linux/drivers/firewire/core-transaction.c
Clemens Ladisch d71e6a1173 firewire: core: use correct vendor/model IDs
The kernel was using the vendor ID 0xd00d1e, which was inherited from
the old ieee1394 driver stack.  However, this ID was not registered, and
invalid.

Instead, use the vendor/model IDs that are now officially assigned to
the kernel:
https://ieee1394.wiki.kernel.org/index.php/IEEE_OUI_Assignments

[stefanr:
  - The vendor ID 001f11 is Openmoko, Inc.'s identifier, registered at
    IEEE Registration Authority.
  - The range of model IDs 023900...0239ff are the Linux kernel 1394
    subsystem's identifiers, registered at Openmoko.
  - Model ID 023901 is picked by the subsystem developers as
    firewire-core's model ID.]

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
2015-02-02 21:56:03 +01:00

1301 lines
35 KiB
C

/*
* Core IEEE1394 transaction logic
*
* Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/bug.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/idr.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/rculist.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#include <asm/byteorder.h>
#include "core.h"
#define HEADER_PRI(pri) ((pri) << 0)
#define HEADER_TCODE(tcode) ((tcode) << 4)
#define HEADER_RETRY(retry) ((retry) << 8)
#define HEADER_TLABEL(tlabel) ((tlabel) << 10)
#define HEADER_DESTINATION(destination) ((destination) << 16)
#define HEADER_SOURCE(source) ((source) << 16)
#define HEADER_RCODE(rcode) ((rcode) << 12)
#define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
#define HEADER_DATA_LENGTH(length) ((length) << 16)
#define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
#define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
#define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
#define HEADER_DESTINATION_IS_BROADCAST(q) \
(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
#define PHY_PACKET_CONFIG 0x0
#define PHY_PACKET_LINK_ON 0x1
#define PHY_PACKET_SELF_ID 0x2
#define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
#define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
#define PHY_IDENTIFIER(id) ((id) << 30)
/* returns 0 if the split timeout handler is already running */
static int try_cancel_split_timeout(struct fw_transaction *t)
{
if (t->is_split_transaction)
return del_timer(&t->split_timeout_timer);
else
return 1;
}
static int close_transaction(struct fw_transaction *transaction,
struct fw_card *card, int rcode)
{
struct fw_transaction *t;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
list_for_each_entry(t, &card->transaction_list, link) {
if (t == transaction) {
if (!try_cancel_split_timeout(t)) {
spin_unlock_irqrestore(&card->lock, flags);
goto timed_out;
}
list_del_init(&t->link);
card->tlabel_mask &= ~(1ULL << t->tlabel);
break;
}
}
spin_unlock_irqrestore(&card->lock, flags);
if (&t->link != &card->transaction_list) {
t->callback(card, rcode, NULL, 0, t->callback_data);
return 0;
}
timed_out:
return -ENOENT;
}
/*
* Only valid for transactions that are potentially pending (ie have
* been sent).
*/
int fw_cancel_transaction(struct fw_card *card,
struct fw_transaction *transaction)
{
/*
* Cancel the packet transmission if it's still queued. That
* will call the packet transmission callback which cancels
* the transaction.
*/
if (card->driver->cancel_packet(card, &transaction->packet) == 0)
return 0;
/*
* If the request packet has already been sent, we need to see
* if the transaction is still pending and remove it in that case.
