linux/arch/arm64/kernel/mte.c
Linus Torvalds ecae0bd517 Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
 
 - Kemeng Shi has contributed some compation maintenance work in the
   series "Fixes and cleanups to compaction".
 
 - Joel Fernandes has a patchset ("Optimize mremap during mutual
   alignment within PMD") which fixes an obscure issue with mremap()'s
   pagetable handling during a subsequent exec(), based upon an
   implementation which Linus suggested.
 
 - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
   following patch series:
 
 	mm/damon: misc fixups for documents, comments and its tracepoint
 	mm/damon: add a tracepoint for damos apply target regions
 	mm/damon: provide pseudo-moving sum based access rate
 	mm/damon: implement DAMOS apply intervals
 	mm/damon/core-test: Fix memory leaks in core-test
 	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
 
 - In the series "Do not try to access unaccepted memory" Adrian Hunter
   provides some fixups for the recently-added "unaccepted memory' feature.
   To increase the feature's checking coverage.  "Plug a few gaps where
   RAM is exposed without checking if it is unaccepted memory".
 
 - In the series "cleanups for lockless slab shrink" Qi Zheng has done
   some maintenance work which is preparation for the lockless slab
   shrinking code.
 
 - Qi Zheng has redone the earlier (and reverted) attempt to make slab
   shrinking lockless in the series "use refcount+RCU method to implement
   lockless slab shrink".
 
 - David Hildenbrand contributes some maintenance work for the rmap code
   in the series "Anon rmap cleanups".
 
 - Kefeng Wang does more folio conversions and some maintenance work in
   the migration code.  Series "mm: migrate: more folio conversion and
   unification".
 
 - Matthew Wilcox has fixed an issue in the buffer_head code which was
   causing long stalls under some heavy memory/IO loads.  Some cleanups
   were added on the way.  Series "Add and use bdev_getblk()".
 
 - In the series "Use nth_page() in place of direct struct page
   manipulation" Zi Yan has fixed a potential issue with the direct
   manipulation of hugetlb page frames.
 
 - In the series "mm: hugetlb: Skip initialization of gigantic tail
   struct pages if freed by HVO" has improved our handling of gigantic
   pages in the hugetlb vmmemmep optimizaton code.  This provides
   significant boot time improvements when significant amounts of gigantic
   pages are in use.
 
 - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
   rationalization and folio conversions in the hugetlb code.
 
 - Yin Fengwei has improved mlock()'s handling of large folios in the
   series "support large folio for mlock"
 
 - In the series "Expose swapcache stat for memcg v1" Liu Shixin has
   added statistics for memcg v1 users which are available (and useful)
   under memcg v2.
 
 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
   prctl so that userspace may direct the kernel to not automatically
   propagate the denial to child processes.  The series is named "MDWE
   without inheritance".
 
 - Kefeng Wang has provided the series "mm: convert numa balancing
   functions to use a folio" which does what it says.
 
 - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
   makes is possible for a process to propagate KSM treatment across
   exec().
 
 - Huang Ying has enhanced memory tiering's calculation of memory
   distances.  This is used to permit the dax/kmem driver to use "high
   bandwidth memory" in addition to Optane Data Center Persistent Memory
   Modules (DCPMM).  The series is named "memory tiering: calculate
   abstract distance based on ACPI HMAT"
 
 - In the series "Smart scanning mode for KSM" Stefan Roesch has
   optimized KSM by teaching it to retain and use some historical
   information from previous scans.
 
 - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
   series "mm: memcg: fix tracking of pending stats updates values".
 
 - In the series "Implement IOCTL to get and optionally clear info about
   PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
   us to atomically read-then-clear page softdirty state.  This is mainly
   used by CRIU.
 
 - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
   - a bunch of relatively minor maintenance tweaks to this code.
 
 - Matthew Wilcox has increased the use of the VMA lock over file-backed
   page faults in the series "Handle more faults under the VMA lock".  Some
   rationalizations of the fault path became possible as a result.
 
 - In the series "mm/rmap: convert page_move_anon_rmap() to
   folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
   and folio conversions.
 
