mxc_nand_host *);
void (*irq_control)(struct mxc_nand_host *, int);
u32 (*get_ecc_status)(struct mxc_nand_host *);
struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
void (*select_chip)(struct mtd_info *mtd, int chip);
int (*correct_data)(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc);
/*
* On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
* (CONFIG1:INT_MSK is set). To handle this the driver uses
* enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
*/
int irqpending_quirk;
int needs_ip;
size_t regs_offset;
size_t spare0_offset;
size_t axi_offset;
int spare_len;
int eccbytes;
int eccsize;
int ppb_shift;
};
struct mxc_nand_host {
struct mtd_info mtd;
struct nand_chip nand;
struct device *dev;
void __iomem *spare0;
void __iomem *main_area0;
void __iomem *base;
void __iomem *regs;
void __iomem *regs_axi;
void __iomem *regs_ip;
int status_request;
struct clk *clk;
int clk_act;
int irq;
int eccsize;
int active_cs;
struct completion op_completion;
uint8_t *data_buf;
unsigned int buf_start;
const struct mxc_nand_devtype_data *devtype_data;
struct mxc_nand_platform_data pdata;
};
/* OOB placement block for use with hardware ecc generation */
static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {12, 4}, }
};
static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
.eccbytes = 20,
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
};
/* OOB description for 512 byte pages with 16 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
.eccbytes = 1 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15
},
.oobfree = {
{.offset = 0, .length = 5}
}
};
/* OOB description for 2048 byte pages with 64 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
.eccbytes = 4 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15,
23, 24, 25, 26, 27, 28, 29, 30, 31,
39, 40, 41, 42, 43, 44, 45, 46, 47,
55, 56, 57, 58, 59, 60, 61, 62, 63
},
.oobfree = {
{.offset = 2, .length = 4},
{.offset = 16, .length = 7},
{.offset = 32, .length = 7},
{.offset = 48, .length = 7}
}
};
/* OOB description for 4096 byte pages with 128 byte OOB */
static struct nand_ecclayout nandv2_hw_eccoob_4k = {
.eccbytes = 8 * 9,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15,
23, 24, 25, 26, 27, 28, 29, 30, 31,
39, 40, 41, 42, 43, 44, 45, 46, 47,
55, 56, 57, 58, 59, 60, 61, 62, 63,
71, 72, 73, 74, 75, 76, 77, 78, 79,
87, 88, 89, 90, 91, 92, 93, 94, 95,
103, 104, 105, 106, 107, 108, 109, 110, 111,
119, 120, 121, 122, 123, 124, 125, 126, 127,
},
.oobfree = {
{.offset = 2, .length = 4},
{.offset = 16, .length = 7},
{.offset = 32, .length = 7},
{.offset = 48, .length = 7},
{.offset = 64, .length = 7},
{.offset = 80, .length = 7},
{.offset = 96, .length = 7},
{.offset = 112, .length = 7},
}
};
static const char * const part_probes[] = {
"cmdlinepart", "RedBoot", "ofpart", NULL };
static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
{
int i;
u32 *t = trg;
const __iomem u32 *s = src;
for (i = 0; i < (size >> 2); i++)
*t++ = __raw_readl(s++);
}
static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
{
/* __iowrite32_copy use 32bit size values so divide by 4 */
__iowrite32_copy(trg, src, size / 4);
}
static int check_int_v3(struct mxc_nand_host *host)
{
uint32_t tmp;
tmp = readl(NFC_V3_IPC);
if (!(tmp & NFC_V3_IPC_INT))
return 0;
tmp &= ~NFC_V3_IPC_INT;
writel(tmp, NFC_V3_IPC);
return 1;
}
static int check_int_v1_v2(struct mxc_nand_host *host)
{
uint32_t tmp;
tmp = readw(NFC_V1_V2_CONFIG2);
if (!(tmp & NFC_V1_V2_CONFIG2_INT))
return 0;
if (!host->devtype_data->irqpending_quirk)
writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
return 1;
}
static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
{
uint16_t tmp;
tmp = readw(NFC_V1_V2_CONFIG1);
if (activate)
tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
else
tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
writew(tmp, NFC_V1_V2_CONFIG1);
}
static void irq_control_v3(struct mxc_nand_host *host, int activate)
{
uint32_t tmp;
tmp = readl(NFC_V3_CONFIG2);
if (activate)
tmp &= ~NFC_V3_CONFIG2_INT_MSK;
else
tmp |= NFC_V3_CONFIG2_INT_MSK;
writel(tmp, NFC_V3_CONFIG2);
}
static void irq_control(struct mxc_nand_host *host, int activate)
{
if (host->devtype_data->irqpending_quirk) {
if (activate)
enable_irq(host->irq);
else
disable_irq_nosync(host->irq);
} else {
host->devtype_data->irq_control(host, activate);
}
}
static u32 get_ecc_status_v1(struct mxc_nand_host *host)
{
return readw(NFC_V1_V2_ECC_STATUS_RESULT);
}
static u32 get_ecc_status_v2(struct mxc_nand_host *host)
{
return readl(NFC_V1_V2_ECC_STATUS_RESULT);
}
static u32 get_ecc_status_v3(struct mxc_nand_host *host)
{
return readl(NFC_V3_ECC_STATUS_RESULT);
}
static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
{
struct mxc_nand_host *host = dev_id;
if (!host->devtype_data->check_int(host))
return IRQ_NONE;
irq_control(host, 0);
complete(&host->op_completion);
return IRQ_HANDLED;
}
/* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register.
