linux/drivers/parisc/lba_pci.c
Bjorn Helgaas 237865f195 PCI: Revert "PCI: Call pci_read_bridge_bases() from core instead of arch code"
Revert dff22d2054 ("PCI: Call pci_read_bridge_bases() from core instead
of arch code").

Reading PCI bridge windows is not arch-specific in itself, but there is PCI
core code that doesn't work correctly if we read them too early.  For
example, Hannes found this case on an ARM Freescale i.mx6 board:

  pci_bus 0000:00: root bus resource [mem 0x01000000-0x01efffff]
  pci 0000:00:00.0: PCI bridge to [bus 01-ff]
  pci 0000:00:00.0: BAR 8: no space for [mem size 0x01000000] (mem window)
  pci 0000:01:00.0: BAR 2: failed to assign [mem size 0x00200000]
  pci 0000:01:00.0: BAR 1: failed to assign [mem size 0x00004000]
  pci 0000:01:00.0: BAR 0: failed to assign [mem size 0x00000100]

The 00:00.0 mem window needs to be at least 3MB: the 01:00.0 device needs
0x204100 of space, and mem windows are megabyte-aligned.

Bus sizing can increase a bridge window size, but never *decrease* it (see
d65245c329 ("PCI: don't shrink bridge resources")).  Prior to
dff22d2054, ARM didn't read bridge windows at all, so the "original size"
was zero, and we assigned a 3MB window.

After dff22d2054, we read the bridge windows before sizing the bus.  The
firmware programmed a 16MB window (size 0x01000000) in 00:00.0, and since
we never decrease the size, we kept 16MB even though we only needed 3MB.
But 16MB doesn't fit in the host bridge aperture, so we failed to assign
space for the window and the downstream devices.

I think this is a defect in the PCI core: we shouldn't rely on the firmware
to assign sensible windows.

Ray reported a similar problem, also on ARM, with Broadcom iProc.

Issues like this are too hard to fix right now, so revert dff22d2054.

Reported-by: Hannes <oe5hpm@gmail.com>
Reported-by: Ray Jui <rjui@broadcom.com>
Link: http://lkml.kernel.org/r/CAAa04yFQEUJm7Jj1qMT57-LG7ZGtnhNDBe=PpSRa70Mj+XhW-A@mail.gmail.com
Link: http://lkml.kernel.org/r/55F75BB8.4070405@broadcom.com
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2015-09-15 13:18:04 -05:00

1655 lines
48 KiB
C

/*
**
** PCI Lower Bus Adapter (LBA) manager
**
** (c) Copyright 1999,2000 Grant Grundler
** (c) Copyright 1999,2000 Hewlett-Packard Company
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
**
** This module primarily provides access to PCI bus (config/IOport
** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class
** with 4 digit model numbers - eg C3000 (and A400...sigh).
**
** LBA driver isn't as simple as the Dino driver because:
** (a) this chip has substantial bug fixes between revisions
** (Only one Dino bug has a software workaround :^( )
** (b) has more options which we don't (yet) support (DMA hints, OLARD)
** (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver)
** (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC).
** (dino only deals with "Legacy" PDC)
**
** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver.
** (I/O SAPIC is integratd in the LBA chip).
**
** FIXME: Add support to SBA and LBA drivers for DMA hint sets
** FIXME: Add support for PCI card hot-plug (OLARD).
*/
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/init.h> /* for __init */
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/page.h>
#include <asm/ropes.h>
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <asm/parisc-device.h>
#include <asm/io.h> /* read/write stuff */
#undef DEBUG_LBA /* general stuff */
#undef DEBUG_LBA_PORT /* debug I/O Port access */
#undef DEBUG_LBA_CFG /* debug Config Space Access (ie PCI Bus walk) */
#undef DEBUG_LBA_PAT /* debug PCI Resource Mgt code - PDC PAT only */
#undef FBB_SUPPORT /* Fast Back-Back xfers - NOT READY YET */
#ifdef DEBUG_LBA
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
#ifdef DEBUG_LBA_PORT
#define DBG_PORT(x...) printk(x)
#else
#define DBG_PORT(x...)
#endif
#ifdef DEBUG_LBA_CFG
#define DBG_CFG(x...) printk(x)
#else
#define DBG_CFG(x...)
#endif
#ifdef DEBUG_LBA_PAT
#define DBG_PAT(x...) printk(x)
#else
#define DBG_PAT(x...)
#endif
/*
** Config accessor functions only pass in the 8-bit bus number and not
** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus
** number based on what firmware wrote into the scratch register.
**
** The "secondary" bus number is set to this before calling
** pci_register_ops(). If any PPB's are present, the scan will
** discover them and update the "secondary" and "subordinate"
** fields in the pci_bus structure.
**
** Changes in the configuration *may* result in a different
** bus number for each LBA depending on what firmware does.
*/
#define MODULE_NAME "LBA"
/* non-postable I/O port space, densely packed */
#define LBA_PORT_BASE (PCI_F_EXTEND | 0xfee00000UL)
static void __iomem *astro_iop_base __read_mostly;
static u32 lba_t32;
/* lba flags */
#define LBA_FLAG_SKIP_PROBE 0x10
#define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE)
/* Looks nice and keeps the compiler happy */
#define LBA_DEV(d) ((struct lba_device *) (d))
/*
** Only allow 8 subsidiary busses per LBA
** Problem is the PCI bus numbering is globally shared.
*/
#define LBA_MAX_NUM_BUSES 8
/************************************
* LBA register read and write support
*
* BE WARNED: register writes are posted.
