linux/drivers/spmi/spmi-pmic-arb.c
Abel Vesa 9799873717 spmi: pmic-arb: Add multi bus support
Starting with HW version 7, there are actually two separate buses
(with two separate sets of wires). So add support for the second bus.
The first platform that needs this support for the second bus is the
Qualcomm X1 Elite, so add the compatible for it as well.

Reviewed-by: Neil Armstrong <neil.armstrong@linaro.org>
Signed-off-by: Abel Vesa <abel.vesa@linaro.org>
Link: https://lore.kernel.org/r/20240417-spmi-multi-master-support-v10-7-5bc6d322e266@linaro.org
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
Link: https://lore.kernel.org/r/20240507210809.3479953-13-sboyd@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-05-08 19:46:11 +01:00

1896 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2015, 2017, 2021, The Linux Foundation. All rights reserved.
*/
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spmi.h>
/* PMIC Arbiter configuration registers */
#define PMIC_ARB_VERSION 0x0000
#define PMIC_ARB_VERSION_V2_MIN 0x20010000
#define PMIC_ARB_VERSION_V3_MIN 0x30000000
#define PMIC_ARB_VERSION_V5_MIN 0x50000000
#define PMIC_ARB_VERSION_V7_MIN 0x70000000
#define PMIC_ARB_INT_EN 0x0004
#define PMIC_ARB_FEATURES 0x0004
#define PMIC_ARB_FEATURES_PERIPH_MASK GENMASK(10, 0)
#define PMIC_ARB_FEATURES1 0x0008
/* PMIC Arbiter channel registers offsets */
#define PMIC_ARB_CMD 0x00
#define PMIC_ARB_CONFIG 0x04
#define PMIC_ARB_STATUS 0x08
#define PMIC_ARB_WDATA0 0x10
#define PMIC_ARB_WDATA1 0x14
#define PMIC_ARB_RDATA0 0x18
#define PMIC_ARB_RDATA1 0x1C
/* Mapping Table */
#define SPMI_MAPPING_TABLE_REG(N) (0x0B00 + (4 * (N)))
#define SPMI_MAPPING_BIT_INDEX(X) (((X) >> 18) & 0xF)
#define SPMI_MAPPING_BIT_IS_0_FLAG(X) (((X) >> 17) & 0x1)
#define SPMI_MAPPING_BIT_IS_0_RESULT(X) (((X) >> 9) & 0xFF)
#define SPMI_MAPPING_BIT_IS_1_FLAG(X) (((X) >> 8) & 0x1)
#define SPMI_MAPPING_BIT_IS_1_RESULT(X) (((X) >> 0) & 0xFF)
#define SPMI_MAPPING_TABLE_TREE_DEPTH 16 /* Maximum of 16-bits */
#define PMIC_ARB_MAX_PPID BIT(12) /* PPID is 12bit */
#define PMIC_ARB_APID_VALID BIT(15)
#define PMIC_ARB_CHAN_IS_IRQ_OWNER(reg) ((reg) & BIT(24))
#define INVALID_EE 0xFF
/* Ownership Table */
#define SPMI_OWNERSHIP_PERIPH2OWNER(X) ((X) & 0x7)
/* Channel Status fields */
enum pmic_arb_chnl_status {
PMIC_ARB_STATUS_DONE = BIT(0),
PMIC_ARB_STATUS_FAILURE = BIT(1),
PMIC_ARB_STATUS_DENIED = BIT(2),
PMIC_ARB_STATUS_DROPPED = BIT(3),
};
/* Command register fields */
#define PMIC_ARB_CMD_MAX_BYTE_COUNT 8
/* Command Opcodes */
enum pmic_arb_cmd_op_code {
PMIC_ARB_OP_EXT_WRITEL = 0,
PMIC_ARB_OP_EXT_READL = 1,
PMIC_ARB_OP_EXT_WRITE = 2,
PMIC_ARB_OP_RESET = 3,
PMIC_ARB_OP_SLEEP = 4,
PMIC_ARB_OP_SHUTDOWN = 5,
PMIC_ARB_OP_WAKEUP = 6,
PMIC_ARB_OP_AUTHENTICATE = 7,
PMIC_ARB_OP_MSTR_READ = 8,
PMIC_ARB_OP_MSTR_WRITE = 9,
PMIC_ARB_OP_EXT_READ = 13,
PMIC_ARB_OP_WRITE = 14,
PMIC_ARB_OP_READ = 15,
PMIC_ARB_OP_ZERO_WRITE = 16,
};
/*
* PMIC arbiter version 5 uses different register offsets for read/write vs
* observer channels.
*/
enum pmic_arb_channel {
PMIC_ARB_CHANNEL_RW,
PMIC_ARB_CHANNEL_OBS,
};
#define PMIC_ARB_MAX_BUSES 2
/* Maximum number of support PMIC peripherals */
#define PMIC_ARB_MAX_PERIPHS 512
#define PMIC_ARB_MAX_PERIPHS_V7 1024
#define PMIC_ARB_TIMEOUT_US 1000
#define PMIC_ARB_MAX_TRANS_BYTES (8)
#define PMIC_ARB_APID_MASK 0xFF
#define PMIC_ARB_PPID_MASK 0xFFF
/* interrupt enable bit */
#define SPMI_PIC_ACC_ENABLE_BIT BIT(0)
#define spec_to_hwirq(slave_id, periph_id, irq_id, apid) \
((((slave_id) & 0xF) << 28) | \
(((periph_id) & 0xFF) << 20) | \
(((irq_id) & 0x7) << 16) | \
(((apid) & 0x3FF) << 0))
#define hwirq_to_sid(hwirq) (((hwirq) >> 28) & 0xF)
#define hwirq_to_per(hwirq) (((hwirq) >> 20) & 0xFF)
#define hwirq_to_irq(hwirq) (((hwirq) >> 16) & 0x7)
#define hwirq_to_apid(hwirq) (((hwirq) >> 0) & 0x3FF)
struct pmic_arb_ver_ops;
struct apid_data {
u16 ppid;
u8 write_ee;
u8 irq_ee;
};
struct spmi_pmic_arb;
/**
* struct spmi_pmic_arb_bus - SPMI PMIC Arbiter Bus object
*
* @pmic_arb: the SPMI PMIC Arbiter the bus belongs to.
* @domain: irq domain object for PMIC IRQ domain
* @intr: address of the SPMI interrupt control registers.
* @cnfg: address of the PMIC Arbiter configuration registers.
* @spmic: spmi controller registered for this bus
* @lock: lock to synchronize accesses.
* @base_apid: on v7: minimum APID associated with the particular SPMI
* bus instance
* @apid_count: on v5 and v7: number of APIDs associated with the
* particular SPMI bus instance
* @mapping_table: in-memory copy of PPID -> APID mapping table.
* @mapping_table_valid:bitmap containing valid-only periphs
* @ppid_to_apid: in-memory copy of PPID -> APID mapping table.
* @last_apid: Highest value APID in use
* @apid_data: Table of data for all APIDs
* @min_apid: minimum APID (used for bounding IRQ search)
* @max_apid: maximum APID
* @irq: PMIC ARB interrupt.
* @id: unique ID of the bus
*/
struct spmi_pmic_arb_bus {
struct spmi_pmic_arb *pmic_arb;
struct irq_domain *domain;
void __iomem *intr;
void __iomem *cnfg;
struct spmi_controller *spmic;
raw_spinlock_t lock;
u16 base_apid;
int apid_count;
u32 *mapping_table;
DECLARE_BITMAP(mapping_table_valid, PMIC_ARB_MAX_PERIPHS);
u16 *ppid_to_apid;
u16 last_apid;
struct apid_data *apid_data;
u16 min_apid;
u16 max_apid;
int irq;
u8 id;
};
/**
* struct spmi_pmic_arb - SPMI PMIC Arbiter object
*
* @rd_base: on v1 "core", on v2 "observer" register base off DT.