*/
return close_transaction(transaction, card, RCODE_CANCELLED);
}
EXPORT_SYMBOL(fw_cancel_transaction);
static void split_transaction_timeout_callback(unsigned long data)
{
struct fw_transaction *t = (struct fw_transaction *)data;
struct fw_card *card = t->card;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
if (list_empty(&t->link)) {
spin_unlock_irqrestore(&card->lock, flags);
return;
}
list_del(&t->link);
card->tlabel_mask &= ~(1ULL << t->tlabel);
spin_unlock_irqrestore(&card->lock, flags);
t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
}
static void start_split_transaction_timeout(struct fw_transaction *t,
struct fw_card *card)
{
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
spin_unlock_irqrestore(&card->lock, flags);
return;
}
t->is_split_transaction = true;
mod_timer(&t->split_timeout_timer,
jiffies + card->split_timeout_jiffies);
spin_unlock_irqrestore(&card->lock, flags);
}
static void transmit_complete_callback(struct fw_packet *packet,
struct fw_card *card, int status)
{
struct fw_transaction *t =
container_of(packet, struct fw_transaction, packet);
switch (status) {
case ACK_COMPLETE:
close_transaction(t, card, RCODE_COMPLETE);
break;
case ACK_PENDING:
start_split_transaction_timeout(t, card);
break;
case ACK_BUSY_X:
case ACK_BUSY_A:
case ACK_BUSY_B:
close_transaction(t, card, RCODE_BUSY);
break;
case ACK_DATA_ERROR:
close_transaction(t, card, RCODE_DATA_ERROR);
break;
case ACK_TYPE_ERROR:
close_transaction(t, card, RCODE_TYPE_ERROR);
break;
default:
/*
* In this case the ack is really a juju specific
* rcode, so just forward that to the callback.
*/
close_transaction(t, card, status);
break;
}
}
static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
int destination_id, int source_id, int generation, int speed,
unsigned long long offset, void *payload, size_t length)
{
int ext_tcode;
if (tcode == TCODE_STREAM_DATA) {
packet->header[0] =
HEADER_DATA_LENGTH(length) |
destination_id |
HEADER_TCODE(TCODE_STREAM_DATA);
packet->header_length = 4;
packet->payload = payload;
packet->payload_length = length;
goto common;
}
if (tcode > 0x10) {
ext_tcode = tcode & ~0x10;
tcode = TCODE_LOCK_REQUEST;
} else
ext_tcode = 0;
packet->header[0] =
HEADER_RETRY(RETRY_X) |
HEADER_TLABEL(tlabel) |
HEADER_TCODE(tcode) |
HEADER_DESTINATION(destination_id);
packet->header[1] =
HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
packet->header[2] =
offset;
switch (tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
packet->header[3] = *(u32 *)payload;
packet->header_length = 16;
packet->payload_length = 0;
break;
case TCODE_LOCK_REQUEST:
case TCODE_WRITE_BLOCK_REQUEST:
packet->header[3] =
HEADER_DATA_LENGTH(length) |
HEADER_EXTENDED_TCODE(ext_tcode);
packet->header_length = 16;
packet->payload = payload;
packet->payload_length = length;
break;
case TCODE_READ_QUADLET_REQUEST:
packet->header_length = 12;
packet->payload_length = 0;
break;
case TCODE_READ_BLOCK_REQUEST:
packet->header[3] =
HEADER_DATA_LENGTH(length) |
HEADER_EXTENDED_TCODE(ext_tcode);
packet->header_length = 16;
packet->payload_length = 0;
break;
default:
WARN(1, "wrong tcode %d\n", tcode);
}
common:
packet->speed = speed;
packet->generation = generation;
packet->ack = 0;
packet->payload_mapped = false;
}
static int allocate_tlabel(struct fw_card *card)
{
int tlabel;
tlabel = card->current_tlabel;
while (card->tlabel_mask & (1ULL << tlabel)) {
tlabel = (tlabel + 1) & 0x3f;
if (tlabel == card->current_tlabel)
return -EBUSY;
}
card->current_tlabel = (tlabel + 1) & 0x3f;
card->tlabel_mask |= 1ULL << tlabel;
return tlabel;
}
/**
* fw_send_request() - submit a request packet for transmission
* @card: interface to send the request at
* @t: transaction instance to which the request belongs
* @tcode: transaction code
* @destination_id: destination node ID, consisting of bus_ID and phy_ID
* @generation: bus generation in which request and response are valid
* @speed: transmission speed
* @offset: 48bit wide offset into destination's address space
* @payload: data payload for the request subaction
* @length: length of the payload, in bytes
* @callback: function to be called when the transaction is completed
* @callback_data: data to be passed to the transaction completion callback
*
* Submit a request packet into the asynchronous request transmission queue.
* Can be called from atomic context. If you prefer a blocking API, use
* fw_run_transaction() in a context that can sleep.
*
* In case of lock requests, specify one of the firewire-core specific %TCODE_
* constants instead of %TCODE_LOCK_REQUEST in @tcode.
*
* Make sure that the value in @destination_id is not older than the one in
* @generation. Otherwise the request is in danger to be sent to a wrong node.
