mirror of
https://github.com/torvalds/linux.git
synced 2024-11-28 15:11:31 +00:00
2874c5fd28
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
568 lines
15 KiB
C
568 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Cryptographic API.
|
|
*
|
|
* Support for VIA PadLock hardware crypto engine.
|
|
*
|
|
* Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
|
|
*/
|
|
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/padlock.h>
|
|
#include <crypto/sha.h>
|
|
#include <linux/err.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/fpu/api.h>
|
|
|
|
struct padlock_sha_desc {
|
|
struct shash_desc fallback;
|
|
};
|
|
|
|
struct padlock_sha_ctx {
|
|
struct crypto_shash *fallback;
|
|
};
|
|
|
|
static int padlock_sha_init(struct shash_desc *desc)
|
|
{
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
|
|
|
|
dctx->fallback.tfm = ctx->fallback;
|
|
return crypto_shash_init(&dctx->fallback);
|
|
}
|
|
|
|
static int padlock_sha_update(struct shash_desc *desc,
|
|
const u8 *data, unsigned int length)
|
|
{
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
|
|
return crypto_shash_update(&dctx->fallback, data, length);
|
|
}
|
|
|
|
static int padlock_sha_export(struct shash_desc *desc, void *out)
|
|
{
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
|
|
return crypto_shash_export(&dctx->fallback, out);
|
|
}
|
|
|
|
static int padlock_sha_import(struct shash_desc *desc, const void *in)
|
|
{
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
|
|
|
|
dctx->fallback.tfm = ctx->fallback;
|
|
return crypto_shash_import(&dctx->fallback, in);
|
|
}
|
|
|
|
static inline void padlock_output_block(uint32_t *src,
|
|
uint32_t *dst, size_t count)
|
|
{
|
|
while (count--)
|
|
*dst++ = swab32(*src++);
|
|
}
|
|
|
|
static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
|
|
unsigned int count, u8 *out)
|
|
{
|
|
/* We can't store directly to *out as it may be unaligned. */
|
|
/* BTW Don't reduce the buffer size below 128 Bytes!
|
|
* PadLock microcode needs it that big. */
|
|
char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
|
|
((aligned(STACK_ALIGN)));
|
|
char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
struct sha1_state state;
|
|
unsigned int space;
|
|
unsigned int leftover;
|
|
int err;
|
|
|
|
err = crypto_shash_export(&dctx->fallback, &state);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (state.count + count > ULONG_MAX)
|
|
return crypto_shash_finup(&dctx->fallback, in, count, out);
|
|
|
|
leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
|
|
space = SHA1_BLOCK_SIZE - leftover;
|
|
if (space) {
|
|
if (count > space) {
|
|
err = crypto_shash_update(&dctx->fallback, in, space) ?:
|
|
crypto_shash_export(&dctx->fallback, &state);
|
|
if (err)
|
|
goto out;
|
|
count -= space;
|
|
in += space;
|
|
} else {
|
|
memcpy(state.buffer + leftover, in, count);
|
|
in = state.buffer;
|
|
count += leftover;
|
|
state.count &= ~(SHA1_BLOCK_SIZE - 1);
|
|
}
|
|
}
|
|
|
|
memcpy(result, &state.state, SHA1_DIGEST_SIZE);
|
|
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
|
|
: \
|
|
: "c"((unsigned long)state.count + count), \
|
|
"a"((unsigned long)state.count), \
|
|
"S"(in), "D"(result));
|
|
|
|
padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
u8 buf[4];
|
|
|
|
return padlock_sha1_finup(desc, buf, 0, out);
|
|
}
|
|
|
|
static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
|
|
unsigned int count, u8 *out)
|
|
{
|
|
/* We can't store directly to *out as it may be unaligned. */
|
|
/* BTW Don't reduce the buffer size below 128 Bytes!
