mirror of
https://github.com/torvalds/linux.git
synced 2025-01-01 07:42:07 +00:00
92d124f531
This patch adds a possibility to dynamically switch UBI self-checks on and off, instead of toggling them compile-time from the configuration menu. This is much more flexible, and consistent with UBIFS, and this also simplifies UBI Kconfig menu and the code. This patch introduces two levels of self-checks - general, which includes all self-checks which are relatively fast, and I/O, which includes write-verify checks and erase-verify checks, which are relatively slow and involve flash I/O. Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
1447 lines
42 KiB
C
1447 lines
42 KiB
C
/*
|
|
* Copyright (c) International Business Machines Corp., 2006
|
|
* Copyright (c) Nokia Corporation, 2006, 2007
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
|
|
* the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Author: Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* UBI input/output sub-system.
|
|
*
|
|
* This sub-system provides a uniform way to work with all kinds of the
|
|
* underlying MTD devices. It also implements handy functions for reading and
|
|
* writing UBI headers.
|
|
*
|
|
* We are trying to have a paranoid mindset and not to trust to what we read
|
|
* from the flash media in order to be more secure and robust. So this
|
|
* sub-system validates every single header it reads from the flash media.
|
|
*
|
|
* Some words about how the eraseblock headers are stored.
|
|
*
|
|
* The erase counter header is always stored at offset zero. By default, the
|
|
* VID header is stored after the EC header at the closest aligned offset
|
|
* (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
|
|
* header at the closest aligned offset. But this default layout may be
|
|
* changed. For example, for different reasons (e.g., optimization) UBI may be
|
|
* asked to put the VID header at further offset, and even at an unaligned
|
|
* offset. Of course, if the offset of the VID header is unaligned, UBI adds
|
|
* proper padding in front of it. Data offset may also be changed but it has to
|
|
* be aligned.
|
|
*
|
|
* About minimal I/O units. In general, UBI assumes flash device model where
|
|
* there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
|
|
* in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
|
|
* @ubi->mtd->writesize field. But as an exception, UBI admits of using another
|
|
* (smaller) minimal I/O unit size for EC and VID headers to make it possible
|
|
* to do different optimizations.
|
|
*
|
|
* This is extremely useful in case of NAND flashes which admit of several
|
|
* write operations to one NAND page. In this case UBI can fit EC and VID
|
|
* headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
|
|
* I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
|
|
* reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
|
|
* users.
|
|
*
|
|
* Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
|
|
* although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
|
|
* headers.
|
|
*
|
|
* Q: why not just to treat sub-page as a minimal I/O unit of this flash
|
|
* device, e.g., make @ubi->min_io_size = 512 in the example above?
|
|
*
|
|
* A: because when writing a sub-page, MTD still writes a full 2K page but the
|
|
* bytes which are not relevant to the sub-page are 0xFF. So, basically,
|
|
* writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
|
|
* Thus, we prefer to use sub-pages only for EC and VID headers.
|
|
*
|
|
* As it was noted above, the VID header may start at a non-aligned offset.
|
|
* For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
|
|
* the VID header may reside at offset 1984 which is the last 64 bytes of the
|
|
* last sub-page (EC header is always at offset zero). This causes some
|
|
* difficulties when reading and writing VID headers.
|
|
*
|
|
* Suppose we have a 64-byte buffer and we read a VID header at it. We change
|
|
* the data and want to write this VID header out. As we can only write in
|
|
* 512-byte chunks, we have to allocate one more buffer and copy our VID header
|
|
* to offset 448 of this buffer.
|
|
*
|
|
* The I/O sub-system does the following trick in order to avoid this extra
|
|
* copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
|
|
* header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
|
|
* When the VID header is being written out, it shifts the VID header pointer
|
|
* back and writes the whole sub-page.