* @wr_base: on v1 "core", on v2 "chnls" register base off DT.
* @core: core register base for v2 and above only (see above)
* @core_size: core register base size
* @channel: execution environment channel to use for accesses.
* @ee: the current Execution Environment
* @ver_ops: version dependent operations.
* @max_periphs: Number of elements in apid_data[]
* @buses: per arbiter buses instances
* @buses_available: number of buses registered
*/
struct spmi_pmic_arb {
void __iomem *rd_base;
void __iomem *wr_base;
void __iomem *core;
resource_size_t core_size;
u8 channel;
u8 ee;
const struct pmic_arb_ver_ops *ver_ops;
int max_periphs;
struct spmi_pmic_arb_bus *buses[PMIC_ARB_MAX_BUSES];
int buses_available;
};
/**
* struct pmic_arb_ver_ops - version dependent functionality.
*
* @ver_str: version string.
* @get_core_resources: initializes the core, observer and channels
* @init_apid: finds the apid base and count
* @ppid_to_apid: finds the apid for a given ppid.
* @non_data_cmd: on v1 issues an spmi non-data command.
* on v2 no HW support, returns -EOPNOTSUPP.
* @offset: on v1 offset of per-ee channel.
* on v2 offset of per-ee and per-ppid channel.
* @fmt_cmd: formats a GENI/SPMI command.
* @owner_acc_status: on v1 address of PMIC_ARB_SPMI_PIC_OWNERm_ACC_STATUSn
* on v2 address of SPMI_PIC_OWNERm_ACC_STATUSn.
* @acc_enable: on v1 address of PMIC_ARB_SPMI_PIC_ACC_ENABLEn
* on v2 address of SPMI_PIC_ACC_ENABLEn.
* @irq_status: on v1 address of PMIC_ARB_SPMI_PIC_IRQ_STATUSn
* on v2 address of SPMI_PIC_IRQ_STATUSn.
* @irq_clear: on v1 address of PMIC_ARB_SPMI_PIC_IRQ_CLEARn
* on v2 address of SPMI_PIC_IRQ_CLEARn.
* @apid_map_offset: offset of PMIC_ARB_REG_CHNLn
* @apid_owner: on v2 and later address of SPMI_PERIPHn_2OWNER_TABLE_REG
*/
struct pmic_arb_ver_ops {
const char *ver_str;
int (*get_core_resources)(struct platform_device *pdev, void __iomem *core);
int (*init_apid)(struct spmi_pmic_arb_bus *bus, int index);
int (*ppid_to_apid)(struct spmi_pmic_arb_bus *bus, u16 ppid);
/* spmi commands (read_cmd, write_cmd, cmd) functionality */
int (*offset)(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type);
u32 (*fmt_cmd)(u8 opc, u8 sid, u16 addr, u8 bc);
int (*non_data_cmd)(struct spmi_controller *ctrl, u8 opc, u8 sid);
/* Interrupts controller functionality (offset of PIC registers) */
void __iomem *(*owner_acc_status)(struct spmi_pmic_arb_bus *bus, u8 m,
u16 n);
void __iomem *(*acc_enable)(struct spmi_pmic_arb_bus *bus, u16 n);
void __iomem *(*irq_status)(struct spmi_pmic_arb_bus *bus, u16 n);
void __iomem *(*irq_clear)(struct spmi_pmic_arb_bus *bus, u16 n);
u32 (*apid_map_offset)(u16 n);
void __iomem *(*apid_owner)(struct spmi_pmic_arb_bus *bus, u16 n);
};
static inline void pmic_arb_base_write(struct spmi_pmic_arb *pmic_arb,
u32 offset, u32 val)
{
writel_relaxed(val, pmic_arb->wr_base + offset);
}
static inline void pmic_arb_set_rd_cmd(struct spmi_pmic_arb *pmic_arb,
u32 offset, u32 val)
{
writel_relaxed(val, pmic_arb->rd_base + offset);
}
/**
* pmic_arb_read_data: reads pmic-arb's register and copy 1..4 bytes to buf
* @pmic_arb: the SPMI PMIC arbiter
* @bc: byte count -1. range: 0..3
* @reg: register's address
* @buf: output parameter, length must be bc + 1
*/
static void
pmic_arb_read_data(struct spmi_pmic_arb *pmic_arb, u8 *buf, u32 reg, u8 bc)
{
u32 data = __raw_readl(pmic_arb->rd_base + reg);
memcpy(buf, &data, (bc & 3) + 1);
}
/**
* pmic_arb_write_data: write 1..4 bytes from buf to pmic-arb's register
* @pmic_arb: the SPMI PMIC arbiter
* @bc: byte-count -1. range: 0..3.
* @reg: register's address.
* @buf: buffer to write. length must be bc + 1.
*/
static void pmic_arb_write_data(struct spmi_pmic_arb *pmic_arb, const u8 *buf,
u32 reg, u8 bc)
{
u32 data = 0;
memcpy(&data, buf, (bc & 3) + 1);
__raw_writel(data, pmic_arb->wr_base + reg);
}
static int pmic_arb_wait_for_done(struct spmi_controller *ctrl,
void __iomem *base, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u32 status = 0;
u32 timeout = PMIC_ARB_TIMEOUT_US;
u32 offset;
int rc;
rc = pmic_arb->ver_ops->offset(bus, sid, addr, ch_type);
if (rc < 0)
return rc;
offset = rc;
offset += PMIC_ARB_STATUS;
while (timeout--) {
status = readl_relaxed(base + offset);
if (status & PMIC_ARB_STATUS_DONE) {
if (status & PMIC_ARB_STATUS_DENIED) {
dev_err(&ctrl->dev, "%s: %#x %#x: transaction denied (%#x)\n",
__func__, sid, addr, status);
return -EPERM;
}
if (status & PMIC_ARB_STATUS_FAILURE) {
dev_err(&ctrl->dev, "%s: %#x %#x: transaction failed (%#x) reg: 0x%x\n",
__func__, sid, addr, status, offset);
WARN_ON(1);
return -EIO;
}
if (status & PMIC_ARB_STATUS_DROPPED) {
dev_err(&ctrl->dev, "%s: %#x %#x: transaction dropped (%#x)\n",
__func__, sid, addr, status);
return -EIO;
}
return 0;
}
udelay(1);
}
dev_err(&ctrl->dev, "%s: %#x %#x %#x: timeout, status %#x\n",
__func__, bus->id, sid, addr, status);
return -ETIMEDOUT;
}
static int
pmic_arb_non_data_cmd_v1(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
unsigned long flags;
u32 cmd;
int rc;
u32 offset;
rc = pmic_arb->ver_ops->offset(bus, sid, 0, PMIC_ARB_CHANNEL_RW);
if (rc < 0)
return rc;
offset = rc;
cmd = ((opc | 0x40) << 27) | ((sid & 0xf) << 20);
raw_spin_lock_irqsave(&bus->lock, flags);
pmic_arb_base_write(pmic_arb, offset + PMIC_ARB_CMD, cmd);
rc = pmic_arb_wait_for_done(ctrl, pmic_arb->wr_base, sid, 0,
PMIC_ARB_CHANNEL_RW);
raw_spin_unlock_irqrestore(&bus->lock, flags);
return rc;
}
static int
pmic_arb_non_data_cmd_v2(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
return -EOPNOTSUPP;
}
/* Non-data command */
static int pmic_arb_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl);
dev_dbg(&ctrl->dev, "cmd op:0x%x sid:%d\n", opc, sid);
/* Check for valid non-data command */
if (opc < SPMI_CMD_RESET || opc > SPMI_CMD_WAKEUP)
return -EINVAL;
return pmic_arb->ver_ops->non_data_cmd(ctrl, opc, sid);
}