* (ie follow writes which must reach HW with a read)
*/
#define READ_U8(addr) __raw_readb(addr)
#define READ_U16(addr) __raw_readw(addr)
#define READ_U32(addr) __raw_readl(addr)
#define WRITE_U8(value, addr) __raw_writeb(value, addr)
#define WRITE_U16(value, addr) __raw_writew(value, addr)
#define WRITE_U32(value, addr) __raw_writel(value, addr)
#define READ_REG8(addr) readb(addr)
#define READ_REG16(addr) readw(addr)
#define READ_REG32(addr) readl(addr)
#define READ_REG64(addr) readq(addr)
#define WRITE_REG8(value, addr) writeb(value, addr)
#define WRITE_REG16(value, addr) writew(value, addr)
#define WRITE_REG32(value, addr) writel(value, addr)
#define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8))
#define LBA_CFG_BUS(tok) ((u8) ((tok)>>16))
#define LBA_CFG_DEV(tok) ((u8) ((tok)>>11) & 0x1f)
#define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7)
/*
** Extract LBA (Rope) number from HPA
** REVISIT: 16 ropes for Stretch/Ike?
*/
#define ROPES_PER_IOC 8
#define LBA_NUM(x) ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1))
static void
lba_dump_res(struct resource *r, int d)
{
int i;
if (NULL == r)
return;
printk(KERN_DEBUG "(%p)", r->parent);
for (i = d; i ; --i) printk(" ");
printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r,
(long)r->start, (long)r->end, r->flags);
lba_dump_res(r->child, d+2);
lba_dump_res(r->sibling, d);
}
/*
** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex
** workaround for cfg cycles:
** -- preserve LBA state
** -- prevent any DMA from occurring
** -- turn on smart mode
** -- probe with config writes before doing config reads
** -- check ERROR_STATUS
** -- clear ERROR_STATUS
** -- restore LBA state
**
** The workaround is only used for device discovery.
*/
static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d)
{
u8 first_bus = d->hba.hba_bus->busn_res.start;
u8 last_sub_bus = d->hba.hba_bus->busn_res.end;
if ((bus < first_bus) ||
(bus > last_sub_bus) ||
((bus - first_bus) >= LBA_MAX_NUM_BUSES)) {
return 0;
}
return 1;
}
#define LBA_CFG_SETUP(d, tok) { \
/* Save contents of error config register. */ \
error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); \
\
/* Save contents of status control register. */ \
status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); \
\
/* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA \
** arbitration for full bus walks. \
*/ \
/* Save contents of arb mask register. */ \
arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK); \
\
/* \
* Turn off all device arbitration bits (i.e. everything \
* except arbitration enable bit). \
*/ \
WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK); \
\
/* \
* Set the smart mode bit so that master aborts don't cause \
* LBA to go into PCI fatal mode (required). \
*/ \
WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG); \
}
#define LBA_CFG_PROBE(d, tok) { \
/* \
* Setup Vendor ID write and read back the address register \
* to make sure that LBA is the bus master. \
*/ \
WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\
/* \
* Read address register to ensure that LBA is the bus master, \
* which implies that DMA traffic has stopped when DMA arb is off. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
/* \
* Generate a cfg write cycle (will have no affect on \
* Vendor ID register since read-only). \
*/ \
WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA); \
/* \
* Make sure write has completed before proceeding further, \
* i.e. before setting clear enable. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
}
/*
* HPREVISIT:
* -- Can't tell if config cycle got the error.
*
* OV bit is broken until rev 4.0, so can't use OV bit and
* LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle.
*
* As of rev 4.0, no longer need the error check.
*
* -- Even if we could tell, we still want to return -1
* for **ANY** error (not just master abort).
*
* -- Only clear non-fatal errors (we don't want to bring
* LBA out of pci-fatal mode).
*
* Actually, there is still a race in which
* we could be clearing a fatal error. We will
* live with this during our initial bus walk
* until rev 4.0 (no driver activity during
* initial bus walk). The initial bus walk
* has race conditions concerning the use of
* smart mode as well.
*/
#define LBA_MASTER_ABORT_ERROR 0xc
#define LBA_FATAL_ERROR 0x10
#define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) { \
u32 error_status = 0; \
/* \
* Set clear enable (CE) bit. Unset by HW when new \
* errors are logged -- LBA HW ERS section 14.3.3). \
*/ \
WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \
error_status = READ_REG32(base + LBA_ERROR_STATUS); \
if ((error_status & 0x1f) != 0) { \
/* \
* Fail the config read request. \
*/ \
error = 1; \
if ((error_status & LBA_FATAL_ERROR) == 0) { \
/* \
* Clear error status (if fatal bit not set) by setting \
* clear error log bit (CL). \
*/ \
WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \
} \
} \
}
#define LBA_CFG_TR4_ADDR_SETUP(d, addr) \
WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR);
#define LBA_CFG_ADDR_SETUP(d, addr) { \
WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
/* \
* Read address register to ensure that LBA is the bus master, \
* which implies that DMA traffic has stopped when DMA arb is off. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
}
#define LBA_CFG_RESTORE(d, base) { \
/* \
* Restore status control register (turn off clear enable). \
*/ \
WRITE_REG32(status_control, base + LBA_STAT_CTL); \
/* \
* Restore error config register (turn off smart mode). \
*/ \
WRITE_REG32(error_config, base + LBA_ERROR_CONFIG); \
/* \
* Restore arb mask register (reenables DMA arbitration). \
*/ \
WRITE_REG32(arb_mask, base + LBA_ARB_MASK); \
}
static unsigned int
lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size)
{
u32 data = ~0U;
int error = 0;
u32 arb_mask = 0; /* used by LBA_CFG_SETUP/RESTORE */
u32 error_config = 0; /* used by LBA_CFG_SETUP/RESTORE */
u32 status_control = 0; /* used by LBA_CFG_SETUP/RESTORE */
LBA_CFG_SETUP(d, tok);
LBA_CFG_PROBE(d, tok);
LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
if (!error) {
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
LBA_CFG_ADDR_SETUP(d, tok | reg);
switch (size) {
case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break;
case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break;
case 4: data = READ_REG32(data_reg); break;
}
}
LBA_CFG_RESTORE(d, d->hba.base_addr);
return(data);
}
static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus, devfn);
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
if ((pos > 255) || (devfn > 255))
return -EINVAL;
/* FIXME: B2K/C3600 workaround is always use old method... */
/* if (!LBA_SKIP_PROBE(d)) */ {
/* original - Generate config cycle on broken elroy
with risk we will miss PCI bus errors. */
*data = lba_rd_cfg(d, tok, pos, size);
DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __func__, tok, pos, *data);
return 0;
}
if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->busn_res.start, devfn, d)) {
DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __func__, tok, pos);
/* either don't want to look or know device isn't present. */
*data = ~0U;
return(0);