*
* In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
* needs to synthesize @destination_id with fw_stream_packet_destination_id().
* It will contain tag, channel, and sy data instead of a node ID then.
*
* The payload buffer at @data is going to be DMA-mapped except in case of
* @length <= 8 or of local (loopback) requests. Hence make sure that the
* buffer complies with the restrictions of the streaming DMA mapping API.
* @payload must not be freed before the @callback is called.
*
* In case of request types without payload, @data is NULL and @length is 0.
*
* After the transaction is completed successfully or unsuccessfully, the
* @callback will be called. Among its parameters is the response code which
* is either one of the rcodes per IEEE 1394 or, in case of internal errors,
* the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
* specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
* %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
* generation, or missing ACK respectively.
*
* Note some timing corner cases: fw_send_request() may complete much earlier
* than when the request packet actually hits the wire. On the other hand,
* transaction completion and hence execution of @callback may happen even
* before fw_send_request() returns.
*/
void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
int destination_id, int generation, int speed,
unsigned long long offset, void *payload, size_t length,
fw_transaction_callback_t callback, void *callback_data)
{
unsigned long flags;
int tlabel;
/*
* Allocate tlabel from the bitmap and put the transaction on
* the list while holding the card spinlock.
*/
spin_lock_irqsave(&card->lock, flags);
tlabel = allocate_tlabel(card);
if (tlabel < 0) {
spin_unlock_irqrestore(&card->lock, flags);
callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
return;
}
t->node_id = destination_id;
t->tlabel = tlabel;
t->card = card;
t->is_split_transaction = false;
setup_timer(&t->split_timeout_timer,
split_transaction_timeout_callback, (unsigned long)t);
t->callback = callback;
t->callback_data = callback_data;
fw_fill_request(&t->packet, tcode, t->tlabel,
destination_id, card->node_id, generation,
speed, offset, payload, length);
t->packet.callback = transmit_complete_callback;
list_add_tail(&t->link, &card->transaction_list);
spin_unlock_irqrestore(&card->lock, flags);
card->driver->send_request(card, &t->packet);
}
EXPORT_SYMBOL(fw_send_request);
struct transaction_callback_data {
struct completion done;
void *payload;
int rcode;
};
static void transaction_callback(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct transaction_callback_data *d = data;
if (rcode == RCODE_COMPLETE)
memcpy(d->payload, payload, length);
d->rcode = rcode;
complete(&d->done);
}
/**
* fw_run_transaction() - send request and sleep until transaction is completed
*
* Returns the RCODE. See fw_send_request() for parameter documentation.
* Unlike fw_send_request(), @data points to the payload of the request or/and
* to the payload of the response. DMA mapping restrictions apply to outbound
* request payloads of >= 8 bytes but not to inbound response payloads.
*/
int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
int generation, int speed, unsigned long long offset,
void *payload, size_t length)
{
struct transaction_callback_data d;
struct fw_transaction t;
init_timer_on_stack(&t.split_timeout_timer);
init_completion(&d.done);
d.payload = payload;
fw_send_request(card, &t, tcode, destination_id, generation, speed,
offset, payload, length, transaction_callback, &d);
wait_for_completion(&d.done);
destroy_timer_on_stack(&t.split_timeout_timer);
return d.rcode;
}
EXPORT_SYMBOL(fw_run_transaction);
static DEFINE_MUTEX(phy_config_mutex);
static DECLARE_COMPLETION(phy_config_done);
static void transmit_phy_packet_callback(struct fw_packet *packet,
struct fw_card *card, int status)
{
complete(&phy_config_done);
}
static struct fw_packet phy_config_packet = {
.header_length = 12,
.header[0] = TCODE_LINK_INTERNAL << 4,
.payload_length = 0,
.speed = SCODE_100,
.callback = transmit_phy_packet_callback,
};
void fw_send_phy_config(struct fw_card *card,
int node_id, int generation, int gap_count)
{