|
|
*/
|
|
|
|
#include <linux/crc32.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
#include "ubi.h"
|
|
|
|
#ifdef CONFIG_MTD_UBI_DEBUG
|
|
static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
|
|
static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
|
|
static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_ec_hdr *ec_hdr);
|
|
static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
|
|
static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr);
|
|
#else
|
|
#define paranoid_check_not_bad(ubi, pnum) 0
|
|
#define paranoid_check_peb_ec_hdr(ubi, pnum) 0
|
|
#define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
|
|
#define paranoid_check_peb_vid_hdr(ubi, pnum) 0
|
|
#define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
|
|
#endif
|
|
|
|
/**
|
|
* ubi_io_read - read data from a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @buf: buffer where to store the read data
|
|
* @pnum: physical eraseblock number to read from
|
|
* @offset: offset within the physical eraseblock from where to read
|
|
* @len: how many bytes to read
|
|
*
|
|
* This function reads data from offset @offset of physical eraseblock @pnum
|
|
* and stores the read data in the @buf buffer. The following return codes are
|
|
* possible:
|
|
*
|
|
* o %0 if all the requested data were successfully read;
|
|
* o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
|
|
* correctable bit-flips were detected; this is harmless but may indicate
|
|
* that this eraseblock may become bad soon (but do not have to);
|
|
* o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
|
|
* example it can be an ECC error in case of NAND; this most probably means
|
|
* that the data is corrupted;
|
|
* o %-EIO if some I/O error occurred;
|
|
* o other negative error codes in case of other errors.
|
|
*/
|
|
int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
|
|
int len)
|
|
{
|
|
int err, retries = 0;
|
|
size_t read;
|
|
loff_t addr;
|
|
|
|
dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
|
|
ubi_assert(len > 0);
|
|
|
|
err = paranoid_check_not_bad(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Deliberately corrupt the buffer to improve robustness. Indeed, if we
|
|
* do not do this, the following may happen:
|
|
* 1. The buffer contains data from previous operation, e.g., read from
|
|
* another PEB previously. The data looks like expected, e.g., if we
|
|
* just do not read anything and return - the caller would not
|
|
* notice this. E.g., if we are reading a VID header, the buffer may
|
|
* contain a valid VID header from another PEB.
|
|
* 2. The driver is buggy and returns us success or -EBADMSG or
|
|
* -EUCLEAN, but it does not actually put any data to the buffer.
|
|
*
|
|
* This may confuse UBI or upper layers - they may think the buffer
|
|
* contains valid data while in fact it is just old data. This is
|
|
* especially possible because UBI (and UBIFS) relies on CRC, and
|
|
* treats data as correct even in case of ECC errors if the CRC is
|
|
* correct.
|
|
*
|
|
* Try to prevent this situation by changing the first byte of the
|
|
* buffer.
|
|
*/
|
|
*((uint8_t *)buf) ^= 0xFF;
|
|
|
|
addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
retry:
|
|
err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
|
|
if (err) {
|
|
const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
|
|
|
|
if (err == -EUCLEAN) {
|
|
/*
|
|
* -EUCLEAN is reported if there was a bit-flip which
|
|
* was corrected, so this is harmless.
|
|
*
|
|
* We do not report about it here unless debugging is
|
|
* enabled. A corresponding message will be printed
|
|
* later, when it is has been scrubbed.
|
|
*/
|
|
dbg_msg("fixable bit-flip detected at PEB %d", pnum);
|
|
ubi_assert(len == read);
|
|
return UBI_IO_BITFLIPS;
|
|
}
|
|
|
|
if (retries++ < UBI_IO_RETRIES) {
|
|
dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
|
|
" read only %zd bytes, retry",
|
|
err, errstr, len, pnum, offset, read);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
|
|
ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
|
|
"read %zd bytes", err, errstr, len, pnum, offset, read);
|
|
ubi_dbg_dump_stack();
|
|
|
|
/*
|
|
* The driver should never return -EBADMSG if it failed to read
|
|
* all the requested data. But some buggy drivers might do
|
|
* this, so we change it to -EIO.
|
|
*/
|
|
if (read != len && err == -EBADMSG) {
|
|
ubi_assert(0);
|
|
err = -EIO;
|
|
}
|
|
} else {
|
|
ubi_assert(len == read);
|
|
|
|
if (ubi_dbg_is_bitflip()) {
|
|
dbg_gen("bit-flip (emulated)");
|
|
err = UBI_IO_BITFLIPS;
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write - write data to a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @buf: buffer with the data to write
|
|
* @pnum: physical eraseblock number to write to
|
|
* @offset: offset within the physical eraseblock where to write
|
|
* @len: how many bytes to write
|
|
*
|
|
* This function writes @len bytes of data from buffer @buf to offset @offset
|
|
* of physical eraseblock @pnum. If all the data were successfully written,
|
|
* zero is returned. If an error occurred, this function returns a negative
|
|
* error code. If %-EIO is returned, the physical eraseblock most probably went
|
|
* bad.
