mirror of
https://github.com/torvalds/linux.git
synced 2024-12-11 05:33:09 +00:00
97e86631bc
In196d59ab9c
"btrfs: switch extent buffer tree lock to rw_semaphore" the functions for tree read locking were rewritten, and in the process the read lock functions started setting eb->lock_owner = current->pid. Previously lock_owner was only set in tree write lock functions. Read locks are shared, so they don't have exclusive ownership of the underlying object, so setting lock_owner to any single value for a read lock makes no sense. It's mostly harmless because write locks and read locks are mutually exclusive, and none of the existing code in btrfs (btrfs_init_new_buffer and print_eb_refs_lock) cares what nonsense is written in lock_owner when no writer is holding the lock. KCSAN does care, and will complain about the data race incessantly. Remove the assignments in the read lock functions because they're useless noise. Fixes:196d59ab9c
("btrfs: switch extent buffer tree lock to rw_semaphore") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Signed-off-by: David Sterba <dsterba@suse.com>
289 lines
6.6 KiB
C
289 lines
6.6 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2008 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/page-flags.h>
|
|
#include <asm/bug.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "extent_io.h"
|
|
#include "locking.h"
|
|
|
|
/*
|
|
* Extent buffer locking
|
|
* =====================
|
|
*
|
|
* We use a rw_semaphore for tree locking, and the semantics are exactly the
|
|
* same:
|
|
*
|
|
* - reader/writer exclusion
|
|
* - writer/writer exclusion
|
|
* - reader/reader sharing
|
|
* - try-lock semantics for readers and writers
|
|
*
|
|
* The rwsem implementation does opportunistic spinning which reduces number of
|
|
* times the locking task needs to sleep.
|
|
*/
|
|
|
|
/*
|
|
* __btrfs_tree_read_lock - lock extent buffer for read
|
|
* @eb: the eb to be locked
|
|
* @nest: the nesting level to be used for lockdep
|
|
*
|
|
* This takes the read lock on the extent buffer, using the specified nesting
|
|
* level for lockdep purposes.
|
|
*/
|
|
void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
|
|
{
|
|
u64 start_ns = 0;
|
|
|
|
if (trace_btrfs_tree_read_lock_enabled())
|
|
start_ns = ktime_get_ns();
|
|
|
|
down_read_nested(&eb->lock, nest);
|
|
trace_btrfs_tree_read_lock(eb, start_ns);
|
|
}
|
|
|
|
void btrfs_tree_read_lock(struct extent_buffer *eb)
|
|
{
|
|
__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
|
|
}
|
|
|
|
/*
|
|
* Try-lock for read.
|
|
*
|
|
* Return 1 if the rwlock has been taken, 0 otherwise
|
|
*/
|
|
int btrfs_try_tree_read_lock(struct extent_buffer *eb)
|
|
{
|
|
if (down_read_trylock(&eb->lock)) {
|
|
trace_btrfs_try_tree_read_lock(eb);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try-lock for write.
|
|
*
|
|
* Return 1 if the rwlock has been taken, 0 otherwise
|
|
*/
|
|
int btrfs_try_tree_write_lock(struct extent_buffer *eb)
|
|
{
|
|
if (down_write_trylock(&eb->lock)) {
|
|
eb->lock_owner = current->pid;
|
|
trace_btrfs_try_tree_write_lock(eb);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Release read lock.
|
|
*/
|
|
void btrfs_tree_read_unlock(struct extent_buffer *eb)
|
|
{
|
|
trace_btrfs_tree_read_unlock(eb);
|
|
up_read(&eb->lock);
|
|
}
|
|
|
|
/*
|
|
* __btrfs_tree_lock - lock eb for write
|
|
* @eb: the eb to lock
|
|
* @nest: the nesting to use for the lock
|
|
*
|
|
* Returns with the eb->lock write locked.
|
|
*/
|
|
void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
|
|
__acquires(&eb->lock)
|
|
{
|
|
u64 start_ns = 0;
|
|
|
|
if (trace_btrfs_tree_lock_enabled())
|
|
start_ns = ktime_get_ns();
|
|
|
|
down_write_nested(&eb->lock, nest);
|
|
eb->lock_owner = current->pid;
|
|
trace_btrfs_tree_lock(eb, start_ns);
|
|
}
|
|
|
|
void btrfs_tree_lock(struct extent_buffer *eb)
|
|
{
|
|
__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
|
|
}
|
|
|
|
/*
|
|
* Release the write lock.
