linux/drivers/net/wireless/brcm80211/brcmfmac/bcmsdh_sdmmc.c
Stephen Rothwell b7a57e762e net: wireless: brcm80210: include module.h
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2011-10-14 14:48:20 -04:00

627 lines
16 KiB
C

/*
* Copyright (c) 2010 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/types.h>
#include <linux/netdevice.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/core.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/sdio_ids.h>
#include <linux/mmc/card.h>
#include <linux/suspend.h>
#include <linux/errno.h>
#include <linux/sched.h> /* request_irq() */
#include <linux/module.h>
#include <net/cfg80211.h>
#include <defs.h>
#include <brcm_hw_ids.h>
#include <brcmu_utils.h>
#include <brcmu_wifi.h>
#include "sdio_host.h"
#include "dhd.h"
#include "dhd_dbg.h"
#include "wl_cfg80211.h"
#define SDIO_VENDOR_ID_BROADCOM 0x02d0
#define DMA_ALIGN_MASK 0x03
#define SDIO_DEVICE_ID_BROADCOM_4329 0x4329
#define SDIO_FUNC1_BLOCKSIZE 64
#define SDIO_FUNC2_BLOCKSIZE 512
/* devices we support, null terminated */
static const struct sdio_device_id brcmf_sdmmc_ids[] = {
{SDIO_DEVICE(SDIO_VENDOR_ID_BROADCOM, SDIO_DEVICE_ID_BROADCOM_4329)},
{ /* end: all zeroes */ },
};
MODULE_DEVICE_TABLE(sdio, brcmf_sdmmc_ids);
static bool
brcmf_pm_resume_error(struct brcmf_sdio_dev *sdiodev)
{
bool is_err = false;
#ifdef CONFIG_PM_SLEEP
is_err = atomic_read(&sdiodev->suspend);
#endif
return is_err;
}
static void
brcmf_pm_resume_wait(struct brcmf_sdio_dev *sdiodev, wait_queue_head_t *wq)
{
#ifdef CONFIG_PM_SLEEP
int retry = 0;
while (atomic_read(&sdiodev->suspend) && retry++ != 30)
wait_event_timeout(*wq, false, HZ/100);
#endif
}
static inline int brcmf_sdioh_f0_write_byte(struct brcmf_sdio_dev *sdiodev,
uint regaddr, u8 *byte)
{
struct sdio_func *sdfunc = sdiodev->func[0];
int err_ret;
/*
* Can only directly write to some F0 registers.
* Handle F2 enable/disable and Abort command
* as a special case.
*/
if (regaddr == SDIO_CCCR_IOEx) {
sdfunc = sdiodev->func[2];
if (sdfunc) {
sdio_claim_host(sdfunc);
if (*byte & SDIO_FUNC_ENABLE_2) {
/* Enable Function 2 */
err_ret = sdio_enable_func(sdfunc);
if (err_ret)
brcmf_dbg(ERROR,
"enable F2 failed:%d\n",
err_ret);
} else {
/* Disable Function 2 */
err_ret = sdio_disable_func(sdfunc);
if (err_ret)
brcmf_dbg(ERROR,
"Disable F2 failed:%d\n",
err_ret);
}
sdio_release_host(sdfunc);
}
} else if (regaddr == SDIO_CCCR_ABORT) {
sdio_claim_host(sdfunc);
sdio_writeb(sdfunc, *byte, regaddr, &err_ret);
sdio_release_host(sdfunc);
} else if (regaddr < 0xF0) {
brcmf_dbg(ERROR, "F0 Wr:0x%02x: write disallowed\n", regaddr);
err_ret = -EPERM;
} else {
sdio_claim_host(sdfunc);
sdio_f0_writeb(sdfunc, *byte, regaddr, &err_ret);
sdio_release_host(sdfunc);
}
return err_ret;
}
int brcmf_sdioh_request_byte(struct brcmf_sdio_dev *sdiodev, uint rw, uint func,
uint regaddr, u8 *byte)
{
int err_ret;
brcmf_dbg(INFO, "rw=%d, func=%d, addr=0x%05x\n", rw, func, regaddr);
brcmf_pm_resume_wait(sdiodev, &sdiodev->request_byte_wait);
if (brcmf_pm_resume_error(sdiodev))
return -EIO;
if (rw && func == 0) {
/* handle F0 separately */
err_ret = brcmf_sdioh_f0_write_byte(sdiodev, regaddr, byte);
} else {