long timeout = DIV_ROUND_UP(HZ, 10);
u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
data |= PHY_CONFIG_ROOT_ID(node_id);
if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
gap_count = card->driver->read_phy_reg(card, 1);
if (gap_count < 0)
return;
gap_count &= 63;
if (gap_count == 63)
return;
}
data |= PHY_CONFIG_GAP_COUNT(gap_count);
mutex_lock(&phy_config_mutex);
phy_config_packet.header[1] = data;
phy_config_packet.header[2] = ~data;
phy_config_packet.generation = generation;
reinit_completion(&phy_config_done);
card->driver->send_request(card, &phy_config_packet);
wait_for_completion_timeout(&phy_config_done, timeout);
mutex_unlock(&phy_config_mutex);
}
static struct fw_address_handler *lookup_overlapping_address_handler(
struct list_head *list, unsigned long long offset, size_t length)
{
struct fw_address_handler *handler;
list_for_each_entry_rcu(handler, list, link) {
if (handler->offset < offset + length &&
offset < handler->offset + handler->length)
return handler;
}
return NULL;
}
static bool is_enclosing_handler(struct fw_address_handler *handler,
unsigned long long offset, size_t length)
{
return handler->offset <= offset &&
offset + length <= handler->offset + handler->length;
}
static struct fw_address_handler *lookup_enclosing_address_handler(
struct list_head *list, unsigned long long offset, size_t length)
{
struct fw_address_handler *handler;
list_for_each_entry_rcu(handler, list, link) {
if (is_enclosing_handler(handler, offset, length))
return handler;
}
return NULL;
}
static DEFINE_SPINLOCK(address_handler_list_lock);
static LIST_HEAD(address_handler_list);
const struct fw_address_region fw_high_memory_region =
{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
EXPORT_SYMBOL(fw_high_memory_region);
static const struct fw_address_region low_memory_region =
{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
#if 0
const struct fw_address_region fw_private_region =
{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
const struct fw_address_region fw_csr_region =
{ .start = CSR_REGISTER_BASE,
.end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
const struct fw_address_region fw_unit_space_region =
{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
#endif /* 0 */
static bool is_in_fcp_region(u64 offset, size_t length)
{
return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
}
/**
* fw_core_add_address_handler() - register for incoming requests
* @handler: callback
* @region: region in the IEEE 1212 node space address range
*
* region->start, ->end, and handler->length have to be quadlet-aligned.
*
* When a request is received that falls within the specified address range,
* the specified callback is invoked. The parameters passed to the callback
* give the details of the particular request.
*
* To be called in process context.
* Return value: 0 on success, non-zero otherwise.
*
* The start offset of the handler's address region is determined by
* fw_core_add_address_handler() and is returned in handler->offset.
*
* Address allocations are exclusive, except for the FCP registers.
*/
int fw_core_add_address_handler(struct fw_address_handler *handler,
const struct fw_address_region *region)
{
struct fw_address_handler *other;
int ret = -EBUSY;
if (region->start & 0xffff000000000003ULL ||
region->start >= region->end ||
region->end > 0x0001000000000000ULL ||
handler->length & 3 ||
handler->length == 0)
return -EINVAL;
spin_lock(&address_handler_list_lock);
handler->offset = region->start;
while (handler->offset + handler->length <= region->end) {
if (is_in_fcp_region(handler->offset, handler->length))
other = NULL;
else
other = lookup_overlapping_address_handler
(&address_handler_list,
handler->offset, handler->length);
if (other != NULL) {
handler->offset += other->length;
} else {
list_add_tail_rcu(&handler->link, &address_handler_list);
ret = 0;
break;
}
}
spin_unlock(&address_handler_list_lock);
return ret;
}
EXPORT_SYMBOL(fw_core_add_address_handler);
/**
* fw_core_remove_address_handler() - unregister an address handler
*
* To be called in process context.
*
* When fw_core_remove_address_handler() returns, @handler->callback() is
* guaranteed to not run on any CPU anymore.