}
/* Basic Algorithm
** Should only get here on fully working LBA rev.
** This is how simple the code should have been.
*/
LBA_CFG_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1: *data = READ_REG8 (data_reg + (pos & 3)); break;
case 2: *data = READ_REG16(data_reg + (pos & 2)); break;
case 4: *data = READ_REG32(data_reg); break;
}
DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __func__, tok, pos, *data);
return 0;
}
static void
lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size)
{
int error = 0;
u32 arb_mask = 0;
u32 error_config = 0;
u32 status_control = 0;
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
LBA_CFG_SETUP(d, tok);
LBA_CFG_ADDR_SETUP(d, tok | reg);
switch (size) {
case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break;
case 2: WRITE_REG16(data, data_reg + (reg & 2)); break;
case 4: WRITE_REG32(data, data_reg); break;
}
LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
LBA_CFG_RESTORE(d, d->hba.base_addr);
}
/*
* LBA 4.0 config write code implements non-postable semantics
* by doing a read of CONFIG ADDR after the write.
*/
static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus,devfn);
if ((pos > 255) || (devfn > 255))
return -EINVAL;
if (!LBA_SKIP_PROBE(d)) {
/* Original Workaround */
lba_wr_cfg(d, tok, pos, (u32) data, size);
DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __func__, tok, pos,data);
return 0;
}
if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->busn_res.start, devfn, d))) {
DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __func__, tok, pos,data);
return 1; /* New Workaround */
}
DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __func__, tok, pos, data);
/* Basic Algorithm */
LBA_CFG_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3));
break;
case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2));
break;
case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA);
break;
}
/* flush posted write */
lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
return 0;
}
static struct pci_ops elroy_cfg_ops = {
.read = elroy_cfg_read,
.write = elroy_cfg_write,
};
/*
* The mercury_cfg_ops are slightly misnamed; they're also used for Elroy
* TR4.0 as no additional bugs were found in this areea between Elroy and
* Mercury
*/
static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus, devfn);
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
if ((pos > 255) || (devfn > 255))
return -EINVAL;
LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1:
*data = READ_REG8(data_reg + (pos & 3));
break;
case 2:
*data = READ_REG16(data_reg + (pos & 2));
break;
case 4:
*data = READ_REG32(data_reg); break;
break;
}
DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data);
return 0;
}
/*
* LBA 4.0 config write code implements non-postable semantics
* by doing a read of CONFIG ADDR after the write.
*/
static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus,devfn);
if ((pos > 255) || (devfn > 255))
return -EINVAL;
DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __func__, tok, pos, data);
LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1:
WRITE_REG8 (data, data_reg + (pos & 3));
break;
case 2:
WRITE_REG16(data, data_reg + (pos & 2));
break;
case 4:
WRITE_REG32(data, data_reg);
break;
}
/* flush posted write */
lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
return 0;
}
static struct pci_ops mercury_cfg_ops = {
.read = mercury_cfg_read,
.write = mercury_cfg_write,
};
static void
lba_bios_init(void)
{
DBG(MODULE_NAME ": lba_bios_init\n");
}
#ifdef CONFIG_64BIT
/*
* truncate_pat_collision: Deal with overlaps or outright collisions
* between PAT PDC reported ranges.
*
* Broken PA8800 firmware will report lmmio range that
* overlaps with CPU HPA. Just truncate the lmmio range.
*
* BEWARE: conflicts with this lmmio range may be an
* elmmio range which is pointing down another rope.
*
* FIXME: only deals with one collision per range...theoretically we
* could have several. Supporting more than one collision will get messy.
*/
static unsigned long
truncate_pat_collision(struct resource *root, struct resource *new)
{
unsigned long start = new->start;
unsigned long end = new->end;
struct resource *tmp = root->child;
if (end <= start || start < root->start || !tmp)
return 0;
/* find first overlap */
while (tmp && tmp->end < start)
tmp = tmp->sibling;
/* no entries overlap */
if (!tmp) return 0;
/* found one that starts behind the new one
** Don't need to do anything.
*/
if (tmp->start >= end) return 0;
if (tmp->start <= start) {
/* "front" of new one overlaps */
new->start = tmp->end + 1;
if (tmp->end >= end) {
/* AACCKK! totally overlaps! drop this range. */
return 1;
}
}
if (tmp->end < end ) {
/* "end" of new one overlaps */
new->end = tmp->start - 1;
}
printk(KERN_WARNING "LBA: Truncating lmmio_space [%lx/%lx] "
"to [%lx,%lx]\n",
start, end,
(long)new->start, (long)new->end );
return 0; /* truncation successful */
}
/*
* extend_lmmio_len: extend lmmio range to maximum length
*
* This is needed at least on C8000 systems to get the ATI FireGL card
* working. On other systems we will currently not extend the lmmio space.
*/
static unsigned long
extend_lmmio_len(unsigned long start, unsigned long end, unsigned long lba_len)
{
struct resource *tmp;
pr_debug("LMMIO mismatch: PAT length = 0x%lx, MASK register = 0x%lx\n",
end - start, lba_len);
lba_len = min(lba_len+1, 256UL*1024*1024); /* limit to 256 MB */
pr_debug("LBA: lmmio_space [0x%lx-0x%lx] - original\n", start, end);
if (boot_cpu_data.cpu_type < mako) {
pr_info("LBA: Not a C8000 system - not extending LMMIO range.\n");
return end;
}
end += lba_len;
if (end < start) /* fix overflow */
end = -1ULL;
pr_debug("LBA: lmmio_space [0x%lx-0x%lx] - current\n", start, end);
/* first overlap */
for (tmp = iomem_resource.child; tmp; tmp = tmp->sibling) {
pr_debug("LBA: testing %pR\n", tmp);
if (tmp->start == start)
continue; /* ignore ourself */
if (tmp->end < start)
continue;
if (tmp->start > end)
continue;
if (end >= tmp->start)
end = tmp->start - 1;
}
pr_info("LBA: lmmio_space [0x%lx-0x%lx] - new\n", start, end);
/* return new end */
return end;
}
#else
#define truncate_pat_collision(r,n) (0)