 - In the series "various improvements to the GUP interface" Lorenzo
   Stoakes has simplified and improved the GUP interface with an eye to
   providing groundwork for future improvements.
 
 - Andrey Konovalov has sent along the series "kasan: assorted fixes and
   improvements" which does those things.
 
 - Some page allocator maintenance work from Kemeng Shi in the series
   "Two minor cleanups to break_down_buddy_pages".
 
 - In thes series "New selftest for mm" Breno Leitao has developed
   another MM self test which tickles a race we had between madvise() and
   page faults.
 
 - In the series "Add folio_end_read" Matthew Wilcox provides cleanups
   and an optimization to the core pagecache code.
 
 - Nhat Pham has added memcg accounting for hugetlb memory in the series
   "hugetlb memcg accounting".
 
 - Cleanups and rationalizations to the pagemap code from Lorenzo
   Stoakes, in the series "Abstract vma_merge() and split_vma()".
 
 - Audra Mitchell has fixed issues in the procfs page_owner code's new
   timestamping feature which was causing some misbehaviours.  In the
   series "Fix page_owner's use of free timestamps".
 
 - Lorenzo Stoakes has fixed the handling of new mappings of sealed files
   in the series "permit write-sealed memfd read-only shared mappings".
 
 - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
   series "Batch hugetlb vmemmap modification operations".
 
 - Some buffer_head folio conversions and cleanups from Matthew Wilcox in
   the series "Finish the create_empty_buffers() transition".
 
 - As a page allocator performance optimization Huang Ying has added
   automatic tuning to the allocator's per-cpu-pages feature, in the series
   "mm: PCP high auto-tuning".
 
 - Roman Gushchin has contributed the patchset "mm: improve performance
   of accounted kernel memory allocations" which improves their performance
   by ~30% as measured by a micro-benchmark.
 
 - folio conversions from Kefeng Wang in the series "mm: convert page
   cpupid functions to folios".
 
 - Some kmemleak fixups in Liu Shixin's series "Some bugfix about
   kmemleak".
 
 - Qi Zheng has improved our handling of memoryless nodes by keeping them
   off the allocation fallback list.  This is done in the series "handle
   memoryless nodes more appropriately".
 
 - khugepaged conversions from Vishal Moola in the series "Some
   khugepaged folio conversions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
 jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
 FgeUPAD1oasg6CP+INZvCj34waNxwAc=
 =E+Y4
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Kemeng Shi has contributed some compation maintenance work in the
     series 'Fixes and cleanups to compaction'

   - Joel Fernandes has a patchset ('Optimize mremap during mutual
     alignment within PMD') which fixes an obscure issue with mremap()'s
     pagetable handling during a subsequent exec(), based upon an
     implementation which Linus suggested

   - More DAMON/DAMOS maintenance and feature work from SeongJae Park i
     the following patch series:

	mm/damon: misc fixups for documents, comments and its tracepoint
	mm/damon: add a tracepoint for damos apply target regions
	mm/damon: provide pseudo-moving sum based access rate
	mm/damon: implement DAMOS apply intervals
	mm/damon/core-test: Fix memory leaks in core-test
	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval

   - In the series 'Do not try to access unaccepted memory' Adrian
     Hunter provides some fixups for the recently-added 'unaccepted
     memory' feature. To increase the feature's checking coverage. 'Plug
     a few gaps where RAM is exposed without checking if it is
     unaccepted memory'

   - In the series 'cleanups for lockless slab shrink' Qi Zheng has done
     some maintenance work which is preparation for the lockless slab
     shrinking code

   - Qi Zheng has redone the earlier (and reverted) attempt to make slab
     shrinking lockless in the series 'use refcount+RCU method to
     implement lockless slab shrink'

   - David Hildenbrand contributes some maintenance work for the rmap
     code in the series 'Anon rmap cleanups'

   - Kefeng Wang does more folio conversions and some maintenance work
     in the migration code. Series 'mm: migrate: more folio conversion
     and unification'