*/
void fw_core_remove_address_handler(struct fw_address_handler *handler)
{
spin_lock(&address_handler_list_lock);
list_del_rcu(&handler->link);
spin_unlock(&address_handler_list_lock);
synchronize_rcu();
}
EXPORT_SYMBOL(fw_core_remove_address_handler);
struct fw_request {
struct fw_packet response;
u32 request_header[4];
int ack;
u32 length;
u32 data[0];
};
static void free_response_callback(struct fw_packet *packet,
struct fw_card *card, int status)
{
struct fw_request *request;
request = container_of(packet, struct fw_request, response);
kfree(request);
}
int fw_get_response_length(struct fw_request *r)
{
int tcode, ext_tcode, data_length;
tcode = HEADER_GET_TCODE(r->request_header[0]);
switch (tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
case TCODE_WRITE_BLOCK_REQUEST:
return 0;
case TCODE_READ_QUADLET_REQUEST:
return 4;
case TCODE_READ_BLOCK_REQUEST:
data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
return data_length;
case TCODE_LOCK_REQUEST:
ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
switch (ext_tcode) {
case EXTCODE_FETCH_ADD:
case EXTCODE_LITTLE_ADD:
return data_length;
default:
return data_length / 2;
}
default:
WARN(1, "wrong tcode %d\n", tcode);
return 0;
}
}
void fw_fill_response(struct fw_packet *response, u32 *request_header,
int rcode, void *payload, size_t length)
{
int tcode, tlabel, extended_tcode, source, destination;
tcode = HEADER_GET_TCODE(request_header[0]);
tlabel = HEADER_GET_TLABEL(request_header[0]);
source = HEADER_GET_DESTINATION(request_header[0]);
destination = HEADER_GET_SOURCE(request_header[1]);
extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
response->header[0] =
HEADER_RETRY(RETRY_1) |
HEADER_TLABEL(tlabel) |
HEADER_DESTINATION(destination);
response->header[1] =
HEADER_SOURCE(source) |
HEADER_RCODE(rcode);
response->header[2] = 0;
switch (tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
case TCODE_WRITE_BLOCK_REQUEST:
response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
response->header_length = 12;
response->payload_length = 0;
break;
case TCODE_READ_QUADLET_REQUEST:
response->header[0] |=
HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
if (payload != NULL)
response->header[3] = *(u32 *)payload;
else
response->header[3] = 0;
response->header_length = 16;
response->payload_length = 0;
break;
case TCODE_READ_BLOCK_REQUEST:
case TCODE_LOCK_REQUEST:
response->header[0] |= HEADER_TCODE(tcode + 2);
response->header[3] =
HEADER_DATA_LENGTH(length) |
HEADER_EXTENDED_TCODE(extended_tcode);
response->header_length = 16;
response->payload = payload;
response->payload_length = length;
break;
default:
WARN(1, "wrong tcode %d\n", tcode);
}
response->payload_mapped = false;
}
EXPORT_SYMBOL(fw_fill_response);
static u32 compute_split_timeout_timestamp(struct fw_card *card,
u32 request_timestamp)
{
unsigned int cycles;
u32 timestamp;
cycles = card->split_timeout_cycles;
cycles += request_timestamp & 0x1fff;
timestamp = request_timestamp & ~0x1fff;
timestamp += (cycles / 8000) << 13;
timestamp |= cycles % 8000;
return timestamp;
}
static struct fw_request *allocate_request(struct fw_card *card,
struct fw_packet *p)
{
struct fw_request *request;
u32 *data, length;
int request_tcode;
request_tcode = HEADER_GET_TCODE(p->header[0]);
switch (request_tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
data = &p->header[3];
length = 4;
break;
case TCODE_WRITE_BLOCK_REQUEST:
case TCODE_LOCK_REQUEST:
data = p->payload;
length = HEADER_GET_DATA_LENGTH(p->header[3]);
break;
case TCODE_READ_QUADLET_REQUEST:
data = NULL;
length = 4;
break;
case TCODE_READ_BLOCK_REQUEST:
data = NULL;
length = HEADER_GET_DATA_LENGTH(p->header[3]);
break;
default:
fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
p->header[0], p->header[1], p->header[2]);
return NULL;
}
request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
if (request == NULL)
return NULL;
request->response.speed = p->speed;
request->response.timestamp =
compute_split_timeout_timestamp(card, p->timestamp);
request->response.generation = p->generation;
request->response.ack = 0;
request->response.callback = free_response_callback;
request->ack = p->ack;
request->length = length;
if (data)
memcpy(request->data, data, length);
memcpy(request->request_header, p->header, sizeof(p->header));