#endif
/*
** The algorithm is generic code.
** But it needs to access local data structures to get the IRQ base.
** Could make this a "pci_fixup_irq(bus, region)" but not sure
** it's worth it.
**
** Called by do_pci_scan_bus() immediately after each PCI bus is walked.
** Resources aren't allocated until recursive buswalk below HBA is completed.
*/
static void
lba_fixup_bus(struct pci_bus *bus)
{
struct pci_dev *dev;
#ifdef FBB_SUPPORT
u16 status;
#endif
struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge));
DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n",
bus, (int)bus->busn_res.start, bus->bridge->platform_data);
/*
** Properly Setup MMIO resources for this bus.
** pci_alloc_primary_bus() mangles this.
*/
if (bus->parent) {
int i;
/* PCI-PCI Bridge */
pci_read_bridge_bases(bus);
for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++)
pci_claim_bridge_resource(bus->self, i);
} else {
/* Host-PCI Bridge */
int err;
DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
ldev->hba.io_space.name,
ldev->hba.io_space.start, ldev->hba.io_space.end,
ldev->hba.io_space.flags);
DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
ldev->hba.lmmio_space.name,
ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end,
ldev->hba.lmmio_space.flags);
err = request_resource(&ioport_resource, &(ldev->hba.io_space));
if (err < 0) {
lba_dump_res(&ioport_resource, 2);
BUG();
}
if (ldev->hba.elmmio_space.flags) {
err = request_resource(&iomem_resource,
&(ldev->hba.elmmio_space));
if (err < 0) {
printk("FAILED: lba_fixup_bus() request for "
"elmmio_space [%lx/%lx]\n",
(long)ldev->hba.elmmio_space.start,
(long)ldev->hba.elmmio_space.end);
/* lba_dump_res(&iomem_resource, 2); */
/* BUG(); */
}
}
if (ldev->hba.lmmio_space.flags) {
err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space));
if (err < 0) {
printk(KERN_ERR "FAILED: lba_fixup_bus() request for "
"lmmio_space [%lx/%lx]\n",
(long)ldev->hba.lmmio_space.start,
(long)ldev->hba.lmmio_space.end);
}
}
#ifdef CONFIG_64BIT
/* GMMIO is distributed range. Every LBA/Rope gets part it. */
if (ldev->hba.gmmio_space.flags) {
err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space));
if (err < 0) {
printk("FAILED: lba_fixup_bus() request for "
"gmmio_space [%lx/%lx]\n",
(long)ldev->hba.gmmio_space.start,
(long)ldev->hba.gmmio_space.end);
lba_dump_res(&iomem_resource, 2);
BUG();
}
}
#endif
}
list_for_each_entry(dev, &bus->devices, bus_list) {
int i;
DBG("lba_fixup_bus() %s\n", pci_name(dev));
/* Virtualize Device/Bridge Resources. */
for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
struct resource *res = &dev->resource[i];
/* If resource not allocated - skip it */
if (!res->start)
continue;
/*
** FIXME: this will result in whinging for devices
** that share expansion ROMs (think quad tulip), but
** isn't harmful.
*/
pci_claim_resource(dev, i);
}
#ifdef FBB_SUPPORT
/*
** If one device does not support FBB transfers,
** No one on the bus can be allowed to use them.
*/
(void) pci_read_config_word(dev, PCI_STATUS, &status);
bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK);
#endif
/*
** P2PB's have no IRQs. ignore them.
*/
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
continue;
/* Adjust INTERRUPT_LINE for this dev */
iosapic_fixup_irq(ldev->iosapic_obj, dev);
}
#ifdef FBB_SUPPORT
/* FIXME/REVISIT - finish figuring out to set FBB on both
** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL.
** Can't fixup here anyway....garr...
*/
if (fbb_enable) {
if (bus->parent) {
u8 control;
/* enable on PPB */
(void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control);
(void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK);
} else {
/* enable on LBA */
}
fbb_enable = PCI_COMMAND_FAST_BACK;
}
/* Lastly enable FBB/PERR/SERR on all devices too */
list_for_each_entry(dev, &bus->devices, bus_list) {
(void) pci_read_config_word(dev, PCI_COMMAND, &status);
status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable;
(void) pci_write_config_word(dev, PCI_COMMAND, status);
}
#endif
}
static struct pci_bios_ops lba_bios_ops = {
.init = lba_bios_init,
.fixup_bus = lba_fixup_bus,
};
/*******************************************************
**
** LBA Sprockets "I/O Port" Space Accessor Functions
**
** This set of accessor functions is intended for use with
** "legacy firmware" (ie Sprockets on Allegro/Forte boxes).
**
** Many PCI devices don't require use of I/O port space (eg Tulip,
** NCR720) since they export the same registers to both MMIO and
** I/O port space. In general I/O port space is slower than
** MMIO since drivers are designed so PIO writes can be posted.
**
********************************************************/
#define LBA_PORT_IN(size, mask) \
static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \
{ \
u##size t; \
t = READ_REG##size(astro_iop_base + addr); \
DBG_PORT(" 0x%x\n", t); \
return (t); \
}
LBA_PORT_IN( 8, 3)
LBA_PORT_IN(16, 2)
LBA_PORT_IN(32, 0)