|
|
*
|
|
* Note, in case of an error, it is possible that something was still written
|
|
* to the flash media, but may be some garbage.
|
|
*/
|
|
int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
|
|
int len)
|
|
{
|
|
int err;
|
|
size_t written;
|
|
loff_t addr;
|
|
|
|
dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
|
|
ubi_assert(offset % ubi->hdrs_min_io_size == 0);
|
|
ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err("read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
/* The below has to be compiled out if paranoid checks are disabled */
|
|
|
|
err = paranoid_check_not_bad(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
/* The area we are writing to has to contain all 0xFF bytes */
|
|
err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
|
|
if (err)
|
|
return err;
|
|
|
|
if (offset >= ubi->leb_start) {
|
|
/*
|
|
* We write to the data area of the physical eraseblock. Make
|
|
* sure it has valid EC and VID headers.
|
|
*/
|
|
err = paranoid_check_peb_ec_hdr(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
err = paranoid_check_peb_vid_hdr(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (ubi_dbg_is_write_failure()) {
|
|
dbg_err("cannot write %d bytes to PEB %d:%d "
|
|
"(emulated)", len, pnum, offset);
|
|
ubi_dbg_dump_stack();
|
|
return -EIO;
|
|
}
|
|
|
|
addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
|
|
if (err) {
|
|
ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
|
|
"%zd bytes", err, len, pnum, offset, written);
|
|
ubi_dbg_dump_stack();
|
|
ubi_dbg_dump_flash(ubi, pnum, offset, len);
|
|
} else
|
|
ubi_assert(written == len);
|
|
|
|
if (!err) {
|
|
err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Since we always write sequentially, the rest of the PEB has
|
|
* to contain only 0xFF bytes.
|
|
*/
|
|
offset += len;
|
|
len = ubi->peb_size - offset;
|
|
if (len)
|
|
err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* erase_callback - MTD erasure call-back.
|
|
* @ei: MTD erase information object.
|
|
*
|
|
* Note, even though MTD erase interface is asynchronous, all the current
|
|
* implementations are synchronous anyway.
|
|
*/
|
|
static void erase_callback(struct erase_info *ei)
|
|
{
|
|
wake_up_interruptible((wait_queue_head_t *)ei->priv);
|
|
}
|
|
|
|
/**
|
|
* do_sync_erase - synchronously erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to erase
|
|
*
|
|
* This function synchronously erases physical eraseblock @pnum and returns
|
|
* zero in case of success and a negative error code in case of failure. If
|
|
* %-EIO is returned, the physical eraseblock most probably went bad.
|
|
*/
|
|
static int do_sync_erase(struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err, retries = 0;
|
|
struct erase_info ei;
|
|
wait_queue_head_t wq;
|
|
|
|
dbg_io("erase PEB %d", pnum);
|
|
|
|
retry:
|
|
init_waitqueue_head(&wq);
|
|
memset(&ei, 0, sizeof(struct erase_info));
|
|
|
|
ei.mtd = ubi->mtd;
|
|
ei.addr = (loff_t)pnum * ubi->peb_size;
|
|
ei.len = ubi->peb_size;
|
|
ei.callback = erase_callback;
|
|
ei.priv = (unsigned long)&wq;
|
|
|
|
err = ubi->mtd->erase(ubi->mtd, &ei);
|
|
if (err) {
|
|
if (retries++ < UBI_IO_RETRIES) {
|
|
dbg_io("error %d while erasing PEB %d, retry",
|
|
err, pnum);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
ubi_err("cannot erase PEB %d, error %d", pnum, err);
|
|
ubi_dbg_dump_stack();
|
|
return err;
|
|
}
|
|
|
|
err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
|
|
ei.state == MTD_ERASE_FAILED);
|
|
if (err) {
|
|
ubi_err("interrupted PEB %d erasure", pnum);
|
|
return -EINTR;
|
|
}
|
|
|
|
if (ei.state == MTD_ERASE_FAILED) {
|
|
if (retries++ < UBI_IO_RETRIES) {
|
|
dbg_io("error while erasing PEB %d, retry", pnum);
|
|
yield();
|
|
goto retry;
|
|
}
|
|
ubi_err("cannot erase PEB %d", pnum);
|
|
ubi_dbg_dump_stack();
|
|
return -EIO;
|
|
}
|
|
|
|
err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
return err;
|
|
|
|
if (ubi_dbg_is_erase_failure() && !err) {
|
|
dbg_err("cannot erase PEB %d (emulated)", pnum);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Patterns to write to a physical eraseblock when torturing it */
|
|
static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
|
|
|
|
/**
|
|
* torture_peb - test a supposedly bad physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to test
|
|
*
|
|
* This function returns %-EIO if the physical eraseblock did not pass the
|
|
* test, a positive number of erase operations done if the test was
|
|
* successfully passed, and other negative error codes in case of other errors.