*/
static int wait_op_done(struct mxc_nand_host *host, int useirq)
{
int ret = 0;
/*
* If operation is already complete, don't bother to setup an irq or a
* loop.
*/
if (host->devtype_data->check_int(host))
return 0;
if (useirq) {
unsigned long timeout;
reinit_completion(&host->op_completion);
irq_control(host, 1);
timeout = wait_for_completion_timeout(&host->op_completion, HZ);
if (!timeout && !host->devtype_data->check_int(host)) {
dev_dbg(host->dev, "timeout waiting for irq\n");
ret = -ETIMEDOUT;
}
} else {
int max_retries = 8000;
int done;
do {
udelay(1);
done = host->devtype_data->check_int(host);
if (done)
break;
} while (--max_retries);
if (!done) {
dev_dbg(host->dev, "timeout polling for completion\n");
ret = -ETIMEDOUT;
}
}
WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
return ret;
}
static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
/* fill command */
writel(cmd, NFC_V3_FLASH_CMD);
/* send out command */
writel(NFC_CMD, NFC_V3_LAUNCH);
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
/* This function issues the specified command to the NAND device and
* waits for completion. */
static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
{
pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
writew(cmd, NFC_V1_V2_FLASH_CMD);
writew(NFC_CMD, NFC_V1_V2_CONFIG2);
if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
int max_retries = 100;
/* Reset completion is indicated by NFC_CONFIG2 */
/* being set to 0 */
while (max_retries-- > 0) {
if (readw(NFC_V1_V2_CONFIG2) == 0) {
break;
}
udelay(1);
}
if (max_retries < 0)
pr_debug("%s: RESET failed\n", __func__);
} else {
/* Wait for operation to complete */
wait_op_done(host, useirq);
}
}
static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
{
/* fill address */
writel(addr, NFC_V3_FLASH_ADDR0);
/* send out address */
writel(NFC_ADDR, NFC_V3_LAUNCH);
wait_op_done(host, 0);
}
/* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command. */
static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
{
pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
writew(addr, NFC_V1_V2_FLASH_ADDR);
writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, islast);
}
static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint32_t tmp;
tmp = readl(NFC_V3_CONFIG1);
tmp &= ~(7 << 4);
writel(tmp, NFC_V3_CONFIG1);
/* transfer data from NFC ram to nand */
writel(ops, NFC_V3_LAUNCH);
wait_op_done(host, false);
}
static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/* NANDFC buffer 0 is used for page read/write */
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
writew(ops, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
}
static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
int bufs, i;
if (mtd->writesize > 512)
bufs = 4;
else
bufs = 1;
for (i = 0; i < bufs; i++) {
/* NANDFC buffer 0 is used for page read/write */
writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
writew(ops, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
}
}
static void send_read_id_v3(struct mxc_nand_host *host)
{
/* Read ID into main buffer */
writel(NFC_ID, NFC_V3_LAUNCH);
wait_op_done(host, true);
memcpy32_fromio(host->data_buf, host->main_area0, 16);
}
/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id_v1_v2(struct mxc_nand_host *host)
{
/* NANDFC buffer 0 is used for device ID output */
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
writew(NFC_ID, NFC_V1_V2_CONFIG2);
/* Wait for operation to complete */
wait_op_done(host, true);
memcpy32_fromio(host->data_buf, host->main_area0, 16);
}
static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
{
writew(NFC_STATUS, NFC_V3_LAUNCH);
wait_op_done(host, true);
return readl(NFC_V3_CONFIG1) >> 16;
}
/* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status. */
static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
{
void __iomem *main_buf = host->main_area0;
uint32_t store;
uint16_t ret;
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
/*
* The device status is stored in main_area0. To
* prevent corruption of the buffer save the value
* and restore it afterwards.