/*
** BUG X4107: Ordering broken - DMA RD return can bypass PIO WR
**
** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is
** guarantee non-postable completion semantics - not avoid X4107.
** The READ_U32 only guarantees the write data gets to elroy but
** out to the PCI bus. We can't read stuff from I/O port space
** since we don't know what has side-effects. Attempting to read
** from configuration space would be suicidal given the number of
** bugs in that elroy functionality.
**
** Description:
** DMA read results can improperly pass PIO writes (X4107). The
** result of this bug is that if a processor modifies a location in
** memory after having issued PIO writes, the PIO writes are not
** guaranteed to be completed before a PCI device is allowed to see
** the modified data in a DMA read.
**
** Note that IKE bug X3719 in TR1 IKEs will result in the same
** symptom.
**
** Workaround:
** The workaround for this bug is to always follow a PIO write with
** a PIO read to the same bus before starting DMA on that PCI bus.
**
*/
#define LBA_PORT_OUT(size, mask) \
static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \
{ \
DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, d, addr, val); \
WRITE_REG##size(val, astro_iop_base + addr); \
if (LBA_DEV(d)->hw_rev < 3) \
lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \
}
LBA_PORT_OUT( 8, 3)
LBA_PORT_OUT(16, 2)
LBA_PORT_OUT(32, 0)
static struct pci_port_ops lba_astro_port_ops = {
.inb = lba_astro_in8,
.inw = lba_astro_in16,
.inl = lba_astro_in32,
.outb = lba_astro_out8,
.outw = lba_astro_out16,
.outl = lba_astro_out32
};
#ifdef CONFIG_64BIT
#define PIOP_TO_GMMIO(lba, addr) \
((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3))
/*******************************************************
**
** LBA PAT "I/O Port" Space Accessor Functions
**
** This set of accessor functions is intended for use with
** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes).
**
** This uses the PIOP space located in the first 64MB of GMMIO.
** Each rope gets a full 64*KB* (ie 4 bytes per page) this way.
** bits 1:0 stay the same. bits 15:2 become 25:12.
** Then add the base and we can generate an I/O Port cycle.
********************************************************/
#undef LBA_PORT_IN
#define LBA_PORT_IN(size, mask) \
static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \
{ \
u##size t; \
DBG_PORT("%s(0x%p, 0x%x) ->", __func__, l, addr); \
t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \
DBG_PORT(" 0x%x\n", t); \
return (t); \
}
LBA_PORT_IN( 8, 3)
LBA_PORT_IN(16, 2)
LBA_PORT_IN(32, 0)
#undef LBA_PORT_OUT
#define LBA_PORT_OUT(size, mask) \
static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \
{ \
void __iomem *where = PIOP_TO_GMMIO(LBA_DEV(l), addr); \
DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, l, addr, val); \
WRITE_REG##size(val, where); \
/* flush the I/O down to the elroy at least */ \
lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \
}
LBA_PORT_OUT( 8, 3)
LBA_PORT_OUT(16, 2)
LBA_PORT_OUT(32, 0)
static struct pci_port_ops lba_pat_port_ops = {
.inb = lba_pat_in8,
.inw = lba_pat_in16,
.inl = lba_pat_in32,
.outb = lba_pat_out8,
.outw = lba_pat_out16,
.outl = lba_pat_out32
};
/*
** make range information from PDC available to PCI subsystem.
** We make the PDC call here in order to get the PCI bus range
** numbers. The rest will get forwarded in pcibios_fixup_bus().
** We don't have a struct pci_bus assigned to us yet.
*/
static void
lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
{
unsigned long bytecnt;
long io_count;
long status; /* PDC return status */
long pa_count;
pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell; /* PA_VIEW */
pdc_pat_cell_mod_maddr_block_t *io_pdc_cell; /* IO_VIEW */
int i;
pa_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL);
if (!pa_pdc_cell)
return;
io_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL);
if (!io_pdc_cell) {
kfree(pa_pdc_cell);
return;
}
/* return cell module (IO view) */
status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
PA_VIEW, pa_pdc_cell);
pa_count = pa_pdc_cell->mod[1];
status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
IO_VIEW, io_pdc_cell);
io_count = io_pdc_cell->mod[1];
/* We've already done this once for device discovery...*/
if (status != PDC_OK) {
panic("pdc_pat_cell_module() call failed for LBA!\n");
}
if (PAT_GET_ENTITY(pa_pdc_cell->mod_info) != PAT_ENTITY_LBA) {
panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n");
}
/*
** Inspect the resources PAT tells us about
*/
for (i = 0; i < pa_count; i++) {
struct {
unsigned long type;
unsigned long start;
unsigned long end; /* aka finish */
} *p, *io;
struct resource *r;
p = (void *) &(pa_pdc_cell->mod[2+i*3]);
io = (void *) &(io_pdc_cell->mod[2+i*3]);
/* Convert the PAT range data to PCI "struct resource" */
switch(p->type & 0xff) {
case PAT_PBNUM:
lba_dev->hba.bus_num.start = p->start;
lba_dev->hba.bus_num.end = p->end;
lba_dev->hba.bus_num.flags = IORESOURCE_BUS;
break;
case PAT_LMMIO:
/* used to fix up pre-initialized MEM BARs */
if (!lba_dev->hba.lmmio_space.flags) {
unsigned long lba_len;
lba_len = ~READ_REG32(lba_dev->hba.base_addr
+ LBA_LMMIO_MASK);
if ((p->end - p->start) != lba_len)
p->end = extend_lmmio_len(p->start,
p->end, lba_len);
sprintf(lba_dev->hba.lmmio_name,
"PCI%02x LMMIO",
(int)lba_dev->hba.bus_num.start);
lba_dev->hba.lmmio_space_offset = p->start -
io->start;
r = &lba_dev->hba.lmmio_space;
r->name = lba_dev->hba.lmmio_name;
} else if (!lba_dev->hba.elmmio_space.flags) {
sprintf(lba_dev->hba.elmmio_name,
"PCI%02x ELMMIO",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.elmmio_space;
r->name = lba_dev->hba.elmmio_name;
} else {
printk(KERN_WARNING MODULE_NAME
" only supports 2 LMMIO resources!\n");
break;
}
r->start = p->start;
r->end = p->end;
r->flags = IORESOURCE_MEM;
r->parent = r->sibling = r->child = NULL;
break;
case PAT_GMMIO:
/* MMIO space > 4GB phys addr; for 64-bit BAR */
sprintf(lba_dev->hba.gmmio_name, "PCI%02x GMMIO",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.gmmio_space;
r->name = lba_dev->hba.gmmio_name;
r->start = p->start;
r->end = p->end;
r->flags = IORESOURCE_MEM;
r->parent = r->sibling = r->child = NULL;
break;
case PAT_NPIOP:
printk(KERN_WARNING MODULE_NAME
" range[%d] : ignoring NPIOP (0x%lx)\n",
i, p->start);
break;
case PAT_PIOP:
/*
** Postable I/O port space is per PCI host adapter.
** base of 64MB PIOP region
*/
lba_dev->iop_base = ioremap_nocache(p->start, 64 * 1024 * 1024);
sprintf(lba_dev->hba.io_name, "PCI%02x Ports",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.io_space;
r->name = lba_dev->hba.io_name;
r->start = HBA_PORT_BASE(lba_dev->hba.hba_num);
r->end = r->start + HBA_PORT_SPACE_SIZE - 1;
r->flags = IORESOURCE_IO;
r->parent = r->sibling = r->child = NULL;
break;
default:
printk(KERN_WARNING MODULE_NAME
" range[%d] : unknown pat range type (0x%lx)\n",
i, p->type & 0xff);
break;
}
}
kfree(pa_pdc_cell);
kfree(io_pdc_cell);
}
#else
/* keep compiler from complaining about missing declarations */
#define lba_pat_port_ops lba_astro_port_ops
#define lba_pat_resources(pa_dev, lba_dev)
#endif /* CONFIG_64BIT */
extern void sba_distributed_lmmio(struct parisc_device *, struct resource *);
extern void sba_directed_lmmio(struct parisc_device *, struct resource *);
static void
lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
{
struct resource *r;
int lba_num;
lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND;
/*
** With "legacy" firmware, the lowest byte of FW_SCRATCH
** represents bus->secondary and the second byte represents
** bus->subsidiary (i.e. highest PPB programmed by firmware).
** PCI bus walk *should* end up with the same result.
** FIXME: But we don't have sanity checks in PCI or LBA.
*/
lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH);
r = &(lba_dev->hba.bus_num);
r->name = "LBA PCI Busses";
r->start = lba_num & 0xff;
r->end = (lba_num>>8) & 0xff;
r->flags = IORESOURCE_BUS;
/* Set up local PCI Bus resources - we don't need them for
** Legacy boxes but it's nice to see in /proc/iomem.
*/
r = &(lba_dev->hba.lmmio_space);
sprintf(lba_dev->hba.lmmio_name, "PCI%02x LMMIO",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.lmmio_name;
#if 1
/* We want the CPU -> IO routing of addresses.
* The SBA BASE/MASK registers control CPU -> IO routing.
* Ask SBA what is routed to this rope/LBA.
*/
sba_distributed_lmmio(pa_dev, r);
#else
/*
* The LBA BASE/MASK registers control IO -> System routing.
*
* The following code works but doesn't get us what we want.
* Well, only because firmware (v5.0) on C3000 doesn't program
* the LBA BASE/MASE registers to be the exact inverse of
* the corresponding SBA registers. Other Astro/Pluto
* based platform firmware may do it right.
*
* Should someone want to mess with MSI, they may need to
* reprogram LBA BASE/MASK registers. Thus preserve the code
* below until MSI is known to work on C3000/A500/N4000/RP3440.
*
* Using the code below, /proc/iomem shows:
* ...
* f0000000-f0ffffff : PCI00 LMMIO
* f05d0000-f05d0000 : lcd_data
* f05d0008-f05d0008 : lcd_cmd
* f1000000-f1ffffff : PCI01 LMMIO
* f4000000-f4ffffff : PCI02 LMMIO
* f4000000-f4001fff : sym53c8xx
* f4002000-f4003fff : sym53c8xx
* f4004000-f40043ff : sym53c8xx
* f4005000-f40053ff : sym53c8xx
* f4007000-f4007fff : ohci_hcd
* f4008000-f40083ff : tulip
* f6000000-f6ffffff : PCI03 LMMIO
* f8000000-fbffffff : PCI00 ELMMIO
* fa100000-fa4fffff : stifb mmio
* fb000000-fb1fffff : stifb fb
*
* But everything listed under PCI02 actually lives under PCI00.
* This is clearly wrong.
*
* Asking SBA how things are routed tells the correct story:
* LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000
* DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006
* DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004
* DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000
* DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000
*
* Which looks like this in /proc/iomem:
* f4000000-f47fffff : PCI00 LMMIO
* f4000000-f4001fff : sym53c8xx
* ...[deteled core devices - same as above]...
* f4008000-f40083ff : tulip
* f4800000-f4ffffff : PCI01 LMMIO
* f6000000-f67fffff : PCI02 LMMIO
* f7000000-f77fffff : PCI03 LMMIO
* f9000000-f9ffffff : PCI02 ELMMIO
* fa000000-fbffffff : PCI03 ELMMIO
* fa100000-fa4fffff : stifb mmio
* fb000000-fb1fffff : stifb fb
*
* ie all Built-in core are under now correctly under PCI00.
* The "PCI02 ELMMIO" directed range is for:
* +-[02]---03.0 3Dfx Interactive, Inc. Voodoo 2
*
* All is well now.
*/
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE);
if (r->start & 1) {
unsigned long rsize;
r->flags = IORESOURCE_MEM;
/* mmio_mask also clears Enable bit */
r->start &= mmio_mask;
r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start);
rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK);
/*
** Each rope only gets part of the distributed range.
** Adjust "window" for this rope.
*/
rsize /= ROPES_PER_IOC;
r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start);
r->end = r->start + rsize;