sdio_claim_host(sdiodev->func[func]);
if (rw) /* CMD52 Write */
sdio_writeb(sdiodev->func[func], *byte, regaddr,
&err_ret);
else if (func == 0) {
*byte = sdio_f0_readb(sdiodev->func[func], regaddr,
&err_ret);
} else {
*byte = sdio_readb(sdiodev->func[func], regaddr,
&err_ret);
}
sdio_release_host(sdiodev->func[func]);
}
if (err_ret)
brcmf_dbg(ERROR, "Failed to %s byte F%d:@0x%05x=%02x, Err: %d\n",
rw ? "write" : "read", func, regaddr, *byte, err_ret);
return err_ret;
}
int brcmf_sdioh_request_word(struct brcmf_sdio_dev *sdiodev,
uint rw, uint func, uint addr, u32 *word,
uint nbytes)
{
int err_ret = -EIO;
if (func == 0) {
brcmf_dbg(ERROR, "Only CMD52 allowed to F0\n");
return -EINVAL;
}
brcmf_dbg(INFO, "rw=%d, func=%d, addr=0x%05x, nbytes=%d\n",
rw, func, addr, nbytes);
brcmf_pm_resume_wait(sdiodev, &sdiodev->request_word_wait);
if (brcmf_pm_resume_error(sdiodev))
return -EIO;
/* Claim host controller */
sdio_claim_host(sdiodev->func[func]);
if (rw) { /* CMD52 Write */
if (nbytes == 4)
sdio_writel(sdiodev->func[func], *word, addr,
&err_ret);
else if (nbytes == 2)
sdio_writew(sdiodev->func[func], (*word & 0xFFFF),
addr, &err_ret);
else
brcmf_dbg(ERROR, "Invalid nbytes: %d\n", nbytes);
} else { /* CMD52 Read */
if (nbytes == 4)
*word = sdio_readl(sdiodev->func[func], addr, &err_ret);
else if (nbytes == 2)
*word = sdio_readw(sdiodev->func[func], addr,
&err_ret) & 0xFFFF;
else
brcmf_dbg(ERROR, "Invalid nbytes: %d\n", nbytes);
}
/* Release host controller */
sdio_release_host(sdiodev->func[func]);
if (err_ret)
brcmf_dbg(ERROR, "Failed to %s word, Err: 0x%08x\n",
rw ? "write" : "read", err_ret);
return err_ret;
}
static int
brcmf_sdioh_request_packet(struct brcmf_sdio_dev *sdiodev, uint fix_inc,
uint write, uint func, uint addr,
struct sk_buff *pkt)
{
bool fifo = (fix_inc == SDIOH_DATA_FIX);
u32 SGCount = 0;
int err_ret = 0;
struct sk_buff *pnext;
brcmf_dbg(TRACE, "Enter\n");
brcmf_pm_resume_wait(sdiodev, &sdiodev->request_packet_wait);
if (brcmf_pm_resume_error(sdiodev))
return -EIO;
/* Claim host controller */
sdio_claim_host(sdiodev->func[func]);
for (pnext = pkt; pnext; pnext = pnext->next) {
uint pkt_len = pnext->len;
pkt_len += 3;
pkt_len &= 0xFFFFFFFC;
if ((write) && (!fifo)) {
err_ret = sdio_memcpy_toio(sdiodev->func[func], addr,
((u8 *) (pnext->data)),
pkt_len);
} else if (write) {
err_ret = sdio_memcpy_toio(sdiodev->func[func], addr,
((u8 *) (pnext->data)),
pkt_len);
} else if (fifo) {
err_ret = sdio_readsb(sdiodev->func[func],
((u8 *) (pnext->data)),
addr, pkt_len);
} else {
err_ret = sdio_memcpy_fromio(sdiodev->func[func],
((u8 *) (pnext->data)),
addr, pkt_len);
}
if (err_ret) {
brcmf_dbg(ERROR, "%s FAILED %p[%d], addr=0x%05x, pkt_len=%d, ERR=0x%08x\n",
write ? "TX" : "RX", pnext, SGCount, addr,
pkt_len, err_ret);
} else {
brcmf_dbg(TRACE, "%s xfr'd %p[%d], addr=0x%05x, len=%d\n",
write ? "TX" : "RX", pnext, SGCount, addr,
pkt_len);
}
if (!fifo)
addr += pkt_len;
SGCount++;
}
/* Release host controller */
sdio_release_host(sdiodev->func[func]);
brcmf_dbg(TRACE, "Exit\n");
return err_ret;
}
/*
* This function takes a buffer or packet, and fixes everything up
* so that in the end, a DMA-able packet is created.