static int pmic_arb_fmt_read_cmd(struct spmi_pmic_arb_bus *bus, u8 opc, u8 sid,
u16 addr, size_t len, u32 *cmd, u32 *offset)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 bc = len - 1;
int rc;
rc = pmic_arb->ver_ops->offset(bus, sid, addr,
PMIC_ARB_CHANNEL_OBS);
if (rc < 0)
return rc;
*offset = rc;
if (bc >= PMIC_ARB_MAX_TRANS_BYTES) {
dev_err(&bus->spmic->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested",
PMIC_ARB_MAX_TRANS_BYTES, len);
return -EINVAL;
}
/* Check the opcode */
if (opc >= 0x60 && opc <= 0x7F)
opc = PMIC_ARB_OP_READ;
else if (opc >= 0x20 && opc <= 0x2F)
opc = PMIC_ARB_OP_EXT_READ;
else if (opc >= 0x38 && opc <= 0x3F)
opc = PMIC_ARB_OP_EXT_READL;
else
return -EINVAL;
*cmd = pmic_arb->ver_ops->fmt_cmd(opc, sid, addr, bc);
return 0;
}
static int pmic_arb_read_cmd_unlocked(struct spmi_controller *ctrl, u32 cmd,
u32 offset, u8 sid, u16 addr, u8 *buf,
size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 bc = len - 1;
int rc;
pmic_arb_set_rd_cmd(pmic_arb, offset + PMIC_ARB_CMD, cmd);
rc = pmic_arb_wait_for_done(ctrl, pmic_arb->rd_base, sid, addr,
PMIC_ARB_CHANNEL_OBS);
if (rc)
return rc;
pmic_arb_read_data(pmic_arb, buf, offset + PMIC_ARB_RDATA0,
min_t(u8, bc, 3));
if (bc > 3)
pmic_arb_read_data(pmic_arb, buf + 4, offset + PMIC_ARB_RDATA1,
bc - 4);
return 0;
}
static int pmic_arb_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
u16 addr, u8 *buf, size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
unsigned long flags;
u32 cmd, offset;
int rc;
rc = pmic_arb_fmt_read_cmd(bus, opc, sid, addr, len, &cmd,
&offset);
if (rc)
return rc;
raw_spin_lock_irqsave(&bus->lock, flags);
rc = pmic_arb_read_cmd_unlocked(ctrl, cmd, offset, sid, addr, buf, len);
raw_spin_unlock_irqrestore(&bus->lock, flags);
return rc;
}
static int pmic_arb_fmt_write_cmd(struct spmi_pmic_arb_bus *bus, u8 opc,
u8 sid, u16 addr, size_t len, u32 *cmd,
u32 *offset)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 bc = len - 1;
int rc;
rc = pmic_arb->ver_ops->offset(bus, sid, addr,
PMIC_ARB_CHANNEL_RW);
if (rc < 0)
return rc;
*offset = rc;
if (bc >= PMIC_ARB_MAX_TRANS_BYTES) {
dev_err(&bus->spmic->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested",
PMIC_ARB_MAX_TRANS_BYTES, len);
return -EINVAL;
}
/* Check the opcode */
if (opc >= 0x40 && opc <= 0x5F)
opc = PMIC_ARB_OP_WRITE;
else if (opc <= 0x0F)
opc = PMIC_ARB_OP_EXT_WRITE;
else if (opc >= 0x30 && opc <= 0x37)
opc = PMIC_ARB_OP_EXT_WRITEL;
else if (opc >= 0x80)
opc = PMIC_ARB_OP_ZERO_WRITE;
else
return -EINVAL;
*cmd = pmic_arb->ver_ops->fmt_cmd(opc, sid, addr, bc);
return 0;
}
static int pmic_arb_write_cmd_unlocked(struct spmi_controller *ctrl, u32 cmd,
u32 offset, u8 sid, u16 addr,
const u8 *buf, size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 bc = len - 1;
/* Write data to FIFOs */
pmic_arb_write_data(pmic_arb, buf, offset + PMIC_ARB_WDATA0,
min_t(u8, bc, 3));
if (bc > 3)
pmic_arb_write_data(pmic_arb, buf + 4, offset + PMIC_ARB_WDATA1,
bc - 4);
/* Start the transaction */
pmic_arb_base_write(pmic_arb, offset + PMIC_ARB_CMD, cmd);
return pmic_arb_wait_for_done(ctrl, pmic_arb->wr_base, sid, addr,
PMIC_ARB_CHANNEL_RW);
}
static int pmic_arb_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
u16 addr, const u8 *buf, size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
unsigned long flags;
u32 cmd, offset;
int rc;
rc = pmic_arb_fmt_write_cmd(bus, opc, sid, addr, len, &cmd,
&offset);
if (rc)
return rc;
raw_spin_lock_irqsave(&bus->lock, flags);
rc = pmic_arb_write_cmd_unlocked(ctrl, cmd, offset, sid, addr, buf,
len);
raw_spin_unlock_irqrestore(&bus->lock, flags);
return rc;
}
static int pmic_arb_masked_write(struct spmi_controller *ctrl, u8 sid, u16 addr,
const u8 *buf, const u8 *mask, size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
u32 read_cmd, read_offset, write_cmd, write_offset;
u8 temp[PMIC_ARB_MAX_TRANS_BYTES];
unsigned long flags;
int rc, i;
rc = pmic_arb_fmt_read_cmd(bus, SPMI_CMD_EXT_READL, sid, addr, len,
&read_cmd, &read_offset);
if (rc)
return rc;
rc = pmic_arb_fmt_write_cmd(bus, SPMI_CMD_EXT_WRITEL, sid, addr,
len, &write_cmd, &write_offset);
if (rc)
return rc;
raw_spin_lock_irqsave(&bus->lock, flags);
rc = pmic_arb_read_cmd_unlocked(ctrl, read_cmd, read_offset, sid, addr,
temp, len);
if (rc)
goto done;
for (i = 0; i < len; i++)
temp[i] = (temp[i] & ~mask[i]) | (buf[i] & mask[i]);
rc = pmic_arb_write_cmd_unlocked(ctrl, write_cmd, write_offset, sid,
addr, temp, len);
done:
raw_spin_unlock_irqrestore(&bus->lock, flags);
return rc;
}
enum qpnpint_regs {
QPNPINT_REG_RT_STS = 0x10,
QPNPINT_REG_SET_TYPE = 0x11,
QPNPINT_REG_POLARITY_HIGH = 0x12,
QPNPINT_REG_POLARITY_LOW = 0x13,
QPNPINT_REG_LATCHED_CLR = 0x14,
QPNPINT_REG_EN_SET = 0x15,
QPNPINT_REG_EN_CLR = 0x16,
QPNPINT_REG_LATCHED_STS = 0x18,
};
struct spmi_pmic_arb_qpnpint_type {
u8 type; /* 1 -> edge */
u8 polarity_high;
u8 polarity_low;
} __packed;
/* Simplified accessor functions for irqchip callbacks */
static void qpnpint_spmi_write(struct irq_data *d, u8 reg, void *buf,
size_t len)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
u8 sid = hwirq_to_sid(d->hwirq);
u8 per = hwirq_to_per(d->hwirq);
if (pmic_arb_write_cmd(bus->spmic, SPMI_CMD_EXT_WRITEL, sid,
(per << 8) + reg, buf, len))
dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x\n",
d->irq);
}
static void qpnpint_spmi_read(struct irq_data *d, u8 reg, void *buf, size_t len)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
u8 sid = hwirq_to_sid(d->hwirq);
u8 per = hwirq_to_per(d->hwirq);
if (pmic_arb_read_cmd(bus->spmic, SPMI_CMD_EXT_READL, sid,
(per << 8) + reg, buf, len))
dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x\n",
d->irq);
}
static int qpnpint_spmi_masked_write(struct irq_data *d, u8 reg,
const void *buf, const void *mask,
size_t len)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
u8 sid = hwirq_to_sid(d->hwirq);