} else {
r->end = r->start = 0; /* Not enabled. */
}
#endif
/*
** "Directed" ranges are used when the "distributed range" isn't
** sufficient for all devices below a given LBA. Typically devices
** like graphics cards or X25 may need a directed range when the
** bus has multiple slots (ie multiple devices) or the device
** needs more than the typical 4 or 8MB a distributed range offers.
**
** The main reason for ignoring it now frigging complications.
** Directed ranges may overlap (and have precedence) over
** distributed ranges. Or a distributed range assigned to a unused
** rope may be used by a directed range on a different rope.
** Support for graphics devices may require fixing this
** since they may be assigned a directed range which overlaps
** an existing (but unused portion of) distributed range.
*/
r = &(lba_dev->hba.elmmio_space);
sprintf(lba_dev->hba.elmmio_name, "PCI%02x ELMMIO",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.elmmio_name;
#if 1
/* See comment which precedes call to sba_directed_lmmio() */
sba_directed_lmmio(pa_dev, r);
#else
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE);
if (r->start & 1) {
unsigned long rsize;
r->flags = IORESOURCE_MEM;
/* mmio_mask also clears Enable bit */
r->start &= mmio_mask;
r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start);
rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK);
r->end = r->start + ~rsize;
}
#endif
r = &(lba_dev->hba.io_space);
sprintf(lba_dev->hba.io_name, "PCI%02x Ports",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.io_name;
r->flags = IORESOURCE_IO;
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L;
r->end = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1));
/* Virtualize the I/O Port space ranges */
lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num);
r->start |= lba_num;
r->end |= lba_num;
}
/**************************************************************************
**
** LBA initialization code (HW and SW)
**
** o identify LBA chip itself
** o initialize LBA chip modes (HardFail)
** o FIXME: initialize DMA hints for reasonable defaults
** o enable configuration functions
** o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked)
**
**************************************************************************/
static int __init
lba_hw_init(struct lba_device *d)
{
u32 stat;
u32 bus_reset; /* PDC_PAT_BUG */
#if 0
printk(KERN_DEBUG "LBA %lx STAT_CTL %Lx ERROR_CFG %Lx STATUS %Lx DMA_CTL %Lx\n",
d->hba.base_addr,
READ_REG64(d->hba.base_addr + LBA_STAT_CTL),
READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG),
READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS),
READ_REG64(d->hba.base_addr + LBA_DMA_CTL) );
printk(KERN_DEBUG " ARB mask %Lx pri %Lx mode %Lx mtlt %Lx\n",
READ_REG64(d->hba.base_addr + LBA_ARB_MASK),
READ_REG64(d->hba.base_addr + LBA_ARB_PRI),
READ_REG64(d->hba.base_addr + LBA_ARB_MODE),
READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) );
printk(KERN_DEBUG " HINT cfg 0x%Lx\n",
READ_REG64(d->hba.base_addr + LBA_HINT_CFG));
printk(KERN_DEBUG " HINT reg ");
{ int i;
for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8)
printk(" %Lx", READ_REG64(d->hba.base_addr + i));
}
printk("\n");
#endif /* DEBUG_LBA_PAT */
#ifdef CONFIG_64BIT
/*
* FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support
* Only N-Class and up can really make use of Get slot status.
* maybe L-class too but I've never played with it there.
*/
#endif
/* PDC_PAT_BUG: exhibited in rev 40.48 on L2000 */
bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1;
if (bus_reset) {
printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n");
}
stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG);
if (stat & LBA_SMART_MODE) {
printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n");
stat &= ~LBA_SMART_MODE;
WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG);
}
/* Set HF mode as the default (vs. -1 mode). */
stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);
WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
/*
** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal
** if it's not already set. If we just cleared the PCI Bus Reset
** signal, wait a bit for the PCI devices to recover and setup.
*/
if (bus_reset)
mdelay(pci_post_reset_delay);
if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) {
/*
** PDC_PAT_BUG: PDC rev 40.48 on L2000.
** B2000/C3600/J6000 also have this problem?
**
** Elroys with hot pluggable slots don't get configured
** correctly if the slot is empty. ARB_MASK is set to 0
** and we can't master transactions on the bus if it's
** not at least one. 0x3 enables elroy and first slot.
*/
printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n");
WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK);
}
/*
** FIXME: Hint registers are programmed with default hint
** values by firmware. Hints should be sane even if we
** can't reprogram them the way drivers want.
*/
return 0;
}
/*
* Unfortunately, when firmware numbers busses, it doesn't take into account
* Cardbus bridges. So we have to renumber the busses to suit ourselves.
* Elroy/Mercury don't actually know what bus number they're attached to;
* we use bus 0 to indicate the directly attached bus and any other bus
* number will be taken care of by the PCI-PCI bridge.
*/
static unsigned int lba_next_bus = 0;
/*
* Determine if lba should claim this chip (return 0) or not (return 1).
* If so, initialize the chip and tell other partners in crime they
* have work to do.
*/
static int __init
lba_driver_probe(struct parisc_device *dev)
{
struct lba_device *lba_dev;
LIST_HEAD(resources);
struct pci_bus *lba_bus;
struct pci_ops *cfg_ops;
u32 func_class;
void *tmp_obj;
char *version;
void __iomem *addr = ioremap_nocache(dev->hpa.start, 4096);
int max;
/* Read HW Rev First */
func_class = READ_REG32(addr + LBA_FCLASS);
if (IS_ELROY(dev)) {
func_class &= 0xf;
switch (func_class) {
case 0: version = "TR1.0"; break;
case 1: version = "TR2.0"; break;
case 2: version = "TR2.1"; break;
case 3: version = "TR2.2"; break;
case 4: version = "TR3.0"; break;
case 5: version = "TR4.0"; break;
default: version = "TR4+";
}
printk(KERN_INFO "Elroy version %s (0x%x) found at 0x%lx\n",
version, func_class & 0xf, (long)dev->hpa.start);
if (func_class < 2) {
printk(KERN_WARNING "Can't support LBA older than "
"TR2.1 - continuing under adversity.\n");
}
#if 0
/* Elroy TR4.0 should work with simple algorithm.
But it doesn't. Still missing something. *sigh*
*/
if (func_class > 4) {
cfg_ops = &mercury_cfg_ops;
} else
#endif
{
cfg_ops = &elroy_cfg_ops;
}
} else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) {
int major, minor;
func_class &= 0xff;
major = func_class >> 4, minor = func_class & 0xf;
/* We could use one printk for both Elroy and Mercury,
* but for the mask for func_class.
