linux/arch/arm/mach-omap2/prm_common.c
Keerthy 8740a1444e ARM: PRM: AM437x: Enable IO wakeup feature
Enable IO wakeup feature. This enables am437x pads to generate daisy
chained wake ups(eventually generates aprcm Interrupt) especially
when in low power modes.

Signed-off-by: Keerthy <j-keerthy@ti.com>
Reviewed-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Paul Walmsley <paul@pwsan.com>
2015-07-23 06:13:52 -06:00

819 lines
22 KiB
C

/*
* OMAP2+ common Power & Reset Management (PRM) IP block functions
*
* Copyright (C) 2011 Texas Instruments, Inc.
* Tero Kristo <t-kristo@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*
* For historical purposes, the API used to configure the PRM
* interrupt handler refers to it as the "PRCM interrupt." The
* underlying registers are located in the PRM on OMAP3/4.
*
* XXX This code should eventually be moved to a PRM driver.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/clk-provider.h>
#include <linux/clk/ti.h>
#include "soc.h"
#include "prm2xxx_3xxx.h"
#include "prm2xxx.h"
#include "prm3xxx.h"
#include "prm33xx.h"
#include "prm44xx.h"
#include "prm54xx.h"
#include "prm7xx.h"
#include "prcm43xx.h"
#include "common.h"
#include "clock.h"
#include "cm.h"
#include "control.h"
/*
* OMAP_PRCM_MAX_NR_PENDING_REG: maximum number of PRM_IRQ*_MPU regs
* XXX this is technically not needed, since
* omap_prcm_register_chain_handler() could allocate this based on the
* actual amount of memory needed for the SoC
*/
#define OMAP_PRCM_MAX_NR_PENDING_REG 2
/*
* prcm_irq_chips: an array of all of the "generic IRQ chips" in use
* by the PRCM interrupt handler code. There will be one 'chip' per
* PRM_{IRQSTATUS,IRQENABLE}_MPU register pair. (So OMAP3 will have
* one "chip" and OMAP4 will have two.)
*/
static struct irq_chip_generic **prcm_irq_chips;
/*
* prcm_irq_setup: the PRCM IRQ parameters for the hardware the code
* is currently running on. Defined and passed by initialization code
* that calls omap_prcm_register_chain_handler().
*/
static struct omap_prcm_irq_setup *prcm_irq_setup;
/* prm_base: base virtual address of the PRM IP block */
void __iomem *prm_base;
u16 prm_features;
/*
* prm_ll_data: function pointers to SoC-specific implementations of
* common PRM functions
*/
static struct prm_ll_data null_prm_ll_data;
static struct prm_ll_data *prm_ll_data = &null_prm_ll_data;
/* Private functions */
/*
* Move priority events from events to priority_events array
*/
static void omap_prcm_events_filter_priority(unsigned long *events,
unsigned long *priority_events)
{
int i;
for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
priority_events[i] =
events[i] & prcm_irq_setup->priority_mask[i];
events[i] ^= priority_events[i];
}
}
/*
* PRCM Interrupt Handler
*
* This is a common handler for the OMAP PRCM interrupts. Pending
* interrupts are detected by a call to prcm_pending_events and
* dispatched accordingly. Clearing of the wakeup events should be
* done by the SoC specific individual handlers.
*/
static void omap_prcm_irq_handler(unsigned int irq, struct irq_desc *desc)
{
unsigned long pending[OMAP_PRCM_MAX_NR_PENDING_REG];
unsigned long priority_pending[OMAP_PRCM_MAX_NR_PENDING_REG];
struct irq_chip *chip = irq_desc_get_chip(desc);
unsigned int virtirq;
int nr_irq = prcm_irq_setup->nr_regs * 32;
/*
* If we are suspended, mask all interrupts from PRCM level,
* this does not ack them, and they will be pending until we
* re-enable the interrupts, at which point the
* omap_prcm_irq_handler will be executed again. The
* _save_and_clear_irqen() function must ensure that the PRM
* write to disable all IRQs has reached the PRM before
* returning, or spurious PRCM interrupts may occur during
* suspend.