   - Matthew Wilcox has fixed an issue in the buffer_head code which was
     causing long stalls under some heavy memory/IO loads. Some cleanups
     were added on the way. Series 'Add and use bdev_getblk()'

   - In the series 'Use nth_page() in place of direct struct page
     manipulation' Zi Yan has fixed a potential issue with the direct
     manipulation of hugetlb page frames

   - In the series 'mm: hugetlb: Skip initialization of gigantic tail
     struct pages if freed by HVO' has improved our handling of gigantic
     pages in the hugetlb vmmemmep optimizaton code. This provides
     significant boot time improvements when significant amounts of
     gigantic pages are in use

   - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
     rationalization and folio conversions in the hugetlb code

   - Yin Fengwei has improved mlock()'s handling of large folios in the
     series 'support large folio for mlock'

   - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
     added statistics for memcg v1 users which are available (and
     useful) under memcg v2

   - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
     prctl so that userspace may direct the kernel to not automatically
     propagate the denial to child processes. The series is named 'MDWE
     without inheritance'

   - Kefeng Wang has provided the series 'mm: convert numa balancing
     functions to use a folio' which does what it says

   - In the series 'mm/ksm: add fork-exec support for prctl' Stefan
     Roesch makes is possible for a process to propagate KSM treatment
     across exec()

   - Huang Ying has enhanced memory tiering's calculation of memory
     distances. This is used to permit the dax/kmem driver to use 'high
     bandwidth memory' in addition to Optane Data Center Persistent
     Memory Modules (DCPMM). The series is named 'memory tiering:
     calculate abstract distance based on ACPI HMAT'

   - In the series 'Smart scanning mode for KSM' Stefan Roesch has
     optimized KSM by teaching it to retain and use some historical
     information from previous scans

   - Yosry Ahmed has fixed some inconsistencies in memcg statistics in
     the series 'mm: memcg: fix tracking of pending stats updates
     values'

   - In the series 'Implement IOCTL to get and optionally clear info
     about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
     which permits us to atomically read-then-clear page softdirty
     state. This is mainly used by CRIU

   - Hugh Dickins contributed the series 'shmem,tmpfs: general
     maintenance', a bunch of relatively minor maintenance tweaks to
     this code

   - Matthew Wilcox has increased the use of the VMA lock over
     file-backed page faults in the series 'Handle more faults under the
     VMA lock'. Some rationalizations of the fault path became possible
     as a result

   - In the series 'mm/rmap: convert page_move_anon_rmap() to
     folio_move_anon_rmap()' David Hildenbrand has implemented some
     cleanups and folio conversions

   - In the series 'various improvements to the GUP interface' Lorenzo
     Stoakes has simplified and improved the GUP interface with an eye
     to providing groundwork for future improvements

   - Andrey Konovalov has sent along the series 'kasan: assorted fixes
     and improvements' which does those things

   - Some page allocator maintenance work from Kemeng Shi in the series
     'Two minor cleanups to break_down_buddy_pages'

   - In thes series 'New selftest for mm' Breno Leitao has developed
     another MM self test which tickles a race we had between madvise()
     and page faults

   - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
     and an optimization to the core pagecache code

   - Nhat Pham has added memcg accounting for hugetlb memory in the
     series 'hugetlb memcg accounting'

   - Cleanups and rationalizations to the pagemap code from Lorenzo
     Stoakes, in the series 'Abstract vma_merge() and split_vma()'

   - Audra Mitchell has fixed issues in the procfs page_owner code's new
     timestamping feature which was causing some misbehaviours. In the
     series 'Fix page_owner's use of free timestamps'

   - Lorenzo Stoakes has fixed the handling of new mappings of sealed
     files in the series 'permit write-sealed memfd read-only shared
     mappings'

   - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
     series 'Batch hugetlb vmemmap modification operations'

   - Some buffer_head folio conversions and cleanups from Matthew Wilcox
     in the series 'Finish the create_empty_buffers() transition'

   - As a page allocator performance optimization Huang Ying has added
     automatic tuning to the allocator's per-cpu-pages feature, in the
     series 'mm: PCP high auto-tuning'