*/
store = readl(main_buf);
writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
wait_op_done(host, true);
ret = readw(main_buf);
writel(store, main_buf);
return ret;
}
/* This functions is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles R/B internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
uint16_t ecc_status = get_ecc_status_v1(host);
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -1;
}
return 0;
}
static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
u32 ecc_stat, err;
int no_subpages = 1;
int ret = 0;
u8 ecc_bit_mask, err_limit;
ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
no_subpages = mtd->writesize >> 9;
ecc_stat = host->devtype_data->get_ecc_status(host);
do {
err = ecc_stat & ecc_bit_mask;
if (err > err_limit) {
printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
return -1;
} else {
ret += err;
}
ecc_stat >>= 4;
} while (--no_subpages);
pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
return ret;
}
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
{
return 0;
}
static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint8_t ret;
/* Check for status request */
if (host->status_request)
return host->devtype_data->get_dev_status(host) & 0xFF;
if (nand_chip->options & NAND_BUSWIDTH_16) {
/* only take the lower byte of each word */
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
} else {
ret = *(uint8_t *)(host->data_buf + host->buf_start);
host->buf_start++;
}
pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
return ret;
}
static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t ret;
ret = *(uint16_t *)(host->data_buf + host->buf_start);
host->buf_start += 2;
return ret;
}
/* Write data of length len to buffer buf. The data to be
* written on NAND Flash is first copied to RAMbuffer. After the Data Input
* Operation by the NFC, the data is written to NAND Flash */
static void mxc_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(host->data_buf + col, buf, n);
host->buf_start += n;
}
/* Read the data buffer from the NAND Flash. To read the data from NAND
* Flash first the data output cycle is initiated by the NFC, which copies
* the data to RAMbuffer. This data of length len is then copied to buffer buf.
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
u16 col = host->buf_start;
int n = mtd->oobsize + mtd->writesize - col;
n = min(n, len);
memcpy(buf, host->data_buf + col, n);
host->buf_start += n;
}
/* This function is used by upper layer for select and
* deselect of the NAND chip */
static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
if (chip == -1) {
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable_unprepare(host->clk);
host->clk_act = 0;
}
return;
}
if (!host->clk_act) {
/* Enable the NFC clock */
clk_prepare_enable(host->clk);
host->clk_act = 1;
}
}
static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
if (chip == -1) {
/* Disable the NFC clock */
if (host->clk_act) {
clk_disable_unprepare(host->clk);
host->clk_act = 0;
}
return;
}
if (!host->clk_act) {
/* Enable the NFC clock */
clk_prepare_enable(host->clk);
host->clk_act = 1;
}
host->active_cs = chip;
writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
}
/*
* Function to transfer data to/from spare area.
*/
static void copy_spare(struct mtd_info *mtd, bool bfrom)
{
struct nand_chip *this = mtd->priv;
struct mxc_nand_host *host = this->priv;
u16 i, j;
u16 n = mtd->writesize >> 9;
u8 *d = host->data_buf + mtd->writesize;
u8 __iomem *s = host->spare0;
u16 t = host->devtype_data->spare_len;
j = (mtd->oobsize / n >> 1) << 1;
if (bfrom) {
for (i = 0; i < n - 1; i++)
memcpy32_fromio(d + i * j, s + i * t, j);
/* the last section */
memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
} else {
for (i = 0; i < n - 1; i++)
memcpy32_toio(&s[i * t], &d[i * j], j);
/* the last section */
memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
}
}
/*
* MXC NANDFC can only perform full page+spare or spare-only read/write. When
* the upper layers perform a read/write buf operation, the saved column address
* is used to index into the full page. So usually this function is called with
* column == 0 (unless no column cycle is needed indicated by column == -1)
*/
static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
/* Write out column address, if necessary */
if (column != -1) {
host->devtype_data->send_addr(host, column & 0xff,
page_addr == -1);
if (mtd->writesize > 512)
/* another col addr cycle for 2k page */
host->devtype_data->send_addr(host,
(column >> 8) & 0xff,
false);
}
/* Write out page address, if necessary */
if (page_addr != -1) {
/* paddr_0 - p_addr_7 */
host->devtype_data->send_addr(host, (page_addr & 0xff), false);
if (mtd->writesize > 512) {
if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff,
false);
host->devtype_data->send_addr(host,
(page_addr >> 16) & 0xff,
true);
} else
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff, true);
} else {
/* One more address cycle for higher density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff,
false);
host->devtype_data->send_addr(host,
(page_addr >> 16) & 0xff,
true);
} else
/* paddr_8 - paddr_15 */
host->devtype_data->send_addr(host,
(page_addr >> 8) & 0xff, true);
}
}
}
/*
* v2 and v3 type controllers can do 4bit or 8bit ecc depending
* on how much oob the nand chip has. For 8bit ecc we need at least
* 26 bytes of oob data per 512 byte block.