*/
if (prcm_irq_setup->suspended) {
prcm_irq_setup->save_and_clear_irqen(prcm_irq_setup->saved_mask);
prcm_irq_setup->suspend_save_flag = true;
}
/*
* Loop until all pending irqs are handled, since
* generic_handle_irq() can cause new irqs to come
*/
while (!prcm_irq_setup->suspended) {
prcm_irq_setup->read_pending_irqs(pending);
/* No bit set, then all IRQs are handled */
if (find_first_bit(pending, nr_irq) >= nr_irq)
break;
omap_prcm_events_filter_priority(pending, priority_pending);
/*
* Loop on all currently pending irqs so that new irqs
* cannot starve previously pending irqs
*/
/* Serve priority events first */
for_each_set_bit(virtirq, priority_pending, nr_irq)
generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
/* Serve normal events next */
for_each_set_bit(virtirq, pending, nr_irq)
generic_handle_irq(prcm_irq_setup->base_irq + virtirq);
}
if (chip->irq_ack)
chip->irq_ack(&desc->irq_data);
if (chip->irq_eoi)
chip->irq_eoi(&desc->irq_data);
chip->irq_unmask(&desc->irq_data);
prcm_irq_setup->ocp_barrier(); /* avoid spurious IRQs */
}
/* Public functions */
/**
* omap_prcm_event_to_irq - given a PRCM event name, returns the
* corresponding IRQ on which the handler should be registered
* @name: name of the PRCM interrupt bit to look up - see struct omap_prcm_irq
*
* Returns the Linux internal IRQ ID corresponding to @name upon success,
* or -ENOENT upon failure.
*/
int omap_prcm_event_to_irq(const char *name)
{
int i;
if (!prcm_irq_setup || !name)
return -ENOENT;
for (i = 0; i < prcm_irq_setup->nr_irqs; i++)
if (!strcmp(prcm_irq_setup->irqs[i].name, name))
return prcm_irq_setup->base_irq +
prcm_irq_setup->irqs[i].offset;
return -ENOENT;
}
/**
* omap_prcm_irq_cleanup - reverses memory allocated and other steps
* done by omap_prcm_register_chain_handler()
*
* No return value.
*/
void omap_prcm_irq_cleanup(void)
{
unsigned int irq;
int i;
if (!prcm_irq_setup) {
pr_err("PRCM: IRQ handler not initialized; cannot cleanup\n");
return;
}
if (prcm_irq_chips) {
for (i = 0; i < prcm_irq_setup->nr_regs; i++) {
if (prcm_irq_chips[i])
irq_remove_generic_chip(prcm_irq_chips[i],
0xffffffff, 0, 0);
prcm_irq_chips[i] = NULL;
}
kfree(prcm_irq_chips);
prcm_irq_chips = NULL;
}
kfree(prcm_irq_setup->saved_mask);
prcm_irq_setup->saved_mask = NULL;
kfree(prcm_irq_setup->priority_mask);
prcm_irq_setup->priority_mask = NULL;
if (prcm_irq_setup->xlate_irq)
irq = prcm_irq_setup->xlate_irq(prcm_irq_setup->irq);
else
irq = prcm_irq_setup->irq;
irq_set_chained_handler(irq, NULL);
if (prcm_irq_setup->base_irq > 0)
irq_free_descs(prcm_irq_setup->base_irq,
prcm_irq_setup->nr_regs * 32);
prcm_irq_setup->base_irq = 0;
}
void omap_prcm_irq_prepare(void)
{
prcm_irq_setup->suspended = true;
}
void omap_prcm_irq_complete(void)
{
prcm_irq_setup->suspended = false;
/* If we have not saved the masks, do not attempt to restore */
if (!prcm_irq_setup->suspend_save_flag)
return;
prcm_irq_setup->suspend_save_flag = false;
/*
* Re-enable all masked PRCM irq sources, this causes the PRCM
* interrupt to fire immediately if the events were masked
* previously in the chain handler
*/
prcm_irq_setup->restore_irqen(prcm_irq_setup->saved_mask);
}
/**
* omap_prcm_register_chain_handler - initializes the prcm chained interrupt
* handler based on provided parameters
* @irq_setup: hardware data about the underlying PRM/PRCM
*
* Set up the PRCM chained interrupt handler on the PRCM IRQ. Sets up
* one generic IRQ chip per PRM interrupt status/enable register pair.
* Returns 0 upon success, -EINVAL if called twice or if invalid
* arguments are passed, or -ENOMEM on any other error.