*
* A buffer does not have an associated packet pointer,
* and may or may not be aligned.
* A packet may consist of a single packet, or a packet chain.
* If it is a packet chain, then all the packets in the chain
* must be properly aligned.
*
* If the packet data is not aligned, then there may only be
* one packet, and in this case, it is copied to a new
* aligned packet.
*
*/
int brcmf_sdioh_request_buffer(struct brcmf_sdio_dev *sdiodev,
uint fix_inc, uint write, uint func, uint addr,
uint reg_width, uint buflen_u, u8 *buffer,
struct sk_buff *pkt)
{
int Status;
struct sk_buff *mypkt = NULL;
brcmf_dbg(TRACE, "Enter\n");
brcmf_pm_resume_wait(sdiodev, &sdiodev->request_buffer_wait);
if (brcmf_pm_resume_error(sdiodev))
return -EIO;
/* Case 1: we don't have a packet. */
if (pkt == NULL) {
brcmf_dbg(DATA, "Creating new %s Packet, len=%d\n",
write ? "TX" : "RX", buflen_u);
mypkt = brcmu_pkt_buf_get_skb(buflen_u);
if (!mypkt) {
brcmf_dbg(ERROR, "brcmu_pkt_buf_get_skb failed: len %d\n",
buflen_u);
return -EIO;
}
/* For a write, copy the buffer data into the packet. */
if (write)
memcpy(mypkt->data, buffer, buflen_u);
Status = brcmf_sdioh_request_packet(sdiodev, fix_inc, write,
func, addr, mypkt);
/* For a read, copy the packet data back to the buffer. */
if (!write)
memcpy(buffer, mypkt->data, buflen_u);
brcmu_pkt_buf_free_skb(mypkt);
} else if (((ulong) (pkt->data) & DMA_ALIGN_MASK) != 0) {
/*
* Case 2: We have a packet, but it is unaligned.
* In this case, we cannot have a chain (pkt->next == NULL)
*/
brcmf_dbg(DATA, "Creating aligned %s Packet, len=%d\n",
write ? "TX" : "RX", pkt->len);
mypkt = brcmu_pkt_buf_get_skb(pkt->len);
if (!mypkt) {
brcmf_dbg(ERROR, "brcmu_pkt_buf_get_skb failed: len %d\n",
pkt->len);
return -EIO;
}
/* For a write, copy the buffer data into the packet. */
if (write)
memcpy(mypkt->data, pkt->data, pkt->len);
Status = brcmf_sdioh_request_packet(sdiodev, fix_inc, write,
func, addr, mypkt);
/* For a read, copy the packet data back to the buffer. */
if (!write)
memcpy(pkt->data, mypkt->data, mypkt->len);
brcmu_pkt_buf_free_skb(mypkt);
} else { /* case 3: We have a packet and
it is aligned. */
brcmf_dbg(DATA, "Aligned %s Packet, direct DMA\n",
write ? "Tx" : "Rx");
Status = brcmf_sdioh_request_packet(sdiodev, fix_inc, write,
func, addr, pkt);
}
return Status;
}
/* Read client card reg */
static int
brcmf_sdioh_card_regread(struct brcmf_sdio_dev *sdiodev, int func, u32 regaddr,
int regsize, u32 *data)
{
if ((func == 0) || (regsize == 1)) {
u8 temp = 0;
brcmf_sdioh_request_byte(sdiodev, SDIOH_READ, func, regaddr,
&temp);
*data = temp;
*data &= 0xff;
brcmf_dbg(DATA, "byte read data=0x%02x\n", *data);
} else {
brcmf_sdioh_request_word(sdiodev, SDIOH_READ, func, regaddr,
data, regsize);
if (regsize == 2)
*data &= 0xffff;
brcmf_dbg(DATA, "word read data=0x%08x\n", *data);
}
return SUCCESS;
}