*/
static int get_eccsize(struct mtd_info *mtd)
{
int oobbytes_per_512 = 0;
oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
if (oobbytes_per_512 < 26)
return 4;
else
return 8;
}
static void preset_v1(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t config1 = 0;
if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
if (!host->devtype_data->irqpending_quirk)
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
host->eccsize = 1;
writew(config1, NFC_V1_V2_CONFIG1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, NFC_V1_V2_CONFIG);
/* Blocks to be unlocked */
writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
/* Unlock Block Command for given address range */
writew(0x4, NFC_V1_V2_WRPROT);
}
static void preset_v2(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t config1 = 0;
config1 |= NFC_V2_CONFIG1_FP_INT;
if (!host->devtype_data->irqpending_quirk)
config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
if (mtd->writesize) {
uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
if (nand_chip->ecc.mode == NAND_ECC_HW)
config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
host->eccsize = get_eccsize(mtd);
if (host->eccsize == 4)
config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
} else {
host->eccsize = 1;
}
writew(config1, NFC_V1_V2_CONFIG1);
/* preset operation */
/* Unlock the internal RAM Buffer */
writew(0x2, NFC_V1_V2_CONFIG);
/* Blocks to be unlocked */
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
/* Unlock Block Command for given address range */
writew(0x4, NFC_V1_V2_WRPROT);
}
static void preset_v3(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct mxc_nand_host *host = chip->priv;
uint32_t config2, config3;
int i, addr_phases;
writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
/* Unlock the internal RAM Buffer */
writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
NFC_V3_WRPROT);
/* Blocks to be unlocked */
for (i = 0; i < NAND_MAX_CHIPS; i++)
writel(0x0 | (0xffff << 16),
NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
writel(0, NFC_V3_IPC);
config2 = NFC_V3_CONFIG2_ONE_CYCLE |
NFC_V3_CONFIG2_2CMD_PHASES |
NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
NFC_V3_CONFIG2_ST_CMD(0x70) |
NFC_V3_CONFIG2_INT_MSK |
NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
addr_phases = fls(chip->pagemask) >> 3;
if (mtd->writesize == 2048) {
config2 |= NFC_V3_CONFIG2_PS_2048;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
} else if (mtd->writesize == 4096) {
config2 |= NFC_V3_CONFIG2_PS_4096;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
} else {
config2 |= NFC_V3_CONFIG2_PS_512;
config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
}
if (mtd->writesize) {
if (chip->ecc.mode == NAND_ECC_HW)
config2 |= NFC_V3_CONFIG2_ECC_EN;
config2 |= NFC_V3_CONFIG2_PPB(
ffs(mtd->erasesize / mtd->writesize) - 6,
host->devtype_data->ppb_shift);
host->eccsize = get_eccsize(mtd);
if (host->eccsize == 8)
config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
}
writel(config2, NFC_V3_CONFIG2);
config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
NFC_V3_CONFIG3_NO_SDMA |
NFC_V3_CONFIG3_RBB_MODE |
NFC_V3_CONFIG3_SBB(6) | /* Reset default */
NFC_V3_CONFIG3_ADD_OP(0);
if (!(chip->options & NAND_BUSWIDTH_16))
config3 |= NFC_V3_CONFIG3_FW8;
writel(config3, NFC_V3_CONFIG3);
writel(0, NFC_V3_DELAY_LINE);
}
/* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash */
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
host->status_request = false;
/* Command pre-processing step */
switch (command) {
case NAND_CMD_RESET:
host->devtype_data->preset(mtd);
host->devtype_data->send_cmd(host, command, false);
break;
case NAND_CMD_STATUS:
host->buf_start = 0;
host->status_request = true;
host->devtype_data->send_cmd(host, command, true);
WARN_ONCE(column != -1 || page_addr != -1,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
if (command == NAND_CMD_READ0)
host->buf_start = column;
else
host->buf_start = column + mtd->writesize;
command = NAND_CMD_READ0; /* only READ0 is valid */
host->devtype_data->send_cmd(host, command, false);