*/
int omap_prcm_register_chain_handler(struct omap_prcm_irq_setup *irq_setup)
{
int nr_regs;
u32 mask[OMAP_PRCM_MAX_NR_PENDING_REG];
int offset, i;
struct irq_chip_generic *gc;
struct irq_chip_type *ct;
unsigned int irq;
if (!irq_setup)
return -EINVAL;
nr_regs = irq_setup->nr_regs;
if (prcm_irq_setup) {
pr_err("PRCM: already initialized; won't reinitialize\n");
return -EINVAL;
}
if (nr_regs > OMAP_PRCM_MAX_NR_PENDING_REG) {
pr_err("PRCM: nr_regs too large\n");
return -EINVAL;
}
prcm_irq_setup = irq_setup;
prcm_irq_chips = kzalloc(sizeof(void *) * nr_regs, GFP_KERNEL);
prcm_irq_setup->saved_mask = kzalloc(sizeof(u32) * nr_regs, GFP_KERNEL);
prcm_irq_setup->priority_mask = kzalloc(sizeof(u32) * nr_regs,
GFP_KERNEL);
if (!prcm_irq_chips || !prcm_irq_setup->saved_mask ||
!prcm_irq_setup->priority_mask) {
pr_err("PRCM: kzalloc failed\n");
goto err;
}
memset(mask, 0, sizeof(mask));
for (i = 0; i < irq_setup->nr_irqs; i++) {
offset = irq_setup->irqs[i].offset;
mask[offset >> 5] |= 1 << (offset & 0x1f);
if (irq_setup->irqs[i].priority)
irq_setup->priority_mask[offset >> 5] |=
1 << (offset & 0x1f);
}
if (irq_setup->xlate_irq)
irq = irq_setup->xlate_irq(irq_setup->irq);
else
irq = irq_setup->irq;
irq_set_chained_handler(irq, omap_prcm_irq_handler);
irq_setup->base_irq = irq_alloc_descs(-1, 0, irq_setup->nr_regs * 32,
0);
if (irq_setup->base_irq < 0) {
pr_err("PRCM: failed to allocate irq descs: %d\n",
irq_setup->base_irq);
goto err;
}
for (i = 0; i < irq_setup->nr_regs; i++) {
gc = irq_alloc_generic_chip("PRCM", 1,
irq_setup->base_irq + i * 32, prm_base,
handle_level_irq);
if (!gc) {
pr_err("PRCM: failed to allocate generic chip\n");
goto err;
}
ct = gc->chip_types;
ct->chip.irq_ack = irq_gc_ack_set_bit;
ct->chip.irq_mask = irq_gc_mask_clr_bit;
ct->chip.irq_unmask = irq_gc_mask_set_bit;
ct->regs.ack = irq_setup->ack + i * 4;
ct->regs.mask = irq_setup->mask + i * 4;
irq_setup_generic_chip(gc, mask[i], 0, IRQ_NOREQUEST, 0);
prcm_irq_chips[i] = gc;
}
if (of_have_populated_dt()) {
int irq = omap_prcm_event_to_irq("io");
omap_pcs_legacy_init(irq, irq_setup->reconfigure_io_chain);
}
return 0;
err:
omap_prcm_irq_cleanup();
return -ENOMEM;
}
/**
* omap2_set_globals_prm - set the PRM base address (for early use)
* @prm: PRM base virtual address
*
* XXX Will be replaced when the PRM/CM drivers are completed.
*/
void __init omap2_set_globals_prm(void __iomem *prm)
{
prm_base = prm;
}
/**
* prm_read_reset_sources - return the sources of the SoC's last reset
*
* Return a u32 bitmask representing the reset sources that caused the
* SoC to reset. The low-level per-SoC functions called by this
* function remap the SoC-specific reset source bits into an
* OMAP-common set of reset source bits, defined in
* arch/arm/mach-omap2/prm.h. Returns the standardized reset source
* u32 bitmask from the hardware upon success, or returns (1 <<
* OMAP_UNKNOWN_RST_SRC_ID_SHIFT) if no low-level read_reset_sources()
* function was registered.