|
|
*/
|
|
void btrfs_tree_unlock(struct extent_buffer *eb)
|
|
{
|
|
trace_btrfs_tree_unlock(eb);
|
|
eb->lock_owner = 0;
|
|
up_write(&eb->lock);
|
|
}
|
|
|
|
/*
|
|
* This releases any locks held in the path starting at level and going all the
|
|
* way up to the root.
|
|
*
|
|
* btrfs_search_slot will keep the lock held on higher nodes in a few corner
|
|
* cases, such as COW of the block at slot zero in the node. This ignores
|
|
* those rules, and it should only be called when there are no more updates to
|
|
* be done higher up in the tree.
|
|
*/
|
|
void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
|
|
{
|
|
int i;
|
|
|
|
if (path->keep_locks)
|
|
return;
|
|
|
|
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
|
|
if (!path->nodes[i])
|
|
continue;
|
|
if (!path->locks[i])
|
|
continue;
|
|
btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
|
|
path->locks[i] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Loop around taking references on and locking the root node of the tree until
|
|
* we end up with a lock on the root node.
|
|
*
|
|
* Return: root extent buffer with write lock held
|
|
*/
|
|
struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
|
|
{
|
|
struct extent_buffer *eb;
|
|
|
|
while (1) {
|
|
eb = btrfs_root_node(root);
|
|
btrfs_tree_lock(eb);
|
|
if (eb == root->node)
|
|
break;
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
return eb;
|
|
}
|
|
|
|
/*
|
|
* Loop around taking references on and locking the root node of the tree until
|
|
* we end up with a lock on the root node.
|
|
*
|
|
* Return: root extent buffer with read lock held
|
|
*/
|
|
struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
|
|
{
|
|
struct extent_buffer *eb;
|
|
|
|
while (1) {
|
|
eb = btrfs_root_node(root);
|
|
btrfs_tree_read_lock(eb);
|
|
if (eb == root->node)
|
|
break;
|
|
btrfs_tree_read_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
}
|
|
return eb;
|
|
}
|
|
|
|
/*
|
|
* DREW locks
|
|
* ==========
|
|
*
|
|
* DREW stands for double-reader-writer-exclusion lock. It's used in situation
|
|
* where you want to provide A-B exclusion but not AA or BB.
|
|
*
|
|
* Currently implementation gives more priority to reader. If a reader and a
|
|
* writer both race to acquire their respective sides of the lock the writer
|
|
* would yield its lock as soon as it detects a concurrent reader. Additionally
|
|
* if there are pending readers no new writers would be allowed to come in and
|
|
* acquire the lock.
|
|
*/
|
|
|
|
int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
|
|
{
|
|
int ret;
|
|
|
|
ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
atomic_set(&lock->readers, 0);
|
|
init_waitqueue_head(&lock->pending_readers);
|
|
init_waitqueue_head(&lock->pending_writers);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
|
|
{
|
|
percpu_counter_destroy(&lock->writers);
|
|
}
|
|
|
|
/* Return true if acquisition is successful, false otherwise */
|
|
bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
|
|
{
|
|
if (atomic_read(&lock->readers))
|
|
return false;
|
|
|
|
percpu_counter_inc(&lock->writers);
|
|
|
|
/* Ensure writers count is updated before we check for pending readers */
|
|
smp_mb();
|
|
if (atomic_read(&lock->readers)) {
|
|
btrfs_drew_write_unlock(lock);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
|
|
{
|
|
while (true) {
|
|
if (btrfs_drew_try_write_lock(lock))
|
|
return;
|
|
wait_event(lock->pending_writers, !atomic_read(&lock->readers));
|
|
}
|
|
}
|
|
|
|
void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
|
|
{
|
|
percpu_counter_dec(&lock->writers);
|
|
cond_wake_up(&lock->pending_readers);
|
|
}
|
|
|
|
void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
|
|
{
|
|
atomic_inc(&lock->readers);
|
|
|
|
/*
|
|
* Ensure the pending reader count is perceieved BEFORE this reader
|
|
* goes to sleep in case of active writers. This guarantees new writers
|
|
* won't be allowed and that the current reader will be woken up when
|
|
* the last active writer finishes its jobs.
|
|
*/
|
|
smp_mb__after_atomic();
|
|
|
|
wait_event(lock->pending_readers,
|
|
percpu_counter_sum(&lock->writers) == 0);
|
|
}
|
|
|
|
void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
|
|
{
|
|
/*
|
|
* atomic_dec_and_test implies a full barrier, so woken up writers
|
|
* are guaranteed to see the decrement
|
|
*/
|
|
if (atomic_dec_and_test(&lock->readers))
|
|
wake_up(&lock->pending_writers);
|
|
}
|