u8 per = hwirq_to_per(d->hwirq);
int rc;
rc = pmic_arb_masked_write(bus->spmic, sid, (per << 8) + reg, buf,
mask, len);
if (rc)
dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x rc=%d\n",
d->irq, rc);
return rc;
}
static void cleanup_irq(struct spmi_pmic_arb_bus *bus, u16 apid, int id)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 ppid = bus->apid_data[apid].ppid;
u8 sid = ppid >> 8;
u8 per = ppid & 0xFF;
u8 irq_mask = BIT(id);
dev_err_ratelimited(&bus->spmic->dev, "%s apid=%d sid=0x%x per=0x%x irq=%d\n",
__func__, apid, sid, per, id);
writel_relaxed(irq_mask, pmic_arb->ver_ops->irq_clear(bus, apid));
}
static int periph_interrupt(struct spmi_pmic_arb_bus *bus, u16 apid)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
unsigned int irq;
u32 status, id;
int handled = 0;
u8 sid = (bus->apid_data[apid].ppid >> 8) & 0xF;
u8 per = bus->apid_data[apid].ppid & 0xFF;
status = readl_relaxed(pmic_arb->ver_ops->irq_status(bus, apid));
while (status) {
id = ffs(status) - 1;
status &= ~BIT(id);
irq = irq_find_mapping(bus->domain,
spec_to_hwirq(sid, per, id, apid));
if (irq == 0) {
cleanup_irq(bus, apid, id);
continue;
}
generic_handle_irq(irq);
handled++;
}
return handled;
}
static void pmic_arb_chained_irq(struct irq_desc *desc)
{
struct spmi_pmic_arb_bus *bus = irq_desc_get_handler_data(desc);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
const struct pmic_arb_ver_ops *ver_ops = pmic_arb->ver_ops;
struct irq_chip *chip = irq_desc_get_chip(desc);
int first = bus->min_apid;
int last = bus->max_apid;
/*
* acc_offset will be non-zero for the secondary SPMI bus instance on
* v7 controllers.
*/
int acc_offset = bus->base_apid >> 5;
u8 ee = pmic_arb->ee;
u32 status, enable, handled = 0;
int i, id, apid;
/* status based dispatch */
bool acc_valid = false;
u32 irq_status = 0;
chained_irq_enter(chip, desc);
for (i = first >> 5; i <= last >> 5; ++i) {
status = readl_relaxed(ver_ops->owner_acc_status(bus, ee, i - acc_offset));
if (status)
acc_valid = true;
while (status) {
id = ffs(status) - 1;
status &= ~BIT(id);
apid = id + i * 32;
if (apid < first || apid > last) {
WARN_ONCE(true, "spurious spmi irq received for apid=%d\n",
apid);
continue;
}
enable = readl_relaxed(
ver_ops->acc_enable(bus, apid));
if (enable & SPMI_PIC_ACC_ENABLE_BIT)
if (periph_interrupt(bus, apid) != 0)
handled++;
}
}
/* ACC_STATUS is empty but IRQ fired check IRQ_STATUS */
if (!acc_valid) {
for (i = first; i <= last; i++) {
/* skip if APPS is not irq owner */
if (bus->apid_data[i].irq_ee != pmic_arb->ee)
continue;
irq_status = readl_relaxed(
ver_ops->irq_status(bus, i));
if (irq_status) {
enable = readl_relaxed(
ver_ops->acc_enable(bus, i));
if (enable & SPMI_PIC_ACC_ENABLE_BIT) {
dev_dbg(&bus->spmic->dev,
"Dispatching IRQ for apid=%d status=%x\n",
i, irq_status);
if (periph_interrupt(bus, i) != 0)
handled++;
}
}
}
}
if (handled == 0)
handle_bad_irq(desc);
chained_irq_exit(chip, desc);
}
static void qpnpint_irq_ack(struct irq_data *d)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 irq = hwirq_to_irq(d->hwirq);
u16 apid = hwirq_to_apid(d->hwirq);
u8 data;
writel_relaxed(BIT(irq), pmic_arb->ver_ops->irq_clear(bus, apid));
data = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &data, 1);
}
static void qpnpint_irq_mask(struct irq_data *d)
{
u8 irq = hwirq_to_irq(d->hwirq);
u8 data = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &data, 1);
}
static void qpnpint_irq_unmask(struct irq_data *d)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
const struct pmic_arb_ver_ops *ver_ops = pmic_arb->ver_ops;
u8 irq = hwirq_to_irq(d->hwirq);
u16 apid = hwirq_to_apid(d->hwirq);
u8 buf[2];
writel_relaxed(SPMI_PIC_ACC_ENABLE_BIT,
ver_ops->acc_enable(bus, apid));
qpnpint_spmi_read(d, QPNPINT_REG_EN_SET, &buf[0], 1);
if (!(buf[0] & BIT(irq))) {
/*
* Since the interrupt is currently disabled, write to both the
* LATCHED_CLR and EN_SET registers so that a spurious interrupt
* cannot be triggered when the interrupt is enabled
*/
buf[0] = BIT(irq);
buf[1] = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 2);
}
}
static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type)
{
struct spmi_pmic_arb_qpnpint_type type = {0};
struct spmi_pmic_arb_qpnpint_type mask;
irq_flow_handler_t flow_handler;
u8 irq_bit = BIT(hwirq_to_irq(d->hwirq));
int rc;
if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) {
type.type = irq_bit;
if (flow_type & IRQF_TRIGGER_RISING)
type.polarity_high = irq_bit;
if (flow_type & IRQF_TRIGGER_FALLING)
type.polarity_low = irq_bit;
flow_handler = handle_edge_irq;
} else {
if ((flow_type & (IRQF_TRIGGER_HIGH)) &&
(flow_type & (IRQF_TRIGGER_LOW)))
return -EINVAL;
if (flow_type & IRQF_TRIGGER_HIGH)
type.polarity_high = irq_bit;
else
type.polarity_low = irq_bit;
flow_handler = handle_level_irq;
}
mask.type = irq_bit;
mask.polarity_high = irq_bit;
mask.polarity_low = irq_bit;
rc = qpnpint_spmi_masked_write(d, QPNPINT_REG_SET_TYPE, &type, &mask,
sizeof(type));
irq_set_handler_locked(d, flow_handler);
return rc;
}
static int qpnpint_irq_set_wake(struct irq_data *d, unsigned int on)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
return irq_set_irq_wake(bus->irq, on);
}
static int qpnpint_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which,
bool *state)
{
u8 irq = hwirq_to_irq(d->hwirq);
u8 status = 0;
if (which != IRQCHIP_STATE_LINE_LEVEL)
return -EINVAL;
qpnpint_spmi_read(d, QPNPINT_REG_RT_STS, &status, 1);
*state = !!(status & BIT(irq));
return 0;
}
static int qpnpint_irq_domain_activate(struct irq_domain *domain,
struct irq_data *d, bool reserve)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 periph = hwirq_to_per(d->hwirq);
u16 apid = hwirq_to_apid(d->hwirq);
u16 sid = hwirq_to_sid(d->hwirq);
u16 irq = hwirq_to_irq(d->hwirq);
u8 buf;
if (bus->apid_data[apid].irq_ee != pmic_arb->ee) {
dev_err(&bus->spmic->dev, "failed to xlate sid = %#x, periph = %#x, irq = %u: ee=%u but owner=%u\n",