|
|
* PadLock microcode needs it that big. */
|
|
char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
|
|
((aligned(STACK_ALIGN)));
|
|
char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
struct sha256_state state;
|
|
unsigned int space;
|
|
unsigned int leftover;
|
|
int err;
|
|
|
|
err = crypto_shash_export(&dctx->fallback, &state);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (state.count + count > ULONG_MAX)
|
|
return crypto_shash_finup(&dctx->fallback, in, count, out);
|
|
|
|
leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
|
|
space = SHA256_BLOCK_SIZE - leftover;
|
|
if (space) {
|
|
if (count > space) {
|
|
err = crypto_shash_update(&dctx->fallback, in, space) ?:
|
|
crypto_shash_export(&dctx->fallback, &state);
|
|
if (err)
|
|
goto out;
|
|
count -= space;
|
|
in += space;
|
|
} else {
|
|
memcpy(state.buf + leftover, in, count);
|
|
in = state.buf;
|
|
count += leftover;
|
|
state.count &= ~(SHA1_BLOCK_SIZE - 1);
|
|
}
|
|
}
|
|
|
|
memcpy(result, &state.state, SHA256_DIGEST_SIZE);
|
|
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
|
|
: \
|
|
: "c"((unsigned long)state.count + count), \
|
|
"a"((unsigned long)state.count), \
|
|
"S"(in), "D"(result));
|
|
|
|
padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
u8 buf[4];
|
|
|
|
return padlock_sha256_finup(desc, buf, 0, out);
|
|
}
|
|
|
|
static int padlock_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct crypto_shash *hash = __crypto_shash_cast(tfm);
|
|
const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
|
|
struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_shash *fallback_tfm;
|
|
int err = -ENOMEM;
|
|
|
|
/* Allocate a fallback and abort if it failed. */
|
|
fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(fallback_tfm)) {
|
|
printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
|
|
fallback_driver_name);
|
|
err = PTR_ERR(fallback_tfm);
|
|
goto out;
|
|
}
|
|
|
|
ctx->fallback = fallback_tfm;
|
|
hash->descsize += crypto_shash_descsize(fallback_tfm);
|
|
return 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void padlock_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
crypto_free_shash(ctx->fallback);
|
|
}
|
|
|
|
static struct shash_alg sha1_alg = {
|
|
.digestsize = SHA1_DIGEST_SIZE,
|
|
.init = padlock_sha_init,
|
|
.update = padlock_sha_update,
|
|
.finup = padlock_sha1_finup,
|
|
.final = padlock_sha1_final,
|
|
.export = padlock_sha_export,
|
|
.import = padlock_sha_import,
|
|
.descsize = sizeof(struct padlock_sha_desc),
|
|
.statesize = sizeof(struct sha1_state),
|
|
.base = {
|
|
.cra_name = "sha1",
|
|
.cra_driver_name = "sha1-padlock",
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct padlock_sha_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = padlock_cra_init,
|
|
.cra_exit = padlock_cra_exit,
|
|
}
|
|
};
|
|
|
|
static struct shash_alg sha256_alg = {
|
|
.digestsize = SHA256_DIGEST_SIZE,
|
|
.init = padlock_sha_init,
|
|
.update = padlock_sha_update,
|
|
.finup = padlock_sha256_finup,
|
|
.final = padlock_sha256_final,
|
|
.export = padlock_sha_export,
|
|
.import = padlock_sha_import,
|
|
.descsize = sizeof(struct padlock_sha_desc),
|
|
.statesize = sizeof(struct sha256_state),
|
|
.base = {
|
|
.cra_name = "sha256",
|
|
.cra_driver_name = "sha256-padlock",
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct padlock_sha_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = padlock_cra_init,
|
|
.cra_exit = padlock_cra_exit,
|
|
}
|
|
};
|
|
|
|
/* Add two shash_alg instance for hardware-implemented *
|
|
* multiple-parts hash supported by VIA Nano Processor.*/
|
|
static int padlock_sha1_init_nano(struct shash_desc *desc)
|
|
{
|
|
struct sha1_state *sctx = shash_desc_ctx(desc);
|
|
|
|
*sctx = (struct sha1_state){
|
|