return request;
}
void fw_send_response(struct fw_card *card,
struct fw_request *request, int rcode)
{
if (WARN_ONCE(!request, "invalid for FCP address handlers"))
return;
/* unified transaction or broadcast transaction: don't respond */
if (request->ack != ACK_PENDING ||
HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
kfree(request);
return;
}
if (rcode == RCODE_COMPLETE)
fw_fill_response(&request->response, request->request_header,
rcode, request->data,
fw_get_response_length(request));
else
fw_fill_response(&request->response, request->request_header,
rcode, NULL, 0);
card->driver->send_response(card, &request->response);
}
EXPORT_SYMBOL(fw_send_response);
/**
* fw_get_request_speed() - returns speed at which the @request was received
*/
int fw_get_request_speed(struct fw_request *request)
{
return request->response.speed;
}
EXPORT_SYMBOL(fw_get_request_speed);
static void handle_exclusive_region_request(struct fw_card *card,
struct fw_packet *p,
struct fw_request *request,
unsigned long long offset)
{
struct fw_address_handler *handler;
int tcode, destination, source;
destination = HEADER_GET_DESTINATION(p->header[0]);
source = HEADER_GET_SOURCE(p->header[1]);
tcode = HEADER_GET_TCODE(p->header[0]);
if (tcode == TCODE_LOCK_REQUEST)
tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
rcu_read_lock();
handler = lookup_enclosing_address_handler(&address_handler_list,
offset, request->length);
if (handler)
handler->address_callback(card, request,
tcode, destination, source,
p->generation, offset,
request->data, request->length,
handler->callback_data);
rcu_read_unlock();
if (!handler)
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
}
static void handle_fcp_region_request(struct fw_card *card,
struct fw_packet *p,
struct fw_request *request,
unsigned long long offset)
{
struct fw_address_handler *handler;
int tcode, destination, source;
if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
request->length > 0x200) {
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
return;
}
tcode = HEADER_GET_TCODE(p->header[0]);
destination = HEADER_GET_DESTINATION(p->header[0]);
source = HEADER_GET_SOURCE(p->header[1]);
if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
tcode != TCODE_WRITE_BLOCK_REQUEST) {
fw_send_response(card, request, RCODE_TYPE_ERROR);
return;
}
rcu_read_lock();
list_for_each_entry_rcu(handler, &address_handler_list, link) {
if (is_enclosing_handler(handler, offset, request->length))
handler->address_callback(card, NULL, tcode,
destination, source,
p->generation, offset,
request->data,
request->length,
handler->callback_data);
}
rcu_read_unlock();
fw_send_response(card, request, RCODE_COMPLETE);
}
void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
{
struct fw_request *request;
unsigned long long offset;
if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
return;
if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
fw_cdev_handle_phy_packet(card, p);
return;
}
request = allocate_request(card, p);
if (request == NULL) {
/* FIXME: send statically allocated busy packet. */
return;
}
offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
p->header[2];
if (!is_in_fcp_region(offset, request->length))
handle_exclusive_region_request(card, p, request, offset);
else
handle_fcp_region_request(card, p, request, offset);
}
EXPORT_SYMBOL(fw_core_handle_request);
void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
{
struct fw_transaction *t;
unsigned long flags;
u32 *data;
size_t data_length;
int tcode, tlabel, source, rcode;
tcode = HEADER_GET_TCODE(p->header[0]);
tlabel = HEADER_GET_TLABEL(p->header[0]);
source = HEADER_GET_SOURCE(p->header[1]);
rcode = HEADER_GET_RCODE(p->header[1]);
spin_lock_irqsave(&card->lock, flags);
list_for_each_entry(t, &card->transaction_list, link) {
if (t->node_id == source && t->tlabel == tlabel) {
if (!try_cancel_split_timeout(t)) {
spin_unlock_irqrestore(&card->lock, flags);
goto timed_out;
}
list_del_init(&t->link);
card->tlabel_mask &= ~(1ULL << t->tlabel);
break;
}
}
spin_unlock_irqrestore(&card->lock, flags);
if (&t->link == &card->transaction_list) {
timed_out:
fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
source, tlabel);
return;
}
/*
* FIXME: sanity check packet, is length correct, does tcodes
* and addresses match.