*/
u32 prm_read_reset_sources(void)
{
u32 ret = 1 << OMAP_UNKNOWN_RST_SRC_ID_SHIFT;
if (prm_ll_data->read_reset_sources)
ret = prm_ll_data->read_reset_sources();
else
WARN_ONCE(1, "prm: %s: no mapping function defined for reset sources\n", __func__);
return ret;
}
/**
* prm_was_any_context_lost_old - was device context lost? (old API)
* @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
* @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
* @idx: CONTEXT register offset
*
* Return 1 if any bits were set in the *_CONTEXT_* register
* identified by (@part, @inst, @idx), which means that some context
* was lost for that module; otherwise, return 0. XXX Deprecated;
* callers need to use a less-SoC-dependent way to identify hardware
* IP blocks.
*/
bool prm_was_any_context_lost_old(u8 part, s16 inst, u16 idx)
{
bool ret = true;
if (prm_ll_data->was_any_context_lost_old)
ret = prm_ll_data->was_any_context_lost_old(part, inst, idx);
else
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
return ret;
}
/**
* prm_clear_context_lost_flags_old - clear context loss flags (old API)
* @part: PRM partition ID (e.g., OMAP4430_PRM_PARTITION)
* @inst: PRM instance offset (e.g., OMAP4430_PRM_MPU_INST)
* @idx: CONTEXT register offset
*
* Clear hardware context loss bits for the module identified by
* (@part, @inst, @idx). No return value. XXX Deprecated; callers
* need to use a less-SoC-dependent way to identify hardware IP
* blocks.
*/
void prm_clear_context_loss_flags_old(u8 part, s16 inst, u16 idx)
{
if (prm_ll_data->clear_context_loss_flags_old)
prm_ll_data->clear_context_loss_flags_old(part, inst, idx);
else
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
}
/**
* omap_prm_assert_hardreset - assert hardreset for an IP block
* @shift: register bit shift corresponding to the reset line
* @part: PRM partition
* @prm_mod: PRM submodule base or instance offset
* @offset: register offset
*
* Asserts a hardware reset line for an IP block.
*/
int omap_prm_assert_hardreset(u8 shift, u8 part, s16 prm_mod, u16 offset)
{
if (!prm_ll_data->assert_hardreset) {
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
return -EINVAL;
}
return prm_ll_data->assert_hardreset(shift, part, prm_mod, offset);
}
/**
* omap_prm_deassert_hardreset - deassert hardreset for an IP block
* @shift: register bit shift corresponding to the reset line
* @st_shift: reset status bit shift corresponding to the reset line
* @part: PRM partition
* @prm_mod: PRM submodule base or instance offset
* @offset: register offset
* @st_offset: status register offset
*
* Deasserts a hardware reset line for an IP block.
*/
int omap_prm_deassert_hardreset(u8 shift, u8 st_shift, u8 part, s16 prm_mod,
u16 offset, u16 st_offset)
{
if (!prm_ll_data->deassert_hardreset) {
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
return -EINVAL;
}
return prm_ll_data->deassert_hardreset(shift, st_shift, part, prm_mod,
offset, st_offset);
}
/**
* omap_prm_is_hardreset_asserted - check the hardreset status for an IP block
* @shift: register bit shift corresponding to the reset line
* @part: PRM partition
* @prm_mod: PRM submodule base or instance offset
* @offset: register offset
*
* Checks if a hardware reset line for an IP block is enabled or not.
*/
int omap_prm_is_hardreset_asserted(u8 shift, u8 part, s16 prm_mod, u16 offset)
{
if (!prm_ll_data->is_hardreset_asserted) {
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
return -EINVAL;
}
return prm_ll_data->is_hardreset_asserted(shift, part, prm_mod, offset);
}
/**
* omap_prm_reconfigure_io_chain - clear latches and reconfigure I/O chain
*
* Clear any previously-latched I/O wakeup events and ensure that the
* I/O wakeup gates are aligned with the current mux settings.
* Calls SoC specific I/O chain reconfigure function if available,
* otherwise does nothing.
*/
void omap_prm_reconfigure_io_chain(void)
{
if (!prcm_irq_setup || !prcm_irq_setup->reconfigure_io_chain)
return;
prcm_irq_setup->reconfigure_io_chain();
}
/**
* omap_prm_reset_system - trigger global SW reset
*
* Triggers SoC specific global warm reset to reboot the device.
*/
void omap_prm_reset_system(void)
{
if (!prm_ll_data->reset_system) {
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
return;
}
prm_ll_data->reset_system();
while (1)
cpu_relax();
}
/**
* omap_prm_clear_mod_irqs - clear wake-up events from PRCM interrupt
* @module: PRM module to clear wakeups from
* @regs: register to clear
* @wkst_mask: wkst bits to clear
*
* Clears any wakeup events for the module and register set defined.