.state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha1_update_nano(struct shash_desc *desc,
|
|
const u8 *data, unsigned int len)
|
|
{
|
|
struct sha1_state *sctx = shash_desc_ctx(desc);
|
|
unsigned int partial, done;
|
|
const u8 *src;
|
|
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
|
|
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
|
|
((aligned(STACK_ALIGN)));
|
|
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
|
|
partial = sctx->count & 0x3f;
|
|
sctx->count += len;
|
|
done = 0;
|
|
src = data;
|
|
memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
|
|
|
|
if ((partial + len) >= SHA1_BLOCK_SIZE) {
|
|
|
|
/* Append the bytes in state's buffer to a block to handle */
|
|
if (partial) {
|
|
done = -partial;
|
|
memcpy(sctx->buffer + partial, data,
|
|
done + SHA1_BLOCK_SIZE);
|
|
src = sctx->buffer;
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
|
|
: "+S"(src), "+D"(dst) \
|
|
: "a"((long)-1), "c"((unsigned long)1));
|
|
done += SHA1_BLOCK_SIZE;
|
|
src = data + done;
|
|
}
|
|
|
|
/* Process the left bytes from the input data */
|
|
if (len - done >= SHA1_BLOCK_SIZE) {
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
|
|
: "+S"(src), "+D"(dst)
|
|
: "a"((long)-1),
|
|
"c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
|
|
done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
|
|
src = data + done;
|
|
}
|
|
partial = 0;
|
|
}
|
|
memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
|
|
memcpy(sctx->buffer + partial, src, len - done);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
|
|
unsigned int partial, padlen;
|
|
__be64 bits;
|
|
static const u8 padding[64] = { 0x80, };
|
|
|
|
bits = cpu_to_be64(state->count << 3);
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
partial = state->count & 0x3f;
|
|
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
|
|
padlock_sha1_update_nano(desc, padding, padlen);
|
|
|
|
/* Append length field bytes */
|
|
padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
|
|
|
|
/* Swap to output */
|
|
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha256_init_nano(struct shash_desc *desc)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
|
|
*sctx = (struct sha256_state){
|
|
.state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
|
|
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
|
|
unsigned int len)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
unsigned int partial, done;
|
|
const u8 *src;
|
|
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
|
|
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
|
|
((aligned(STACK_ALIGN)));
|
|
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
|
|
partial = sctx->count & 0x3f;
|
|
sctx->count += len;
|
|
done = 0;
|
|
src = data;
|
|
memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
|
|
|
|
if ((partial + len) >= SHA256_BLOCK_SIZE) {
|
|
|
|
/* Append the bytes in state's buffer to a block to handle */
|
|
if (partial) {
|
|
done = -partial;
|
|
memcpy(sctx->buf + partial, data,
|
|
done + SHA256_BLOCK_SIZE);
|
|
src = sctx->buf;
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
|
|
: "+S"(src), "+D"(dst)
|
|
: "a"((long)-1), "c"((unsigned long)1));
|
|
done += SHA256_BLOCK_SIZE;
|
|
src = data + done;
|
|
}
|
|
|
|
/* Process the left bytes from input data*/
|
|
if (len - done >= SHA256_BLOCK_SIZE) {
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
|
|
: "+S"(src), "+D"(dst)
|
|
: "a"((long)-1),
|
|
"c"((unsigned long)((len - done) / 64)));
|
|
done += ((len - done) - (len - done) % 64);
|
|
src = data + done;
|
|
}
|
|
partial = 0;
|
|
}
|
|
memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
|
|
memcpy(sctx->buf + partial, src, len - done);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct sha256_state *state =