sid, periph, irq, pmic_arb->ee,
bus->apid_data[apid].irq_ee);
return -ENODEV;
}
buf = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &buf, 1);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 1);
return 0;
}
static struct irq_chip pmic_arb_irqchip = {
.name = "pmic_arb",
.irq_ack = qpnpint_irq_ack,
.irq_mask = qpnpint_irq_mask,
.irq_unmask = qpnpint_irq_unmask,
.irq_set_type = qpnpint_irq_set_type,
.irq_set_wake = qpnpint_irq_set_wake,
.irq_get_irqchip_state = qpnpint_get_irqchip_state,
.flags = IRQCHIP_MASK_ON_SUSPEND,
};
static int qpnpint_irq_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *out_hwirq,
unsigned int *out_type)
{
struct spmi_pmic_arb_bus *bus = d->host_data;
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u32 *intspec = fwspec->param;
u16 apid, ppid;
int rc;
dev_dbg(&bus->spmic->dev, "intspec[0] 0x%1x intspec[1] 0x%02x intspec[2] 0x%02x\n",
intspec[0], intspec[1], intspec[2]);
if (irq_domain_get_of_node(d) != bus->spmic->dev.of_node)
return -EINVAL;
if (fwspec->param_count != 4)
return -EINVAL;
if (intspec[0] > 0xF || intspec[1] > 0xFF || intspec[2] > 0x7)
return -EINVAL;
ppid = intspec[0] << 8 | intspec[1];
rc = pmic_arb->ver_ops->ppid_to_apid(bus, ppid);
if (rc < 0) {
dev_err(&bus->spmic->dev, "failed to xlate sid = %#x, periph = %#x, irq = %u rc = %d\n",
intspec[0], intspec[1], intspec[2], rc);
return rc;
}
apid = rc;
/* Keep track of {max,min}_apid for bounding search during interrupt */
if (apid > bus->max_apid)
bus->max_apid = apid;
if (apid < bus->min_apid)
bus->min_apid = apid;
*out_hwirq = spec_to_hwirq(intspec[0], intspec[1], intspec[2], apid);
*out_type = intspec[3] & IRQ_TYPE_SENSE_MASK;
dev_dbg(&bus->spmic->dev, "out_hwirq = %lu\n", *out_hwirq);
return 0;
}
static struct lock_class_key qpnpint_irq_lock_class, qpnpint_irq_request_class;
static void qpnpint_irq_domain_map(struct spmi_pmic_arb_bus *bus,
struct irq_domain *domain, unsigned int virq,
irq_hw_number_t hwirq, unsigned int type)
{
irq_flow_handler_t handler;
dev_dbg(&bus->spmic->dev, "virq = %u, hwirq = %lu, type = %u\n",
virq, hwirq, type);
if (type & IRQ_TYPE_EDGE_BOTH)
handler = handle_edge_irq;
else
handler = handle_level_irq;
irq_set_lockdep_class(virq, &qpnpint_irq_lock_class,
&qpnpint_irq_request_class);
irq_domain_set_info(domain, virq, hwirq, &pmic_arb_irqchip, bus,
handler, NULL, NULL);
}
static int qpnpint_irq_domain_alloc(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs,
void *data)
{
struct spmi_pmic_arb_bus *bus = domain->host_data;
struct irq_fwspec *fwspec = data;
irq_hw_number_t hwirq;
unsigned int type;
int ret, i;
ret = qpnpint_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++)
qpnpint_irq_domain_map(bus, domain, virq + i, hwirq + i,
type);
return 0;
}
static int pmic_arb_init_apid_min_max(struct spmi_pmic_arb_bus *bus)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
/*
* Initialize max_apid/min_apid to the opposite bounds, during
* the irq domain translation, we are sure to update these
*/
bus->max_apid = 0;
bus->min_apid = pmic_arb->max_periphs - 1;
return 0;
}
static int pmic_arb_get_core_resources_v1(struct platform_device *pdev,
void __iomem *core)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
pmic_arb->wr_base = core;
pmic_arb->rd_base = core;
pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS;
return 0;
}
static int pmic_arb_init_apid_v1(struct spmi_pmic_arb_bus *bus, int index)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u32 *mapping_table;
if (index) {
dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n",
index);
return -EINVAL;
}
mapping_table = devm_kcalloc(&bus->spmic->dev, pmic_arb->max_periphs,
sizeof(*mapping_table), GFP_KERNEL);
if (!mapping_table)
return -ENOMEM;
bus->mapping_table = mapping_table;
return pmic_arb_init_apid_min_max(bus);
}
static int pmic_arb_ppid_to_apid_v1(struct spmi_pmic_arb_bus *bus, u16 ppid)
{
u32 *mapping_table = bus->mapping_table;
int index = 0, i;
u16 apid_valid;
u16 apid;
u32 data;
apid_valid = bus->ppid_to_apid[ppid];
if (apid_valid & PMIC_ARB_APID_VALID) {
apid = apid_valid & ~PMIC_ARB_APID_VALID;
return apid;
}
for (i = 0; i < SPMI_MAPPING_TABLE_TREE_DEPTH; ++i) {
if (!test_and_set_bit(index, bus->mapping_table_valid))
mapping_table[index] = readl_relaxed(bus->cnfg +
SPMI_MAPPING_TABLE_REG(index));
data = mapping_table[index];
if (ppid & BIT(SPMI_MAPPING_BIT_INDEX(data))) {
if (SPMI_MAPPING_BIT_IS_1_FLAG(data)) {
index = SPMI_MAPPING_BIT_IS_1_RESULT(data);
} else {
apid = SPMI_MAPPING_BIT_IS_1_RESULT(data);
bus->ppid_to_apid[ppid]
= apid | PMIC_ARB_APID_VALID;
bus->apid_data[apid].ppid = ppid;
return apid;
}
} else {
if (SPMI_MAPPING_BIT_IS_0_FLAG(data)) {
index = SPMI_MAPPING_BIT_IS_0_RESULT(data);
} else {
apid = SPMI_MAPPING_BIT_IS_0_RESULT(data);
bus->ppid_to_apid[ppid]
= apid | PMIC_ARB_APID_VALID;
bus->apid_data[apid].ppid = ppid;
return apid;
}
}
}
return -ENODEV;
}
/* v1 offset per ee */
static int pmic_arb_offset_v1(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return 0x800 + 0x80 * pmic_arb->channel;
}
static u16 pmic_arb_find_apid(struct spmi_pmic_arb_bus *bus, u16 ppid)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
struct apid_data *apidd = &bus->apid_data[bus->last_apid];
u32 regval, offset;
u16 id, apid;
for (apid = bus->last_apid; ; apid++, apidd++) {
offset = pmic_arb->ver_ops->apid_map_offset(apid);
if (offset >= pmic_arb->core_size)
break;
regval = readl_relaxed(pmic_arb->ver_ops->apid_owner(bus,
apid));
apidd->irq_ee = SPMI_OWNERSHIP_PERIPH2OWNER(regval);
apidd->write_ee = apidd->irq_ee;
regval = readl_relaxed(pmic_arb->core + offset);
if (!regval)
continue;
id = (regval >> 8) & PMIC_ARB_PPID_MASK;
bus->ppid_to_apid[id] = apid | PMIC_ARB_APID_VALID;
apidd->ppid = id;
if (id == ppid) {
apid |= PMIC_ARB_APID_VALID;
break;
}
}
bus->last_apid = apid & ~PMIC_ARB_APID_VALID;