*/
switch (tcode) {
case TCODE_READ_QUADLET_RESPONSE:
data = (u32 *) &p->header[3];
data_length = 4;
break;
case TCODE_WRITE_RESPONSE:
data = NULL;
data_length = 0;
break;
case TCODE_READ_BLOCK_RESPONSE:
case TCODE_LOCK_RESPONSE:
data = p->payload;
data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
break;
default:
/* Should never happen, this is just to shut up gcc. */
data = NULL;
data_length = 0;
break;
}
/*
* The response handler may be executed while the request handler
* is still pending. Cancel the request handler.
*/
card->driver->cancel_packet(card, &t->packet);
t->callback(card, rcode, data, data_length, t->callback_data);
}
EXPORT_SYMBOL(fw_core_handle_response);
/**
* fw_rcode_string - convert a firewire result code to an error description
* @rcode: the result code
*/
const char *fw_rcode_string(int rcode)
{
static const char *const names[] = {
[RCODE_COMPLETE] = "no error",
[RCODE_CONFLICT_ERROR] = "conflict error",
[RCODE_DATA_ERROR] = "data error",
[RCODE_TYPE_ERROR] = "type error",
[RCODE_ADDRESS_ERROR] = "address error",
[RCODE_SEND_ERROR] = "send error",
[RCODE_CANCELLED] = "timeout",
[RCODE_BUSY] = "busy",
[RCODE_GENERATION] = "bus reset",
[RCODE_NO_ACK] = "no ack",
};
if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
return names[rcode];
else
return "unknown";
}
EXPORT_SYMBOL(fw_rcode_string);
static const struct fw_address_region topology_map_region =
{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
.end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
static void handle_topology_map(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source, int generation,
unsigned long long offset, void *payload, size_t length,
void *callback_data)
{
int start;
if (!TCODE_IS_READ_REQUEST(tcode)) {
fw_send_response(card, request, RCODE_TYPE_ERROR);
return;
}
if ((offset & 3) > 0 || (length & 3) > 0) {
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
return;
}
start = (offset - topology_map_region.start) / 4;
memcpy(payload, &card->topology_map[start], length);
fw_send_response(card, request, RCODE_COMPLETE);
}
static struct fw_address_handler topology_map = {
.length = 0x400,
.address_callback = handle_topology_map,
};
static const struct fw_address_region registers_region =
{ .start = CSR_REGISTER_BASE,
.end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
static void update_split_timeout(struct fw_card *card)
{
unsigned int cycles;
cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
cycles = clamp(cycles, 800u, 3u * 8000u);
card->split_timeout_cycles = cycles;
card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
}
static void handle_registers(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source, int generation,
unsigned long long offset, void *payload, size_t length,
void *callback_data)
{
int reg = offset & ~CSR_REGISTER_BASE;
__be32 *data = payload;
int rcode = RCODE_COMPLETE;
unsigned long flags;
switch (reg) {
case CSR_PRIORITY_BUDGET:
if (!card->priority_budget_implemented) {
rcode = RCODE_ADDRESS_ERROR;
break;
}
/* else fall through */
case CSR_NODE_IDS:
/*
* per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
* and 9.6, but interoperable with IEEE 1394.1-2004 bridges
*/
/* fall through */
case CSR_STATE_CLEAR:
case CSR_STATE_SET:
case CSR_CYCLE_TIME:
case CSR_BUS_TIME:
case CSR_BUSY_TIMEOUT:
if (tcode == TCODE_READ_QUADLET_REQUEST)
*data = cpu_to_be32(card->driver->read_csr(card, reg));
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
card->driver->write_csr(card, reg, be32_to_cpu(*data));
else
rcode = RCODE_TYPE_ERROR;
break;
case CSR_RESET_START:
if (tcode == TCODE_WRITE_QUADLET_REQUEST)
card->driver->write_csr(card, CSR_STATE_CLEAR,
CSR_STATE_BIT_ABDICATE);
else
rcode = RCODE_TYPE_ERROR;
break;
case CSR_SPLIT_TIMEOUT_HI:
if (tcode == TCODE_READ_QUADLET_REQUEST) {
*data = cpu_to_be32(card->split_timeout_hi);
} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