WARN_ONCE(column < 0,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, 0, page_addr);
if (mtd->writesize > 512)
host->devtype_data->send_cmd(host,
NAND_CMD_READSTART, true);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
memcpy32_fromio(host->data_buf, host->main_area0,
mtd->writesize);
copy_spare(mtd, true);
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize)
/* call ourself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
host->buf_start = column;
host->devtype_data->send_cmd(host, command, false);
WARN_ONCE(column < -1,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, 0, page_addr);
break;
case NAND_CMD_PAGEPROG:
memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
copy_spare(mtd, false);
host->devtype_data->send_page(mtd, NFC_INPUT);
host->devtype_data->send_cmd(host, command, true);
WARN_ONCE(column != -1 || page_addr != -1,
"Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
command, column, page_addr);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_READID:
host->devtype_data->send_cmd(host, command, true);
mxc_do_addr_cycle(mtd, column, page_addr);
host->devtype_data->send_read_id(host);
host->buf_start = 0;
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
host->devtype_data->send_cmd(host, command, false);
WARN_ONCE(column != -1,
"Unexpected column value (cmd=%u, col=%d)\n",
command, column);
mxc_do_addr_cycle(mtd, column, page_addr);
break;
case NAND_CMD_PARAM:
host->devtype_data->send_cmd(host, command, false);
mxc_do_addr_cycle(mtd, column, page_addr);
host->devtype_data->send_page(mtd, NFC_OUTPUT);
memcpy32_fromio(host->data_buf, host->main_area0, 512);
host->buf_start = 0;
break;
default:
WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
command);
break;
}
}
/*
* The generic flash bbt decriptors overlap with our ecc
* hardware, so define some i.MX specific ones.
*/
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/* v1 + irqpending_quirk: i.MX21 */
static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
.preset = preset_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v1,
.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
.ecclayout_2k = &nandv1_hw_eccoob_largepage,
.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
.select_chip = mxc_nand_select_chip_v1_v3,
.correct_data = mxc_nand_correct_data_v1,
.irqpending_quirk = 1,
.needs_ip = 0,
.regs_offset = 0xe00,
.spare0_offset = 0x800,
.spare_len = 16,
.eccbytes = 3,
.eccsize = 1,
};
/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
.preset = preset_v1,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v1,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v1,
.ecclayout_512 = &nandv1_hw_eccoob_smallpage,
.ecclayout_2k = &nandv1_hw_eccoob_largepage,
.ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
.select_chip = mxc_nand_select_chip_v1_v3,
.correct_data = mxc_nand_correct_data_v1,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0xe00,
.spare0_offset = 0x800,
.axi_offset = 0,
.spare_len = 16,
.eccbytes = 3,
.eccsize = 1,
};
/* v21: i.MX25, i.MX35 */
static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
.preset = preset_v2,
.send_cmd = send_cmd_v1_v2,
.send_addr = send_addr_v1_v2,
.send_page = send_page_v2,
.send_read_id = send_read_id_v1_v2,
.get_dev_status = get_dev_status_v1_v2,
.check_int = check_int_v1_v2,
.irq_control = irq_control_v1_v2,
.get_ecc_status = get_ecc_status_v2,
.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
.ecclayout_2k = &nandv2_hw_eccoob_largepage,
.ecclayout_4k = &nandv2_hw_eccoob_4k,
.select_chip = mxc_nand_select_chip_v2,
.correct_data = mxc_nand_correct_data_v2_v3,
.irqpending_quirk = 0,
.needs_ip = 0,
.regs_offset = 0x1e00,
.spare0_offset = 0x1000,
.axi_offset = 0,
.spare_len = 64,
.eccbytes = 9,
.eccsize = 0,
};
/* v3.2a: i.MX51 */
static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
.preset = preset_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
.send_read_id = send_read_id_v3,
.get_dev_status = get_dev_status_v3,
.check_int = check_int_v3,
.irq_control = irq_control_v3,
.get_ecc_status = get_ecc_status_v3,
.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