* Uses SoC specific implementation to do the actual wakeup status
* clearing.
*/
int omap_prm_clear_mod_irqs(s16 module, u8 regs, u32 wkst_mask)
{
if (!prm_ll_data->clear_mod_irqs) {
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
return -EINVAL;
}
return prm_ll_data->clear_mod_irqs(module, regs, wkst_mask);
}
/**
* omap_prm_vp_check_txdone - check voltage processor TX done status
*
* Checks if voltage processor transmission has been completed.
* Returns non-zero if a transmission has completed, 0 otherwise.
*/
u32 omap_prm_vp_check_txdone(u8 vp_id)
{
if (!prm_ll_data->vp_check_txdone) {
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
return 0;
}
return prm_ll_data->vp_check_txdone(vp_id);
}
/**
* omap_prm_vp_clear_txdone - clears voltage processor TX done status
*
* Clears the status bit for completed voltage processor transmission
* returned by prm_vp_check_txdone.
*/
void omap_prm_vp_clear_txdone(u8 vp_id)
{
if (!prm_ll_data->vp_clear_txdone) {
WARN_ONCE(1, "prm: %s: no mapping function defined\n",
__func__);
return;
}
prm_ll_data->vp_clear_txdone(vp_id);
}
/**
* prm_register - register per-SoC low-level data with the PRM
* @pld: low-level per-SoC OMAP PRM data & function pointers to register
*
* Register per-SoC low-level OMAP PRM data and function pointers with
* the OMAP PRM common interface. The caller must keep the data
* pointed to by @pld valid until it calls prm_unregister() and
* it returns successfully. Returns 0 upon success, -EINVAL if @pld
* is NULL, or -EEXIST if prm_register() has already been called
* without an intervening prm_unregister().
*/
int prm_register(struct prm_ll_data *pld)
{
if (!pld)
return -EINVAL;
if (prm_ll_data != &null_prm_ll_data)
return -EEXIST;
prm_ll_data = pld;
return 0;
}
/**
* prm_unregister - unregister per-SoC low-level data & function pointers
* @pld: low-level per-SoC OMAP PRM data & function pointers to unregister
*
* Unregister per-SoC low-level OMAP PRM data and function pointers
* that were previously registered with prm_register(). The
* caller may not destroy any of the data pointed to by @pld until
* this function returns successfully. Returns 0 upon success, or
* -EINVAL if @pld is NULL or if @pld does not match the struct
* prm_ll_data * previously registered by prm_register().
*/
int prm_unregister(struct prm_ll_data *pld)
{
if (!pld || prm_ll_data != pld)
return -EINVAL;
prm_ll_data = &null_prm_ll_data;
return 0;
}
#ifdef CONFIG_ARCH_OMAP2
static struct omap_prcm_init_data omap2_prm_data __initdata = {
.index = TI_CLKM_PRM,
.init = omap2xxx_prm_init,
};
#endif
#ifdef CONFIG_ARCH_OMAP3
static struct omap_prcm_init_data omap3_prm_data __initdata = {
.index = TI_CLKM_PRM,
.init = omap3xxx_prm_init,
/*
* IVA2 offset is a negative value, must offset the prm_base
* address by this to get it to positive
*/
.offset = -OMAP3430_IVA2_MOD,
};
#endif
#if defined(CONFIG_SOC_AM33XX) || defined(CONFIG_SOC_TI81XX)
static struct omap_prcm_init_data am3_prm_data __initdata = {
.index = TI_CLKM_PRM,
.init = am33xx_prm_init,
};
#endif
#ifdef CONFIG_ARCH_OMAP4
static struct omap_prcm_init_data omap4_prm_data __initdata = {
.index = TI_CLKM_PRM,
.init = omap44xx_prm_init,
.device_inst_offset = OMAP4430_PRM_DEVICE_INST,
.flags = PRM_HAS_IO_WAKEUP | PRM_HAS_VOLTAGE | PRM_IRQ_DEFAULT,
};
#endif