   - Roman Gushchin has contributed the patchset 'mm: improve
     performance of accounted kernel memory allocations' which improves
     their performance by ~30% as measured by a micro-benchmark

   - folio conversions from Kefeng Wang in the series 'mm: convert page
     cpupid functions to folios'

   - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
     kmemleak'

   - Qi Zheng has improved our handling of memoryless nodes by keeping
     them off the allocation fallback list. This is done in the series
     'handle memoryless nodes more appropriately'

   - khugepaged conversions from Vishal Moola in the series 'Some
     khugepaged folio conversions'"

[ bcachefs conflicts with the dynamically allocated shrinkers have been
  resolved as per Stephen Rothwell in

     https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/

  with help from Qi Zheng.

  The clone3 test filtering conflict was half-arsed by yours truly ]

* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
  mm/damon/sysfs: update monitoring target regions for online input commit
  mm/damon/sysfs: remove requested targets when online-commit inputs
  selftests: add a sanity check for zswap
  Documentation: maple_tree: fix word spelling error
  mm/vmalloc: fix the unchecked dereference warning in vread_iter()
  zswap: export compression failure stats
  Documentation: ubsan: drop "the" from article title
  mempolicy: migration attempt to match interleave nodes
  mempolicy: mmap_lock is not needed while migrating folios
  mempolicy: alloc_pages_mpol() for NUMA policy without vma
  mm: add page_rmappable_folio() wrapper
  mempolicy: remove confusing MPOL_MF_LAZY dead code
  mempolicy: mpol_shared_policy_init() without pseudo-vma
  mempolicy trivia: use pgoff_t in shared mempolicy tree
  mempolicy trivia: slightly more consistent naming
  mempolicy trivia: delete those ancient pr_debug()s
  mempolicy: fix migrate_pages(2) syscall return nr_failed
  kernfs: drop shared NUMA mempolicy hooks
  hugetlbfs: drop shared NUMA mempolicy pretence
  mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
  ...
2023-11-02 19:38:47 -10:00