static int brcmf_sdioh_get_cisaddr(struct brcmf_sdio_dev *sdiodev, u32 regaddr)
{
/* read 24 bits and return valid 17 bit addr */
int i;
u32 scratch, regdata;
__le32 scratch_le;
u8 *ptr = (u8 *)&scratch_le;
for (i = 0; i < 3; i++) {
if ((brcmf_sdioh_card_regread(sdiodev, 0, regaddr, 1,
&regdata)) != SUCCESS)
brcmf_dbg(ERROR, "Can't read!\n");
*ptr++ = (u8) regdata;
regaddr++;
}
/* Only the lower 17-bits are valid */
scratch = le32_to_cpu(scratch_le);
scratch &= 0x0001FFFF;
return scratch;
}
static int brcmf_sdioh_enablefuncs(struct brcmf_sdio_dev *sdiodev)
{
int err_ret;
u32 fbraddr;
u8 func;
brcmf_dbg(TRACE, "\n");
/* Get the Card's common CIS address */
sdiodev->func_cis_ptr[0] = brcmf_sdioh_get_cisaddr(sdiodev,
SDIO_CCCR_CIS);
brcmf_dbg(INFO, "Card's Common CIS Ptr = 0x%x\n",
sdiodev->func_cis_ptr[0]);
/* Get the Card's function CIS (for each function) */
for (fbraddr = SDIO_FBR_BASE(1), func = 1;
func <= sdiodev->num_funcs; func++, fbraddr += SDIOD_FBR_SIZE) {
sdiodev->func_cis_ptr[func] =
brcmf_sdioh_get_cisaddr(sdiodev, SDIO_FBR_CIS + fbraddr);
brcmf_dbg(INFO, "Function %d CIS Ptr = 0x%x\n",
func, sdiodev->func_cis_ptr[func]);
}
/* Enable Function 1 */
sdio_claim_host(sdiodev->func[1]);
err_ret = sdio_enable_func(sdiodev->func[1]);
sdio_release_host(sdiodev->func[1]);
if (err_ret)
brcmf_dbg(ERROR, "Failed to enable F1 Err: 0x%08x\n", err_ret);
return false;
}
/*
* Public entry points & extern's
*/
int brcmf_sdioh_attach(struct brcmf_sdio_dev *sdiodev)
{
int err_ret = 0;
brcmf_dbg(TRACE, "\n");
sdiodev->num_funcs = 2;
sdio_claim_host(sdiodev->func[1]);
err_ret = sdio_set_block_size(sdiodev->func[1], SDIO_FUNC1_BLOCKSIZE);
sdio_release_host(sdiodev->func[1]);
if (err_ret) {
brcmf_dbg(ERROR, "Failed to set F1 blocksize\n");
goto out;
}
sdio_claim_host(sdiodev->func[2]);
err_ret = sdio_set_block_size(sdiodev->func[2], SDIO_FUNC2_BLOCKSIZE);
sdio_release_host(sdiodev->func[2]);
if (err_ret) {
brcmf_dbg(ERROR, "Failed to set F2 blocksize\n");
goto out;
}
brcmf_sdioh_enablefuncs(sdiodev);
out:
brcmf_dbg(TRACE, "Done\n");
return err_ret;
}
void brcmf_sdioh_detach(struct brcmf_sdio_dev *sdiodev)
{
brcmf_dbg(TRACE, "\n");
/* Disable Function 2 */
sdio_claim_host(sdiodev->func[2]);
sdio_disable_func(sdiodev->func[2]);
sdio_release_host(sdiodev->func[2]);
/* Disable Function 1 */
sdio_claim_host(sdiodev->func[1]);
sdio_disable_func(sdiodev->func[1]);
sdio_release_host(sdiodev->func[1]);
}
static int brcmf_ops_sdio_probe(struct sdio_func *func,
const struct sdio_device_id *id)
{
int ret = 0;
struct brcmf_sdio_dev *sdiodev;
brcmf_dbg(TRACE, "Enter\n");
brcmf_dbg(TRACE, "func->class=%x\n", func->class);
brcmf_dbg(TRACE, "sdio_vendor: 0x%04x\n", func->vendor);
brcmf_dbg(TRACE, "sdio_device: 0x%04x\n", func->device);
brcmf_dbg(TRACE, "Function#: 0x%04x\n", func->num);
if (func->num == 1) {
if (dev_get_drvdata(&func->card->dev)) {
brcmf_dbg(ERROR, "card private drvdata occupied\n");