spin_lock_irqsave(&card->lock, flags);
card->split_timeout_hi = be32_to_cpu(*data) & 7;
update_split_timeout(card);
spin_unlock_irqrestore(&card->lock, flags);
} else {
rcode = RCODE_TYPE_ERROR;
}
break;
case CSR_SPLIT_TIMEOUT_LO:
if (tcode == TCODE_READ_QUADLET_REQUEST) {
*data = cpu_to_be32(card->split_timeout_lo);
} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
spin_lock_irqsave(&card->lock, flags);
card->split_timeout_lo =
be32_to_cpu(*data) & 0xfff80000;
update_split_timeout(card);
spin_unlock_irqrestore(&card->lock, flags);
} else {
rcode = RCODE_TYPE_ERROR;
}
break;
case CSR_MAINT_UTILITY:
if (tcode == TCODE_READ_QUADLET_REQUEST)
*data = card->maint_utility_register;
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
card->maint_utility_register = *data;
else
rcode = RCODE_TYPE_ERROR;
break;
case CSR_BROADCAST_CHANNEL:
if (tcode == TCODE_READ_QUADLET_REQUEST)
*data = cpu_to_be32(card->broadcast_channel);
else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
card->broadcast_channel =
(be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
BROADCAST_CHANNEL_INITIAL;
else
rcode = RCODE_TYPE_ERROR;
break;
case CSR_BUS_MANAGER_ID:
case CSR_BANDWIDTH_AVAILABLE:
case CSR_CHANNELS_AVAILABLE_HI:
case CSR_CHANNELS_AVAILABLE_LO:
/*
* FIXME: these are handled by the OHCI hardware and
* the stack never sees these request. If we add
* support for a new type of controller that doesn't
* handle this in hardware we need to deal with these
* transactions.
*/
BUG();
break;
default:
rcode = RCODE_ADDRESS_ERROR;
break;
}
fw_send_response(card, request, rcode);
}
static struct fw_address_handler registers = {
.length = 0x400,
.address_callback = handle_registers,
};
static void handle_low_memory(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source, int generation,
unsigned long long offset, void *payload, size_t length,
void *callback_data)
{
/*
* This catches requests not handled by the physical DMA unit,
* i.e., wrong transaction types or unauthorized source nodes.
*/
fw_send_response(card, request, RCODE_TYPE_ERROR);
}
static struct fw_address_handler low_memory = {
.length = FW_MAX_PHYSICAL_RANGE,
.address_callback = handle_low_memory,
};
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
MODULE_LICENSE("GPL");
static const u32 vendor_textual_descriptor[] = {
/* textual descriptor leaf () */
0x00060000,
0x00000000,
0x00000000,
0x4c696e75, /* L i n u */
0x78204669, /* x F i */
0x72657769, /* r e w i */
0x72650000, /* r e */
};
static const u32 model_textual_descriptor[] = {
/* model descriptor leaf () */
0x00030000,
0x00000000,
0x00000000,
0x4a756a75, /* J u j u */
};
static struct fw_descriptor vendor_id_descriptor = {
.length = ARRAY_SIZE(vendor_textual_descriptor),
.immediate = 0x03001f11,
.key = 0x81000000,
.data = vendor_textual_descriptor,
};
static struct fw_descriptor model_id_descriptor = {
.length = ARRAY_SIZE(model_textual_descriptor),
.immediate = 0x17023901,
.key = 0x81000000,
.data = model_textual_descriptor,
};
static int __init fw_core_init(void)
{
int ret;
fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
if (!fw_workqueue)
return -ENOMEM;
ret = bus_register(&fw_bus_type);
if (ret < 0) {
destroy_workqueue(fw_workqueue);
return ret;
}
fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
if (fw_cdev_major < 0) {
bus_unregister(&fw_bus_type);
destroy_workqueue(fw_workqueue);
return fw_cdev_major;
}
fw_core_add_address_handler(&topology_map, &topology_map_region);
fw_core_add_address_handler(&registers, &registers_region);
fw_core_add_address_handler(&low_memory, &low_memory_region);
fw_core_add_descriptor(&vendor_id_descriptor);
fw_core_add_descriptor(&model_id_descriptor);
return 0;
}
static void __exit fw_core_cleanup(void)
{
unregister_chrdev(fw_cdev_major, "firewire");
bus_unregister(&fw_bus_type);
destroy_workqueue(fw_workqueue);
idr_destroy(&fw_device_idr);
}
module_init(fw_core_init);
module_exit(fw_core_cleanup);