return apid;
}
static int pmic_arb_get_obsrvr_chnls_v2(struct platform_device *pdev)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
pmic_arb->rd_base = devm_platform_ioremap_resource_byname(pdev, "obsrvr");
if (IS_ERR(pmic_arb->rd_base))
return PTR_ERR(pmic_arb->rd_base);
pmic_arb->wr_base = devm_platform_ioremap_resource_byname(pdev, "chnls");
if (IS_ERR(pmic_arb->wr_base))
return PTR_ERR(pmic_arb->wr_base);
return 0;
}
static int pmic_arb_get_core_resources_v2(struct platform_device *pdev,
void __iomem *core)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
pmic_arb->core = core;
pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS;
return pmic_arb_get_obsrvr_chnls_v2(pdev);
}
static int pmic_arb_ppid_to_apid_v2(struct spmi_pmic_arb_bus *bus, u16 ppid)
{
u16 apid_valid;
apid_valid = bus->ppid_to_apid[ppid];
if (!(apid_valid & PMIC_ARB_APID_VALID))
apid_valid = pmic_arb_find_apid(bus, ppid);
if (!(apid_valid & PMIC_ARB_APID_VALID))
return -ENODEV;
return apid_valid & ~PMIC_ARB_APID_VALID;
}
static int pmic_arb_read_apid_map_v5(struct spmi_pmic_arb_bus *bus)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
struct apid_data *apidd;
struct apid_data *prev_apidd;
u16 i, apid, ppid, apid_max;
bool valid, is_irq_ee;
u32 regval, offset;
/*
* In order to allow multiple EEs to write to a single PPID in arbiter
* version 5 and 7, there is more than one APID mapped to each PPID.
* The owner field for each of these mappings specifies the EE which is
* allowed to write to the APID. The owner of the last (highest) APID
* which has the IRQ owner bit set for a given PPID will receive
* interrupts from the PPID.
*
* In arbiter version 7, the APID numbering space is divided between
* the primary bus (0) and secondary bus (1) such that:
* APID = 0 to N-1 are assigned to the primary bus
* APID = N to N+M-1 are assigned to the secondary bus
* where N = number of APIDs supported by the primary bus and
* M = number of APIDs supported by the secondary bus
*/
apidd = &bus->apid_data[bus->base_apid];
apid_max = bus->base_apid + bus->apid_count;
for (i = bus->base_apid; i < apid_max; i++, apidd++) {
offset = pmic_arb->ver_ops->apid_map_offset(i);
if (offset >= pmic_arb->core_size)
break;
regval = readl_relaxed(pmic_arb->core + offset);
if (!regval)
continue;
ppid = (regval >> 8) & PMIC_ARB_PPID_MASK;
is_irq_ee = PMIC_ARB_CHAN_IS_IRQ_OWNER(regval);
regval = readl_relaxed(pmic_arb->ver_ops->apid_owner(bus, i));
apidd->write_ee = SPMI_OWNERSHIP_PERIPH2OWNER(regval);
apidd->irq_ee = is_irq_ee ? apidd->write_ee : INVALID_EE;
valid = bus->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID;
apid = bus->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID;
prev_apidd = &bus->apid_data[apid];
if (!valid || apidd->write_ee == pmic_arb->ee) {
/* First PPID mapping or one for this EE */
bus->ppid_to_apid[ppid] = i | PMIC_ARB_APID_VALID;
} else if (valid && is_irq_ee &&
prev_apidd->write_ee == pmic_arb->ee) {
/*
* Duplicate PPID mapping after the one for this EE;
* override the irq owner
*/
prev_apidd->irq_ee = apidd->irq_ee;
}
apidd->ppid = ppid;
bus->last_apid = i;
}
/* Dump the mapping table for debug purposes. */
dev_dbg(&bus->spmic->dev, "PPID APID Write-EE IRQ-EE\n");
for (ppid = 0; ppid < PMIC_ARB_MAX_PPID; ppid++) {
apid = bus->ppid_to_apid[ppid];
if (apid & PMIC_ARB_APID_VALID) {
apid &= ~PMIC_ARB_APID_VALID;
apidd = &bus->apid_data[apid];
dev_dbg(&bus->spmic->dev, "%#03X %3u %2u %2u\n",
ppid, apid, apidd->write_ee, apidd->irq_ee);
}
}
return 0;
}
static int pmic_arb_ppid_to_apid_v5(struct spmi_pmic_arb_bus *bus, u16 ppid)
{
if (!(bus->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID))
return -ENODEV;
return bus->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID;
}
/* v2 offset per ppid and per ee */
static int pmic_arb_offset_v2(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 apid;
u16 ppid;
int rc;
ppid = sid << 8 | ((addr >> 8) & 0xFF);
rc = pmic_arb_ppid_to_apid_v2(bus, ppid);
if (rc < 0)
return rc;
apid = rc;
return 0x1000 * pmic_arb->ee + 0x8000 * apid;
}
static int pmic_arb_init_apid_v5(struct spmi_pmic_arb_bus *bus, int index)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
int ret;
if (index) {
dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n",
index);
return -EINVAL;
}
bus->base_apid = 0;
bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) &
PMIC_ARB_FEATURES_PERIPH_MASK;
if (bus->base_apid + bus->apid_count > pmic_arb->max_periphs) {
dev_err(&bus->spmic->dev, "Unsupported APID count %d detected\n",
bus->base_apid + bus->apid_count);
return -EINVAL;
}
ret = pmic_arb_init_apid_min_max(bus);
if (ret)
return ret;
ret = pmic_arb_read_apid_map_v5(bus);
if (ret) {
dev_err(&bus->spmic->dev, "could not read APID->PPID mapping table, rc= %d\n",
ret);
return ret;
}
return 0;
}
/*
* v5 offset per ee and per apid for observer channels and per apid for
* read/write channels.
*/
static int pmic_arb_offset_v5(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 apid;
int rc;
u32 offset = 0;
u16 ppid = (sid << 8) | (addr >> 8);
rc = pmic_arb_ppid_to_apid_v5(bus, ppid);
if (rc < 0)
return rc;
apid = rc;
switch (ch_type) {
case PMIC_ARB_CHANNEL_OBS:
offset = 0x10000 * pmic_arb->ee + 0x80 * apid;
break;
case PMIC_ARB_CHANNEL_RW:
if (bus->apid_data[apid].write_ee != pmic_arb->ee) {
dev_err(&bus->spmic->dev, "disallowed SPMI write to sid=%u, addr=0x%04X\n",
sid, addr);
return -EPERM;
}
offset = 0x10000 * apid;
break;
}
return offset;
}
static int pmic_arb_get_core_resources_v7(struct platform_device *pdev,
void __iomem *core)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
pmic_arb->core = core;
pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS_V7;
return pmic_arb_get_obsrvr_chnls_v2(pdev);
}
/*
* Only v7 supports 2 buses. Each bus will get a different apid count, read
* from different registers.