#ifdef CONFIG_SOC_OMAP5
static struct omap_prcm_init_data omap5_prm_data __initdata = {
.index = TI_CLKM_PRM,
.init = omap44xx_prm_init,
.device_inst_offset = OMAP54XX_PRM_DEVICE_INST,
.flags = PRM_HAS_IO_WAKEUP | PRM_HAS_VOLTAGE,
};
#endif
#ifdef CONFIG_SOC_DRA7XX
static struct omap_prcm_init_data dra7_prm_data __initdata = {
.index = TI_CLKM_PRM,
.init = omap44xx_prm_init,
.device_inst_offset = DRA7XX_PRM_DEVICE_INST,
.flags = PRM_HAS_IO_WAKEUP,
};
#endif
#ifdef CONFIG_SOC_AM43XX
static struct omap_prcm_init_data am4_prm_data __initdata = {
.index = TI_CLKM_PRM,
.init = omap44xx_prm_init,
.device_inst_offset = AM43XX_PRM_DEVICE_INST,
.flags = PRM_HAS_IO_WAKEUP,
};
#endif
#if defined(CONFIG_ARCH_OMAP4) || defined(CONFIG_SOC_OMAP5)
static struct omap_prcm_init_data scrm_data __initdata = {
.index = TI_CLKM_SCRM,
};
#endif
static const struct of_device_id omap_prcm_dt_match_table[] __initconst = {
#ifdef CONFIG_SOC_AM33XX
{ .compatible = "ti,am3-prcm", .data = &am3_prm_data },
#endif
#ifdef CONFIG_SOC_AM43XX
{ .compatible = "ti,am4-prcm", .data = &am4_prm_data },
#endif
#ifdef CONFIG_SOC_TI81XX
{ .compatible = "ti,dm814-prcm", .data = &am3_prm_data },
{ .compatible = "ti,dm816-prcm", .data = &am3_prm_data },
#endif
#ifdef CONFIG_ARCH_OMAP2
{ .compatible = "ti,omap2-prcm", .data = &omap2_prm_data },
#endif
#ifdef CONFIG_ARCH_OMAP3
{ .compatible = "ti,omap3-prm", .data = &omap3_prm_data },
#endif
#ifdef CONFIG_ARCH_OMAP4
{ .compatible = "ti,omap4-prm", .data = &omap4_prm_data },
{ .compatible = "ti,omap4-scrm", .data = &scrm_data },
#endif
#ifdef CONFIG_SOC_OMAP5
{ .compatible = "ti,omap5-prm", .data = &omap5_prm_data },
{ .compatible = "ti,omap5-scrm", .data = &scrm_data },
#endif
#ifdef CONFIG_SOC_DRA7XX
{ .compatible = "ti,dra7-prm", .data = &dra7_prm_data },
#endif
{ }
};
/**
* omap2_prm_base_init - initialize iomappings for the PRM driver
*
* Detects and initializes the iomappings for the PRM driver, based
* on the DT data. Returns 0 in success, negative error value
* otherwise.
*/
int __init omap2_prm_base_init(void)
{
struct device_node *np;
const struct of_device_id *match;
struct omap_prcm_init_data *data;
void __iomem *mem;
for_each_matching_node_and_match(np, omap_prcm_dt_match_table, &match) {
data = (struct omap_prcm_init_data *)match->data;
mem = of_iomap(np, 0);
if (!mem)
return -ENOMEM;
if (data->index == TI_CLKM_PRM)
prm_base = mem + data->offset;
data->mem = mem;
data->np = np;
if (data->init)
data->init(data);
}
return 0;
}
int __init omap2_prcm_base_init(void)
{
int ret;
ret = omap2_prm_base_init();
if (ret)
return ret;
return omap2_cm_base_init();
}
/**
* omap_prcm_init - low level init for the PRCM drivers
*
* Initializes the low level clock infrastructure for PRCM drivers.
* Returns 0 in success, negative error value in failure.
*/
int __init omap_prcm_init(void)
{
struct device_node *np;
const struct of_device_id *match;
const struct omap_prcm_init_data *data;
int ret;
for_each_matching_node_and_match(np, omap_prcm_dt_match_table, &match) {
data = match->data;
ret = omap2_clk_provider_init(np, data->index, NULL, data->mem);
if (ret)
return ret;
}
omap_cm_init();
return 0;
}
static int __init prm_late_init(void)
{
if (prm_ll_data->late_init)
return prm_ll_data->late_init();
return 0;
}
subsys_initcall(prm_late_init);