607 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 ARM Ltd.
*/
#include <linux/bitops.h>
#include <linux/cpu.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/prctl.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/string.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/thread_info.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/uio.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/mte.h>
#include <asm/ptrace.h>
#include <asm/sysreg.h>
static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
#ifdef CONFIG_KASAN_HW_TAGS
/*
* The asynchronous and asymmetric MTE modes have the same behavior for
* store operations. This flag is set when either of these modes is enabled.
*/
DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
#endif
void mte_sync_tags(pte_t pte, unsigned int nr_pages)
{
struct page *page = pte_page(pte);
unsigned int i;
/* if PG_mte_tagged is set, tags have already been initialised */
for (i = 0; i < nr_pages; i++, page++) {
if (try_page_mte_tagging(page)) {
mte_clear_page_tags(page_address(page));
set_page_mte_tagged(page);
}
}
/* ensure the tags are visible before the PTE is set */
smp_wmb();
}
int memcmp_pages(struct page *page1, struct page *page2)
{
char *addr1, *addr2;
int ret;
addr1 = page_address(page1);
addr2 = page_address(page2);
ret = memcmp(addr1, addr2, PAGE_SIZE);
if (!system_supports_mte() || ret)
return ret;
/*
* If the page content is identical but at least one of the pages is
* tagged, return non-zero to avoid KSM merging. If only one of the
* pages is tagged, set_pte_at() may zero or change the tags of the
* other page via mte_sync_tags().
*/
if (page_mte_tagged(page1) || page_mte_tagged(page2))
return addr1 != addr2;
return ret;
}
static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
{
/* Enable MTE Sync Mode for EL1. */
sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
isb();
pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
}
#ifdef CONFIG_KASAN_HW_TAGS
void mte_enable_kernel_sync(void)
{
/*
* Make sure we enter this function when no PE has set
* async mode previously.
*/
WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
"MTE async mode enabled system wide!");
__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
}
void mte_enable_kernel_async(void)
{
__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
/*
* MTE async mode is set system wide by the first PE that
* executes this function.
*
* Note: If in future KASAN acquires a runtime switching
* mode in between sync and async, this strategy needs
* to be reviewed.
*/
if (!system_uses_mte_async_or_asymm_mode())
static_branch_enable(&mte_async_or_asymm_mode);
}
void mte_enable_kernel_asymm(void)
{
if (cpus_have_cap(ARM64_MTE_ASYMM)) {
__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
/*
* MTE asymm mode behaves as async mode for store
* operations. The mode is set system wide by the
* first PE that executes this function.
*
* Note: If in future KASAN acquires a runtime switching
* mode in between sync and async, this strategy needs
* to be reviewed.
*/
if (!system_uses_mte_async_or_asymm_mode())
static_branch_enable(&mte_async_or_asymm_mode);
} else {
/*
* If the CPU does not support MTE asymmetric mode the
* kernel falls back on synchronous mode which is the
* default for kasan=on.
*/
mte_enable_kernel_sync();
}
}
#endif
#ifdef CONFIG_KASAN_HW_TAGS
void mte_check_tfsr_el1(void)
{
u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
/*
* Note: isb() is not required after this direct write
* because there is no indirect read subsequent to it
* (per ARM DDI 0487F.c table D13-1).
*/
write_sysreg_s(0, SYS_TFSR_EL1);
kasan_report_async();
}
}
#endif
/*
* This is where we actually resolve the system and process MTE mode
* configuration into an actual value in SCTLR_EL1 that affects
* userspace.
*/
static void mte_update_sctlr_user(struct task_struct *task)
{
/*
* This must be called with preemption disabled and can only be called
* on the current or next task since the CPU must match where the thread
* is going to run. The caller is responsible for calling
* update_sctlr_el1() later in the same preemption disabled block.
*/
unsigned long sctlr = task->thread.sctlr_user;
unsigned long mte_ctrl = task->thread.mte_ctrl;
unsigned long pref, resolved_mte_tcf;
pref = __this_cpu_read(mte_tcf_preferred);
/*
* If there is no overlap between the system preferred and
* program requested values go with what was requested.
*/
resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
sctlr &= ~SCTLR_EL1_TCF0_MASK;
/*