*/
static int pmic_arb_init_apid_v7(struct spmi_pmic_arb_bus *bus, int index)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
int ret;
if (index == 0) {
bus->base_apid = 0;
bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) &
PMIC_ARB_FEATURES_PERIPH_MASK;
} else if (index == 1) {
bus->base_apid = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) &
PMIC_ARB_FEATURES_PERIPH_MASK;
bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES1) &
PMIC_ARB_FEATURES_PERIPH_MASK;
} else {
dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n",
bus->id);
return -EINVAL;
}
if (bus->base_apid + bus->apid_count > pmic_arb->max_periphs) {
dev_err(&bus->spmic->dev, "Unsupported APID count %d detected\n",
bus->base_apid + bus->apid_count);
return -EINVAL;
}
ret = pmic_arb_init_apid_min_max(bus);
if (ret)
return ret;
ret = pmic_arb_read_apid_map_v5(bus);
if (ret) {
dev_err(&bus->spmic->dev, "could not read APID->PPID mapping table, rc= %d\n",
ret);
return ret;
}
return 0;
}
/*
* v7 offset per ee and per apid for observer channels and per apid for
* read/write channels.
*/
static int pmic_arb_offset_v7(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 apid;
int rc;
u32 offset = 0;
u16 ppid = (sid << 8) | (addr >> 8);
rc = pmic_arb->ver_ops->ppid_to_apid(bus, ppid);
if (rc < 0)
return rc;
apid = rc;
switch (ch_type) {
case PMIC_ARB_CHANNEL_OBS:
offset = 0x8000 * pmic_arb->ee + 0x20 * apid;
break;
case PMIC_ARB_CHANNEL_RW:
if (bus->apid_data[apid].write_ee != pmic_arb->ee) {
dev_err(&bus->spmic->dev, "disallowed SPMI write to sid=%u, addr=0x%04X\n",
sid, addr);
return -EPERM;
}
offset = 0x1000 * apid;
break;
}
return offset;
}
static u32 pmic_arb_fmt_cmd_v1(u8 opc, u8 sid, u16 addr, u8 bc)
{
return (opc << 27) | ((sid & 0xf) << 20) | (addr << 4) | (bc & 0x7);
}
static u32 pmic_arb_fmt_cmd_v2(u8 opc, u8 sid, u16 addr, u8 bc)
{
return (opc << 27) | ((addr & 0xff) << 4) | (bc & 0x7);
}
static void __iomem *
pmic_arb_owner_acc_status_v1(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x20 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_owner_acc_status_v2(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x100000 + 0x1000 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_owner_acc_status_v3(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x200000 + 0x1000 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_owner_acc_status_v5(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x10000 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_owner_acc_status_v7(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x1000 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_acc_enable_v1(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x200 + 0x4 * n;
}
static void __iomem *
pmic_arb_acc_enable_v2(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x1000 * n;
}
static void __iomem *
pmic_arb_acc_enable_v5(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x100 + 0x10000 * n;
}
static void __iomem *
pmic_arb_acc_enable_v7(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x100 + 0x1000 * n;
}
static void __iomem *
pmic_arb_irq_status_v1(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x600 + 0x4 * n;
}
static void __iomem *
pmic_arb_irq_status_v2(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x4 + 0x1000 * n;
}
static void __iomem *
pmic_arb_irq_status_v5(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x104 + 0x10000 * n;
}
static void __iomem *
pmic_arb_irq_status_v7(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x104 + 0x1000 * n;
}
static void __iomem *
pmic_arb_irq_clear_v1(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0xA00 + 0x4 * n;
}
static void __iomem *
pmic_arb_irq_clear_v2(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x8 + 0x1000 * n;
}
static void __iomem *
pmic_arb_irq_clear_v5(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x108 + 0x10000 * n;
}
static void __iomem *
pmic_arb_irq_clear_v7(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x108 + 0x1000 * n;
}
static u32 pmic_arb_apid_map_offset_v2(u16 n)
{
return 0x800 + 0x4 * n;
}
static u32 pmic_arb_apid_map_offset_v5(u16 n)
{
return 0x900 + 0x4 * n;
}
static u32 pmic_arb_apid_map_offset_v7(u16 n)
{
return 0x2000 + 0x4 * n;
}
static void __iomem *
pmic_arb_apid_owner_v2(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->cnfg + 0x700 + 0x4 * n;
}
/*
* For arbiter version 7, APID ownership table registers have independent
* numbering space for each SPMI bus instance, so each is indexed starting from
* 0.
*/
static void __iomem *
pmic_arb_apid_owner_v7(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->cnfg + 0x4 * (n - bus->base_apid);
}
static const struct pmic_arb_ver_ops pmic_arb_v1 = {
.ver_str = "v1",
.get_core_resources = pmic_arb_get_core_resources_v1,
.init_apid = pmic_arb_init_apid_v1,
.ppid_to_apid = pmic_arb_ppid_to_apid_v1,
.non_data_cmd = pmic_arb_non_data_cmd_v1,
.offset = pmic_arb_offset_v1,
.fmt_cmd = pmic_arb_fmt_cmd_v1,
.owner_acc_status = pmic_arb_owner_acc_status_v1,
.acc_enable = pmic_arb_acc_enable_v1,
.irq_status = pmic_arb_irq_status_v1,
.irq_clear = pmic_arb_irq_clear_v1,
.apid_map_offset = pmic_arb_apid_map_offset_v2,
.apid_owner = pmic_arb_apid_owner_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v2 = {
.ver_str = "v2",
.get_core_resources = pmic_arb_get_core_resources_v2,
.init_apid = pmic_arb_init_apid_v1,
.ppid_to_apid = pmic_arb_ppid_to_apid_v2,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v2,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v2,
.acc_enable = pmic_arb_acc_enable_v2,
.irq_status = pmic_arb_irq_status_v2,
.irq_clear = pmic_arb_irq_clear_v2,
.apid_map_offset = pmic_arb_apid_map_offset_v2,
.apid_owner = pmic_arb_apid_owner_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v3 = {
.ver_str = "v3",
.get_core_resources = pmic_arb_get_core_resources_v2,
.init_apid = pmic_arb_init_apid_v1,
.ppid_to_apid = pmic_arb_ppid_to_apid_v2,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v2,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v3,
.acc_enable = pmic_arb_acc_enable_v2,
.irq_status = pmic_arb_irq_status_v2,
.irq_clear = pmic_arb_irq_clear_v2,
.apid_map_offset = pmic_arb_apid_map_offset_v2,
.apid_owner = pmic_arb_apid_owner_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v5 = {
.ver_str = "v5",
.get_core_resources = pmic_arb_get_core_resources_v2,