return -ENXIO;
}
sdiodev = kzalloc(sizeof(struct brcmf_sdio_dev), GFP_KERNEL);
if (!sdiodev)
return -ENOMEM;
sdiodev->func[0] = func->card->sdio_func[0];
sdiodev->func[1] = func;
dev_set_drvdata(&func->card->dev, sdiodev);
atomic_set(&sdiodev->suspend, false);
init_waitqueue_head(&sdiodev->request_byte_wait);
init_waitqueue_head(&sdiodev->request_word_wait);
init_waitqueue_head(&sdiodev->request_packet_wait);
init_waitqueue_head(&sdiodev->request_buffer_wait);
}
if (func->num == 2) {
sdiodev = dev_get_drvdata(&func->card->dev);
if ((!sdiodev) || (sdiodev->func[1]->card != func->card))
return -ENODEV;
sdiodev->func[2] = func;
brcmf_dbg(TRACE, "F2 found, calling brcmf_sdio_probe...\n");
ret = brcmf_sdio_probe(sdiodev);
}
return ret;
}
static void brcmf_ops_sdio_remove(struct sdio_func *func)
{
struct brcmf_sdio_dev *sdiodev;
brcmf_dbg(TRACE, "Enter\n");
brcmf_dbg(INFO, "func->class=%x\n", func->class);
brcmf_dbg(INFO, "sdio_vendor: 0x%04x\n", func->vendor);
brcmf_dbg(INFO, "sdio_device: 0x%04x\n", func->device);
brcmf_dbg(INFO, "Function#: 0x%04x\n", func->num);
if (func->num == 2) {
sdiodev = dev_get_drvdata(&func->card->dev);
brcmf_dbg(TRACE, "F2 found, calling brcmf_sdio_remove...\n");
brcmf_sdio_remove(sdiodev);
dev_set_drvdata(&func->card->dev, NULL);
kfree(sdiodev);
}
}
#ifdef CONFIG_PM_SLEEP
static int brcmf_sdio_suspend(struct device *dev)
{
mmc_pm_flag_t sdio_flags;
struct brcmf_sdio_dev *sdiodev;
struct sdio_func *func = dev_to_sdio_func(dev);
int ret = 0;
brcmf_dbg(TRACE, "\n");
sdiodev = dev_get_drvdata(&func->card->dev);
atomic_set(&sdiodev->suspend, true);
sdio_flags = sdio_get_host_pm_caps(sdiodev->func[1]);
if (!(sdio_flags & MMC_PM_KEEP_POWER)) {
brcmf_dbg(ERROR, "Host can't keep power while suspended\n");
return -EINVAL;
}
ret = sdio_set_host_pm_flags(sdiodev->func[1], MMC_PM_KEEP_POWER);
if (ret) {
brcmf_dbg(ERROR, "Failed to set pm_flags\n");
return ret;
}
brcmf_sdio_wdtmr_enable(sdiodev, false);
return ret;
}
static int brcmf_sdio_resume(struct device *dev)
{
struct brcmf_sdio_dev *sdiodev;
struct sdio_func *func = dev_to_sdio_func(dev);
sdiodev = dev_get_drvdata(&func->card->dev);
brcmf_sdio_wdtmr_enable(sdiodev, true);
atomic_set(&sdiodev->suspend, false);
return 0;
}
static const struct dev_pm_ops brcmf_sdio_pm_ops = {
.suspend = brcmf_sdio_suspend,
.resume = brcmf_sdio_resume,
};
#endif /* CONFIG_PM_SLEEP */
static struct sdio_driver brcmf_sdmmc_driver = {
.probe = brcmf_ops_sdio_probe,
.remove = brcmf_ops_sdio_remove,
.name = "brcmfmac",
.id_table = brcmf_sdmmc_ids,
#ifdef CONFIG_PM_SLEEP
.drv = {
.pm = &brcmf_sdio_pm_ops,
},
#endif /* CONFIG_PM_SLEEP */
};
/* bus register interface */
int brcmf_bus_register(void)
{
brcmf_dbg(TRACE, "Enter\n");
return sdio_register_driver(&brcmf_sdmmc_driver);
}
void brcmf_bus_unregister(void)
{
brcmf_dbg(TRACE, "Enter\n");
sdio_unregister_driver(&brcmf_sdmmc_driver);
}