|
|
(struct sha256_state *)shash_desc_ctx(desc);
|
|
unsigned int partial, padlen;
|
|
__be64 bits;
|
|
static const u8 padding[64] = { 0x80, };
|
|
|
|
bits = cpu_to_be64(state->count << 3);
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
partial = state->count & 0x3f;
|
|
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
|
|
padlock_sha256_update_nano(desc, padding, padlen);
|
|
|
|
/* Append length field bytes */
|
|
padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
|
|
|
|
/* Swap to output */
|
|
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha_export_nano(struct shash_desc *desc,
|
|
void *out)
|
|
{
|
|
int statesize = crypto_shash_statesize(desc->tfm);
|
|
void *sctx = shash_desc_ctx(desc);
|
|
|
|
memcpy(out, sctx, statesize);
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha_import_nano(struct shash_desc *desc,
|
|
const void *in)
|
|
{
|
|
int statesize = crypto_shash_statesize(desc->tfm);
|
|
void *sctx = shash_desc_ctx(desc);
|
|
|
|
memcpy(sctx, in, statesize);
|
|
return 0;
|
|
}
|
|
|
|
static struct shash_alg sha1_alg_nano = {
|
|
.digestsize = SHA1_DIGEST_SIZE,
|
|
.init = padlock_sha1_init_nano,
|
|
.update = padlock_sha1_update_nano,
|
|
.final = padlock_sha1_final_nano,
|
|
.export = padlock_sha_export_nano,
|
|
.import = padlock_sha_import_nano,
|
|
.descsize = sizeof(struct sha1_state),
|
|
.statesize = sizeof(struct sha1_state),
|
|
.base = {
|
|
.cra_name = "sha1",
|
|
.cra_driver_name = "sha1-padlock-nano",
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
};
|
|
|
|
static struct shash_alg sha256_alg_nano = {
|
|
.digestsize = SHA256_DIGEST_SIZE,
|
|
.init = padlock_sha256_init_nano,
|
|
.update = padlock_sha256_update_nano,
|
|
.final = padlock_sha256_final_nano,
|
|
.export = padlock_sha_export_nano,
|
|
.import = padlock_sha_import_nano,
|
|
.descsize = sizeof(struct sha256_state),
|
|
.statesize = sizeof(struct sha256_state),
|
|
.base = {
|
|
.cra_name = "sha256",
|
|
.cra_driver_name = "sha256-padlock-nano",
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
};
|
|
|
|
static const struct x86_cpu_id padlock_sha_ids[] = {
|
|
X86_FEATURE_MATCH(X86_FEATURE_PHE),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
|
|
|
|
static int __init padlock_init(void)
|
|
{
|
|
int rc = -ENODEV;
|
|
struct cpuinfo_x86 *c = &cpu_data(0);
|
|
struct shash_alg *sha1;
|
|
struct shash_alg *sha256;
|
|
|
|
if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
|
|
return -ENODEV;
|
|
|
|
/* Register the newly added algorithm module if on *
|
|
* VIA Nano processor, or else just do as before */
|
|
if (c->x86_model < 0x0f) {
|
|
sha1 = &sha1_alg;
|
|
sha256 = &sha256_alg;
|
|
} else {
|
|
sha1 = &sha1_alg_nano;
|
|
sha256 = &sha256_alg_nano;
|
|
}
|
|
|
|
rc = crypto_register_shash(sha1);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = crypto_register_shash(sha256);
|
|
if (rc)
|
|
goto out_unreg1;
|
|
|
|
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
|
|
|
|
return 0;
|
|
|
|
out_unreg1:
|
|
crypto_unregister_shash(sha1);
|
|
|
|
out:
|
|
printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
|
|
return rc;
|
|
}
|
|
|
|
static void __exit padlock_fini(void)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(0);
|
|
|
|
if (c->x86_model >= 0x0f) {
|
|
crypto_unregister_shash(&sha1_alg_nano);
|
|
crypto_unregister_shash(&sha256_alg_nano);
|
|
} else {
|
|
crypto_unregister_shash(&sha1_alg);
|
|
crypto_unregister_shash(&sha256_alg);
|
|
}
|
|
}
|
|
|
|
module_init(padlock_init);
|
|
module_exit(padlock_fini);
|
|
|
|
MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Michal Ludvig");
|
|
|
|
MODULE_ALIAS_CRYPTO("sha1-all");
|
|
MODULE_ALIAS_CRYPTO("sha256-all");
|
|
MODULE_ALIAS_CRYPTO("sha1-padlock");
|
|
MODULE_ALIAS_CRYPTO("sha256-padlock");
|