.init_apid = pmic_arb_init_apid_v5,
.ppid_to_apid = pmic_arb_ppid_to_apid_v5,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v5,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v5,
.acc_enable = pmic_arb_acc_enable_v5,
.irq_status = pmic_arb_irq_status_v5,
.irq_clear = pmic_arb_irq_clear_v5,
.apid_map_offset = pmic_arb_apid_map_offset_v5,
.apid_owner = pmic_arb_apid_owner_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v7 = {
.ver_str = "v7",
.get_core_resources = pmic_arb_get_core_resources_v7,
.init_apid = pmic_arb_init_apid_v7,
.ppid_to_apid = pmic_arb_ppid_to_apid_v5,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v7,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v7,
.acc_enable = pmic_arb_acc_enable_v7,
.irq_status = pmic_arb_irq_status_v7,
.irq_clear = pmic_arb_irq_clear_v7,
.apid_map_offset = pmic_arb_apid_map_offset_v7,
.apid_owner = pmic_arb_apid_owner_v7,
};
static const struct irq_domain_ops pmic_arb_irq_domain_ops = {
.activate = qpnpint_irq_domain_activate,
.alloc = qpnpint_irq_domain_alloc,
.free = irq_domain_free_irqs_common,
.translate = qpnpint_irq_domain_translate,
};
static int spmi_pmic_arb_bus_init(struct platform_device *pdev,
struct device_node *node,
struct spmi_pmic_arb *pmic_arb)
{
int bus_index = pmic_arb->buses_available;
struct spmi_pmic_arb_bus *bus;
struct device *dev = &pdev->dev;
struct spmi_controller *ctrl;
void __iomem *intr;
void __iomem *cnfg;
int index, ret;
int irq;
ctrl = devm_spmi_controller_alloc(dev, sizeof(*bus));
if (IS_ERR(ctrl))
return PTR_ERR(ctrl);
ctrl->cmd = pmic_arb_cmd;
ctrl->read_cmd = pmic_arb_read_cmd;
ctrl->write_cmd = pmic_arb_write_cmd;
bus = spmi_controller_get_drvdata(ctrl);
pmic_arb->buses[bus_index] = bus;
raw_spin_lock_init(&bus->lock);
bus->ppid_to_apid = devm_kcalloc(dev, PMIC_ARB_MAX_PPID,
sizeof(*bus->ppid_to_apid),
GFP_KERNEL);
if (!bus->ppid_to_apid)
return -ENOMEM;
bus->apid_data = devm_kcalloc(dev, pmic_arb->max_periphs,
sizeof(*bus->apid_data),
GFP_KERNEL);
if (!bus->apid_data)
return -ENOMEM;
index = of_property_match_string(node, "reg-names", "cnfg");
if (index < 0) {
dev_err(dev, "cnfg reg region missing");
return -EINVAL;
}
cnfg = devm_of_iomap(dev, node, index, NULL);
if (IS_ERR(cnfg))
return PTR_ERR(cnfg);
index = of_property_match_string(node, "reg-names", "intr");
if (index < 0) {
dev_err(dev, "intr reg region missing");
return -EINVAL;
}
intr = devm_of_iomap(dev, node, index, NULL);
if (IS_ERR(intr))
return PTR_ERR(intr);
irq = of_irq_get_byname(node, "periph_irq");
if (irq <= 0)
return irq ?: -ENXIO;
bus->pmic_arb = pmic_arb;
bus->intr = intr;
bus->cnfg = cnfg;
bus->irq = irq;
bus->spmic = ctrl;
bus->id = bus_index;
ret = pmic_arb->ver_ops->init_apid(bus, bus_index);
if (ret)
return ret;
dev_dbg(&pdev->dev, "adding irq domain for bus %d\n", bus_index);
bus->domain = irq_domain_add_tree(dev->of_node,
&pmic_arb_irq_domain_ops, bus);
if (!bus->domain) {
dev_err(&pdev->dev, "unable to create irq_domain\n");
return -ENOMEM;
}
irq_set_chained_handler_and_data(bus->irq,
pmic_arb_chained_irq, bus);
ctrl->dev.of_node = node;
dev_set_name(&ctrl->dev, "spmi-%d", bus_index);
ret = devm_spmi_controller_add(dev, ctrl);
if (ret)
return ret;
pmic_arb->buses_available++;
return 0;
}
static int spmi_pmic_arb_register_buses(struct spmi_pmic_arb *pmic_arb,
struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct device_node *child;
int ret;
/* legacy mode doesn't provide child node for the bus */
if (of_device_is_compatible(node, "qcom,spmi-pmic-arb"))
return spmi_pmic_arb_bus_init(pdev, node, pmic_arb);
for_each_available_child_of_node(node, child) {
if (of_node_name_eq(child, "spmi")) {
ret = spmi_pmic_arb_bus_init(pdev, child, pmic_arb);
if (ret)
return ret;
}
}
return ret;
}
static void spmi_pmic_arb_deregister_buses(struct spmi_pmic_arb *pmic_arb)
{
int i;
for (i = 0; i < pmic_arb->buses_available; i++) {
struct spmi_pmic_arb_bus *bus = pmic_arb->buses[i];
irq_set_chained_handler_and_data(bus->irq,
NULL, NULL);
irq_domain_remove(bus->domain);
}
}
static int spmi_pmic_arb_probe(struct platform_device *pdev)
{
struct spmi_pmic_arb *pmic_arb;
struct device *dev = &pdev->dev;
struct resource *res;
void __iomem *core;
u32 channel, ee, hw_ver;
int err;
pmic_arb = devm_kzalloc(dev, sizeof(*pmic_arb), GFP_KERNEL);
if (!pmic_arb)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core");
core = devm_ioremap(dev, res->start, resource_size(res));
if (!core)
return -ENOMEM;
pmic_arb->core_size = resource_size(res);
platform_set_drvdata(pdev, pmic_arb);
hw_ver = readl_relaxed(core + PMIC_ARB_VERSION);
if (hw_ver < PMIC_ARB_VERSION_V2_MIN)
pmic_arb->ver_ops = &pmic_arb_v1;
else if (hw_ver < PMIC_ARB_VERSION_V3_MIN)
pmic_arb->ver_ops = &pmic_arb_v2;
else if (hw_ver < PMIC_ARB_VERSION_V5_MIN)
pmic_arb->ver_ops = &pmic_arb_v3;
else if (hw_ver < PMIC_ARB_VERSION_V7_MIN)
pmic_arb->ver_ops = &pmic_arb_v5;
else
pmic_arb->ver_ops = &pmic_arb_v7;
err = pmic_arb->ver_ops->get_core_resources(pdev, core);
if (err)
return err;
dev_info(dev, "PMIC arbiter version %s (0x%x)\n",
pmic_arb->ver_ops->ver_str, hw_ver);
err = of_property_read_u32(pdev->dev.of_node, "qcom,channel", &channel);
if (err) {
dev_err(&pdev->dev, "channel unspecified.\n");
return err;
}
if (channel > 5) {
dev_err(&pdev->dev, "invalid channel (%u) specified.\n",
channel);
return -EINVAL;
}
pmic_arb->channel = channel;
err = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &ee);
if (err) {
dev_err(&pdev->dev, "EE unspecified.\n");
return err;
}
if (ee > 5) {
dev_err(&pdev->dev, "invalid EE (%u) specified\n", ee);
return -EINVAL;
}
pmic_arb->ee = ee;
return spmi_pmic_arb_register_buses(pmic_arb, pdev);
}
static void spmi_pmic_arb_remove(struct platform_device *pdev)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
spmi_pmic_arb_deregister_buses(pmic_arb);
}
static const struct of_device_id spmi_pmic_arb_match_table[] = {
{ .compatible = "qcom,spmi-pmic-arb", },
{ .compatible = "qcom,x1e80100-spmi-pmic-arb", },
{},
};
MODULE_DEVICE_TABLE(of, spmi_pmic_arb_match_table);
static struct platform_driver spmi_pmic_arb_driver = {
.probe = spmi_pmic_arb_probe,
.remove_new = spmi_pmic_arb_remove,
.driver = {
.name = "spmi_pmic_arb",
.of_match_table = spmi_pmic_arb_match_table,
},
};
module_platform_driver(spmi_pmic_arb_driver);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spmi_pmic_arb");