.ecclayout_2k = &nandv2_hw_eccoob_largepage,
.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
.select_chip = mxc_nand_select_chip_v1_v3,
.correct_data = mxc_nand_correct_data_v2_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
.spare0_offset = 0x1000,
.axi_offset = 0x1e00,
.spare_len = 64,
.eccbytes = 0,
.eccsize = 0,
.ppb_shift = 7,
};
/* v3.2b: i.MX53 */
static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
.preset = preset_v3,
.send_cmd = send_cmd_v3,
.send_addr = send_addr_v3,
.send_page = send_page_v3,
.send_read_id = send_read_id_v3,
.get_dev_status = get_dev_status_v3,
.check_int = check_int_v3,
.irq_control = irq_control_v3,
.get_ecc_status = get_ecc_status_v3,
.ecclayout_512 = &nandv2_hw_eccoob_smallpage,
.ecclayout_2k = &nandv2_hw_eccoob_largepage,
.ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
.select_chip = mxc_nand_select_chip_v1_v3,
.correct_data = mxc_nand_correct_data_v2_v3,
.irqpending_quirk = 0,
.needs_ip = 1,
.regs_offset = 0,
.spare0_offset = 0x1000,
.axi_offset = 0x1e00,
.spare_len = 64,
.eccbytes = 0,
.eccsize = 0,
.ppb_shift = 8,
};
static inline int is_imx21_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx21_nand_devtype_data;
}
static inline int is_imx27_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx27_nand_devtype_data;
}
static inline int is_imx25_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx25_nand_devtype_data;
}
static inline int is_imx51_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx51_nand_devtype_data;
}
static inline int is_imx53_nfc(struct mxc_nand_host *host)
{
return host->devtype_data == &imx53_nand_devtype_data;
}
static struct platform_device_id mxcnd_devtype[] = {
{
.name = "imx21-nand",
.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
}, {
.name = "imx27-nand",
.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
}, {
.name = "imx25-nand",
.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
}, {
.name = "imx51-nand",
.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
}, {
.name = "imx53-nand",
.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
#ifdef CONFIG_OF_MTD
static const struct of_device_id mxcnd_dt_ids[] = {
{
.compatible = "fsl,imx21-nand",
.data = &imx21_nand_devtype_data,
}, {
.compatible = "fsl,imx27-nand",
.data = &imx27_nand_devtype_data,
}, {
.compatible = "fsl,imx25-nand",
.data = &imx25_nand_devtype_data,
}, {
.compatible = "fsl,imx51-nand",
.data = &imx51_nand_devtype_data,
}, {
.compatible = "fsl,imx53-nand",
.data = &imx53_nand_devtype_data,
},
{ /* sentinel */ }
};
static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
{
struct device_node *np = host->dev->of_node;
struct mxc_nand_platform_data *pdata = &host->pdata;
const struct of_device_id *of_id =
of_match_device(mxcnd_dt_ids, host->dev);
int buswidth;
if (!np)
return 1;
if (of_get_nand_ecc_mode(np) >= 0)
pdata->hw_ecc = 1;
pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
buswidth = of_get_nand_bus_width(np);
if (buswidth < 0)
return buswidth;
pdata->width = buswidth / 8;
host->devtype_data = of_id->data;
return 0;
}
#else
static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
{
return 1;
}
#endif
static int mxcnd_probe(struct platform_device *pdev)
{
struct nand_chip *this;
struct mtd_info *mtd;
struct mxc_nand_host *host;
struct resource *res;
int err = 0;
/* Allocate memory for MTD device structure and private data */
host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
GFP_KERNEL);
if (!host)
return -ENOMEM;
/* allocate a temporary buffer for the nand_scan_ident() */
host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
if (!host->data_buf)
return -ENOMEM;
host->dev = &pdev->dev;
/* structures must be linked */
this = &host->nand;
mtd = &host->mtd;
mtd->priv = this;
mtd->owner = THIS_MODULE;
mtd->dev.parent = &pdev->dev;
mtd->name = DRIVER_NAME;
/* 50 us command delay time */
this->chip_delay = 5;
this->priv = host;
this->dev_ready = mxc_nand_dev_ready;
this->cmdfunc = mxc_nand_command;
this->read_byte = mxc_nand_read_byte;
this->read_word = mxc_nand_read_word;
this->write_buf = mxc_nand_write_buf;