* Pick an actual setting. The order in which we check for
* set bits and map into register values determines our
* default order.
*/
if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
task->thread.sctlr_user = sctlr;
}
static void mte_update_gcr_excl(struct task_struct *task)
{
/*
* SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
* mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
*/
if (kasan_hw_tags_enabled())
return;
write_sysreg_s(
((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
SYS_GCR_EL1);
}
#ifdef CONFIG_KASAN_HW_TAGS
/* Only called from assembly, silence sparse */
void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
__le32 *updptr, int nr_inst);
void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
__le32 *updptr, int nr_inst)
{
BUG_ON(nr_inst != 1); /* Branch -> NOP */
if (kasan_hw_tags_enabled())
*updptr = cpu_to_le32(aarch64_insn_gen_nop());
}
#endif
void mte_thread_init_user(void)
{
if (!system_supports_mte())
return;
/* clear any pending asynchronous tag fault */
dsb(ish);
write_sysreg_s(0, SYS_TFSRE0_EL1);
clear_thread_flag(TIF_MTE_ASYNC_FAULT);
/* disable tag checking and reset tag generation mask */
set_mte_ctrl(current, 0);
}
void mte_thread_switch(struct task_struct *next)
{
if (!system_supports_mte())
return;
mte_update_sctlr_user(next);
mte_update_gcr_excl(next);
/* TCO may not have been disabled on exception entry for the current task. */
mte_disable_tco_entry(next);
/*
* Check if an async tag exception occurred at EL1.
*
* Note: On the context switch path we rely on the dsb() present
* in __switch_to() to guarantee that the indirect writes to TFSR_EL1
* are synchronized before this point.
*/
isb();
mte_check_tfsr_el1();
}
void mte_cpu_setup(void)
{
u64 rgsr;
/*
* CnP must be enabled only after the MAIR_EL1 register has been set
* up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
* lead to the wrong memory type being used for a brief window during
* CPU power-up.
*
* CnP is not a boot feature so MTE gets enabled before CnP, but let's
* make sure that is the case.
*/
BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
/* Normal Tagged memory type at the corresponding MAIR index */
sysreg_clear_set(mair_el1,
MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
MT_NORMAL_TAGGED));
write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
/*
* If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
* RGSR_EL1.SEED must be non-zero for IRG to produce
* pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
* must initialize it.
*/
rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
SYS_RGSR_EL1_SEED_SHIFT;
if (rgsr == 0)
rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
write_sysreg_s(rgsr, SYS_RGSR_EL1);
/* clear any pending tag check faults in TFSR*_EL1 */
write_sysreg_s(0, SYS_TFSR_EL1);
write_sysreg_s(0, SYS_TFSRE0_EL1);
local_flush_tlb_all();
}
void mte_suspend_enter(void)
{
if (!system_supports_mte())
return;
/*
* The barriers are required to guarantee that the indirect writes
* to TFSR_EL1 are synchronized before we report the state.
*/
dsb(nsh);
isb();
/* Report SYS_TFSR_EL1 before suspend entry */
mte_check_tfsr_el1();
}
void mte_suspend_exit(void)
{
if (!system_supports_mte())
return;
mte_cpu_setup();
}
long set_mte_ctrl(struct task_struct *task, unsigned long arg)
{
u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
if (!system_supports_mte())
return 0;
if (arg & PR_MTE_TCF_ASYNC)
mte_ctrl |= MTE_CTRL_TCF_ASYNC;
if (arg & PR_MTE_TCF_SYNC)
mte_ctrl |= MTE_CTRL_TCF_SYNC;
/*
* If the system supports it and both sync and async modes are
* specified then implicitly enable asymmetric mode.
* Userspace could see a mix of both sync and async anyway due
* to differing or changing defaults on CPUs.
*/
if (cpus_have_cap(ARM64_MTE_ASYMM) &&
(arg & PR_MTE_TCF_ASYNC) &&
(arg & PR_MTE_TCF_SYNC))
mte_ctrl |= MTE_CTRL_TCF_ASYMM;
task->thread.mte_ctrl = mte_ctrl;
if (task == current) {
preempt_disable();
mte_update_sctlr_user(task);
mte_update_gcr_excl(task);
update_sctlr_el1(task->thread.sctlr_user);
preempt_enable();
}
return 0;
}
long get_mte_ctrl(struct task_struct *task)
{
unsigned long ret;
u64 mte_ctrl = task->thread.mte_ctrl;
u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
SYS_GCR_EL1_EXCL_MASK;
if (!system_supports_mte())
return 0;
ret = incl << PR_MTE_TAG_SHIFT;
if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
ret |= PR_MTE_TCF_ASYNC;
if (mte_ctrl & MTE_CTRL_TCF_SYNC)
ret |= PR_MTE_TCF_SYNC;
return ret;
}
/*
* Access MTE tags in another process' address space as given in mm. Update