*/
printk(KERN_INFO "%s version TR%d.%d (0x%x) found at 0x%lx\n",
IS_MERCURY(dev) ? "Mercury" : "Quicksilver", major,
minor, func_class, (long)dev->hpa.start);
cfg_ops = &mercury_cfg_ops;
} else {
printk(KERN_ERR "Unknown LBA found at 0x%lx\n",
(long)dev->hpa.start);
return -ENODEV;
}
/* Tell I/O SAPIC driver we have a IRQ handler/region. */
tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE);
/* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't
** have an IRT entry will get NULL back from iosapic code.
*/
lba_dev = kzalloc(sizeof(struct lba_device), GFP_KERNEL);
if (!lba_dev) {
printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n");
return(1);
}
/* ---------- First : initialize data we already have --------- */
lba_dev->hw_rev = func_class;
lba_dev->hba.base_addr = addr;
lba_dev->hba.dev = dev;
lba_dev->iosapic_obj = tmp_obj; /* save interrupt handle */
lba_dev->hba.iommu = sba_get_iommu(dev); /* get iommu data */
parisc_set_drvdata(dev, lba_dev);
/* ------------ Second : initialize common stuff ---------- */
pci_bios = &lba_bios_ops;
pcibios_register_hba(HBA_DATA(lba_dev));
spin_lock_init(&lba_dev->lba_lock);
if (lba_hw_init(lba_dev))
return(1);
/* ---------- Third : setup I/O Port and MMIO resources --------- */
if (is_pdc_pat()) {
/* PDC PAT firmware uses PIOP region of GMMIO space. */
pci_port = &lba_pat_port_ops;
/* Go ask PDC PAT what resources this LBA has */
lba_pat_resources(dev, lba_dev);
} else {
if (!astro_iop_base) {
/* Sprockets PDC uses NPIOP region */
astro_iop_base = ioremap_nocache(LBA_PORT_BASE, 64 * 1024);
pci_port = &lba_astro_port_ops;
}
/* Poke the chip a bit for /proc output */
lba_legacy_resources(dev, lba_dev);
}
if (lba_dev->hba.bus_num.start < lba_next_bus)
lba_dev->hba.bus_num.start = lba_next_bus;
/* Overlaps with elmmio can (and should) fail here.
* We will prune (or ignore) the distributed range.
*
* FIXME: SBA code should register all elmmio ranges first.
* that would take care of elmmio ranges routed
* to a different rope (already discovered) from
* getting registered *after* LBA code has already
* registered it's distributed lmmio range.
*/
if (truncate_pat_collision(&iomem_resource,
&(lba_dev->hba.lmmio_space))) {
printk(KERN_WARNING "LBA: lmmio_space [%lx/%lx] duplicate!\n",
(long)lba_dev->hba.lmmio_space.start,
(long)lba_dev->hba.lmmio_space.end);
lba_dev->hba.lmmio_space.flags = 0;
}
pci_add_resource_offset(&resources, &lba_dev->hba.io_space,
HBA_PORT_BASE(lba_dev->hba.hba_num));
if (lba_dev->hba.elmmio_space.flags)
pci_add_resource_offset(&resources, &lba_dev->hba.elmmio_space,
lba_dev->hba.lmmio_space_offset);
if (lba_dev->hba.lmmio_space.flags)
pci_add_resource_offset(&resources, &lba_dev->hba.lmmio_space,
lba_dev->hba.lmmio_space_offset);
if (lba_dev->hba.gmmio_space.flags) {
/* pci_add_resource(&resources, &lba_dev->hba.gmmio_space); */
pr_warn("LBA: Not registering GMMIO space %pR\n",
&lba_dev->hba.gmmio_space);
}
pci_add_resource(&resources, &lba_dev->hba.bus_num);
dev->dev.platform_data = lba_dev;
lba_bus = lba_dev->hba.hba_bus =
pci_create_root_bus(&dev->dev, lba_dev->hba.bus_num.start,
cfg_ops, NULL, &resources);
if (!lba_bus) {
pci_free_resource_list(&resources);
return 0;
}
max = pci_scan_child_bus(lba_bus);
/* This is in lieu of calling pci_assign_unassigned_resources() */
if (is_pdc_pat()) {
/* assign resources to un-initialized devices */
DBG_PAT("LBA pci_bus_size_bridges()\n");
pci_bus_size_bridges(lba_bus);
DBG_PAT("LBA pci_bus_assign_resources()\n");
pci_bus_assign_resources(lba_bus);
#ifdef DEBUG_LBA_PAT
DBG_PAT("\nLBA PIOP resource tree\n");
lba_dump_res(&lba_dev->hba.io_space, 2);
DBG_PAT("\nLBA LMMIO resource tree\n");
lba_dump_res(&lba_dev->hba.lmmio_space, 2);
#endif
}
/*
** Once PCI register ops has walked the bus, access to config
** space is restricted. Avoids master aborts on config cycles.
** Early LBA revs go fatal on *any* master abort.
*/
if (cfg_ops == &elroy_cfg_ops) {
lba_dev->flags |= LBA_FLAG_SKIP_PROBE;
}
lba_next_bus = max + 1;
pci_bus_add_devices(lba_bus);
/* Whew! Finally done! Tell services we got this one covered. */
return 0;
}
static struct parisc_device_id lba_tbl[] = {
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa },
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa },
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa },
{ 0, }
};
static struct parisc_driver lba_driver = {
.name = MODULE_NAME,
.id_table = lba_tbl,
.probe = lba_driver_probe,
};
/*
** One time initialization to let the world know the LBA was found.
** Must be called exactly once before pci_init().
*/
void __init lba_init(void)
{
register_parisc_driver(&lba_driver);
}
/*
** Initialize the IBASE/IMASK registers for LBA (Elroy).
** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA).
** sba_iommu is responsible for locking (none needed at init time).
*/
void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask)
{
void __iomem * base_addr = ioremap_nocache(lba->hpa.start, 4096);
imask <<= 2; /* adjust for hints - 2 more bits */
/* Make sure we aren't trying to set bits that aren't writeable. */
WARN_ON((ibase & 0x001fffff) != 0);
WARN_ON((imask & 0x001fffff) != 0);
DBG("%s() ibase 0x%x imask 0x%x\n", __func__, ibase, imask);
WRITE_REG32( imask, base_addr + LBA_IMASK);
WRITE_REG32( ibase, base_addr + LBA_IBASE);
iounmap(base_addr);
}