this->read_buf = mxc_nand_read_buf;
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk))
return PTR_ERR(host->clk);
err = mxcnd_probe_dt(host);
if (err > 0) {
struct mxc_nand_platform_data *pdata =
dev_get_platdata(&pdev->dev);
if (pdata) {
host->pdata = *pdata;
host->devtype_data = (struct mxc_nand_devtype_data *)
pdev->id_entry->driver_data;
} else {
err = -ENODEV;
}
}
if (err < 0)
return err;
if (host->devtype_data->needs_ip) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->regs_ip))
return PTR_ERR(host->regs_ip);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
}
host->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->base))
return PTR_ERR(host->base);
host->main_area0 = host->base;
if (host->devtype_data->regs_offset)
host->regs = host->base + host->devtype_data->regs_offset;
host->spare0 = host->base + host->devtype_data->spare0_offset;
if (host->devtype_data->axi_offset)
host->regs_axi = host->base + host->devtype_data->axi_offset;
this->ecc.bytes = host->devtype_data->eccbytes;
host->eccsize = host->devtype_data->eccsize;
this->select_chip = host->devtype_data->select_chip;
this->ecc.size = 512;
this->ecc.layout = host->devtype_data->ecclayout_512;
if (host->pdata.hw_ecc) {
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = host->devtype_data->correct_data;
this->ecc.mode = NAND_ECC_HW;
} else {
this->ecc.mode = NAND_ECC_SOFT;
}
/* NAND bus width determines access functions used by upper layer */
if (host->pdata.width == 2)
this->options |= NAND_BUSWIDTH_16;
if (host->pdata.flash_bbt) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
/* update flash based bbt */
this->bbt_options |= NAND_BBT_USE_FLASH;
}
init_completion(&host->op_completion);
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0)
return host->irq;
/*
* Use host->devtype_data->irq_control() here instead of irq_control()
* because we must not disable_irq_nosync without having requested the
* irq.
*/
host->devtype_data->irq_control(host, 0);
err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
0, DRIVER_NAME, host);
if (err)
return err;
err = clk_prepare_enable(host->clk);
if (err)
return err;
host->clk_act = 1;
/*
* Now that we "own" the interrupt make sure the interrupt mask bit is
* cleared on i.MX21. Otherwise we can't read the interrupt status bit
* on this machine.
*/
if (host->devtype_data->irqpending_quirk) {
disable_irq_nosync(host->irq);
host->devtype_data->irq_control(host, 1);
}
/* first scan to find the device and get the page size */
if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
err = -ENXIO;
goto escan;
}
/* allocate the right size buffer now */
devm_kfree(&pdev->dev, (void *)host->data_buf);
host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
GFP_KERNEL);
if (!host->data_buf) {
err = -ENOMEM;
goto escan;
}
/* Call preset again, with correct writesize this time */
host->devtype_data->preset(mtd);
if (mtd->writesize == 2048)
this->ecc.layout = host->devtype_data->ecclayout_2k;
else if (mtd->writesize == 4096)
this->ecc.layout = host->devtype_data->ecclayout_4k;
if (this->ecc.mode == NAND_ECC_HW) {
if (is_imx21_nfc(host) || is_imx27_nfc(host))
this->ecc.strength = 1;
else
this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
}
/* second phase scan */
if (nand_scan_tail(mtd)) {
err = -ENXIO;
goto escan;
}
/* Register the partitions */
mtd_device_parse_register(mtd, part_probes,
&(struct mtd_part_parser_data){
.of_node = pdev->dev.of_node,
},
host->pdata.parts,
host->pdata.nr_parts);
platform_set_drvdata(pdev, host);
return 0;
escan:
if (host->clk_act)
clk_disable_unprepare(host->clk);
return err;
}
static int mxcnd_remove(struct platform_device *pdev)
{
struct mxc_nand_host *host = platform_get_drvdata(pdev);
nand_release(&host->mtd);
if (host->clk_act)
clk_disable_unprepare(host->clk);
return 0;
}
static struct platform_driver mxcnd_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(mxcnd_dt_ids),
},
.id_table = mxcnd_devtype,
.probe = mxcnd_probe,
.remove = mxcnd_remove,
};
module_platform_driver(mxcnd_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MXC NAND MTD driver");
MODULE_LICENSE("GPL");