* the number of tags copied. Return 0 if any tags copied, error otherwise.
* Inspired by __access_remote_vm().
*/
static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
struct iovec *kiov, unsigned int gup_flags)
{
void __user *buf = kiov->iov_base;
size_t len = kiov->iov_len;
int err = 0;
int write = gup_flags & FOLL_WRITE;
if (!access_ok(buf, len))
return -EFAULT;
if (mmap_read_lock_killable(mm))
return -EIO;
while (len) {
struct vm_area_struct *vma;
unsigned long tags, offset;
void *maddr;
struct page *page = get_user_page_vma_remote(mm, addr,
gup_flags, &vma);
if (IS_ERR(page)) {
err = PTR_ERR(page);
break;
}
/*
* Only copy tags if the page has been mapped as PROT_MTE
* (PG_mte_tagged set). Otherwise the tags are not valid and
* not accessible to user. Moreover, an mprotect(PROT_MTE)
* would cause the existing tags to be cleared if the page
* was never mapped with PROT_MTE.
*/
if (!(vma->vm_flags & VM_MTE)) {
err = -EOPNOTSUPP;
put_page(page);
break;
}
WARN_ON_ONCE(!page_mte_tagged(page));
/* limit access to the end of the page */
offset = offset_in_page(addr);
tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
maddr = page_address(page);
if (write) {
tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
set_page_dirty_lock(page);
} else {
tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
}
put_page(page);
/* error accessing the tracer's buffer */
if (!tags)
break;
len -= tags;
buf += tags;
addr += tags * MTE_GRANULE_SIZE;
}
mmap_read_unlock(mm);
/* return an error if no tags copied */
kiov->iov_len = buf - kiov->iov_base;
if (!kiov->iov_len) {
/* check for error accessing the tracee's address space */
if (err)
return -EIO;
else
return -EFAULT;
}
return 0;
}
/*
* Copy MTE tags in another process' address space at 'addr' to/from tracer's
* iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
*/
static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
struct iovec *kiov, unsigned int gup_flags)
{
struct mm_struct *mm;
int ret;
mm = get_task_mm(tsk);
if (!mm)
return -EPERM;
if (!tsk->ptrace || (current != tsk->parent) ||
((get_dumpable(mm) != SUID_DUMP_USER) &&
!ptracer_capable(tsk, mm->user_ns))) {
mmput(mm);
return -EPERM;
}
ret = __access_remote_tags(mm, addr, kiov, gup_flags);
mmput(mm);
return ret;
}
int mte_ptrace_copy_tags(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
int ret;
struct iovec kiov;
struct iovec __user *uiov = (void __user *)data;
unsigned int gup_flags = FOLL_FORCE;
if (!system_supports_mte())
return -EIO;
if (get_user(kiov.iov_base, &uiov->iov_base) ||
get_user(kiov.iov_len, &uiov->iov_len))
return -EFAULT;
if (request == PTRACE_POKEMTETAGS)
gup_flags |= FOLL_WRITE;
/* align addr to the MTE tag granule */
addr &= MTE_GRANULE_MASK;
ret = access_remote_tags(child, addr, &kiov, gup_flags);
if (!ret)
ret = put_user(kiov.iov_len, &uiov->iov_len);
return ret;
}
static ssize_t mte_tcf_preferred_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
switch (per_cpu(mte_tcf_preferred, dev->id)) {
case MTE_CTRL_TCF_ASYNC:
return sysfs_emit(buf, "async\n");
case MTE_CTRL_TCF_SYNC:
return sysfs_emit(buf, "sync\n");
case MTE_CTRL_TCF_ASYMM:
return sysfs_emit(buf, "asymm\n");
default:
return sysfs_emit(buf, "???\n");
}
}
static ssize_t mte_tcf_preferred_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u64 tcf;
if (sysfs_streq(buf, "async"))
tcf = MTE_CTRL_TCF_ASYNC;
else if (sysfs_streq(buf, "sync"))
tcf = MTE_CTRL_TCF_SYNC;
else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
tcf = MTE_CTRL_TCF_ASYMM;
else
return -EINVAL;
device_lock(dev);
per_cpu(mte_tcf_preferred, dev->id) = tcf;
device_unlock(dev);
return count;
}
static DEVICE_ATTR_RW(mte_tcf_preferred);
static int register_mte_tcf_preferred_sysctl(void)
{
unsigned int cpu;
if (!system_supports_mte())
return 0;
for_each_possible_cpu(cpu) {
per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
device_create_file(get_cpu_device(cpu),
&dev_attr_mte_tcf_preferred);
}
return 0;
}
subsys_initcall(register_mte_tcf_preferred_sysctl);
/*
* Return 0 on success, the number of bytes not probed otherwise.
*/
size_t mte_probe_user_range(const char __user *uaddr, size_t size)
{
const char __user *end = uaddr + size;
int err = 0;
char val;
__raw_get_user(val, uaddr, err);
if (err)
return size;
uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
while (uaddr < end) {
/*
* A read is sufficient for mte, the caller should have probed
* for the pte write permission if required.
*/
__raw_get_user(val, uaddr, err);
if (err)
return end - uaddr;
uaddr += MTE_GRANULE_SIZE;
}
(void)val;
return 0;
}