|
|
*/
|
|
static int torture_peb(struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err, i, patt_count;
|
|
|
|
ubi_msg("run torture test for PEB %d", pnum);
|
|
patt_count = ARRAY_SIZE(patterns);
|
|
ubi_assert(patt_count > 0);
|
|
|
|
mutex_lock(&ubi->buf_mutex);
|
|
for (i = 0; i < patt_count; i++) {
|
|
err = do_sync_erase(ubi, pnum);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Make sure the PEB contains only 0xFF bytes */
|
|
err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
|
|
if (err == 0) {
|
|
ubi_err("erased PEB %d, but a non-0xFF byte found",
|
|
pnum);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Write a pattern and check it */
|
|
memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
|
|
err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
|
|
err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
|
|
ubi->peb_size);
|
|
if (err == 0) {
|
|
ubi_err("pattern %x checking failed for PEB %d",
|
|
patterns[i], pnum);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
err = patt_count;
|
|
ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
|
|
|
|
out:
|
|
mutex_unlock(&ubi->buf_mutex);
|
|
if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
|
|
/*
|
|
* If a bit-flip or data integrity error was detected, the test
|
|
* has not passed because it happened on a freshly erased
|
|
* physical eraseblock which means something is wrong with it.
|
|
*/
|
|
ubi_err("read problems on freshly erased PEB %d, must be bad",
|
|
pnum);
|
|
err = -EIO;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* nor_erase_prepare - prepare a NOR flash PEB for erasure.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to prepare
|
|
*
|
|
* NOR flash, or at least some of them, have peculiar embedded PEB erasure
|
|
* algorithm: the PEB is first filled with zeroes, then it is erased. And
|
|
* filling with zeroes starts from the end of the PEB. This was observed with
|
|
* Spansion S29GL512N NOR flash.
|
|
*
|
|
* This means that in case of a power cut we may end up with intact data at the
|
|
* beginning of the PEB, and all zeroes at the end of PEB. In other words, the
|
|
* EC and VID headers are OK, but a large chunk of data at the end of PEB is
|
|
* zeroed. This makes UBI mistakenly treat this PEB as used and associate it
|
|
* with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
|
|
*
|
|
* This function is called before erasing NOR PEBs and it zeroes out EC and VID
|
|
* magic numbers in order to invalidate them and prevent the failures. Returns
|
|
* zero in case of success and a negative error code in case of failure.
|
|
*/
|
|
static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err, err1;
|
|
size_t written;
|
|
loff_t addr;
|
|
uint32_t data = 0;
|
|
/*
|
|
* Note, we cannot generally define VID header buffers on stack,
|
|
* because of the way we deal with these buffers (see the header
|
|
* comment in this file). But we know this is a NOR-specific piece of
|
|
* code, so we can do this. But yes, this is error-prone and we should
|
|
* (pre-)allocate VID header buffer instead.
|
|
*/
|
|
struct ubi_vid_hdr vid_hdr;
|
|
|
|
/*
|
|
* It is important to first invalidate the EC header, and then the VID
|
|
* header. Otherwise a power cut may lead to valid EC header and
|
|
* invalid VID header, in which case UBI will treat this PEB as
|
|
* corrupted and will try to preserve it, and print scary warnings (see
|
|
* the header comment in scan.c for more information).
|
|
*/
|
|
addr = (loff_t)pnum * ubi->peb_size;
|
|
err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
|
|
if (!err) {
|
|
addr += ubi->vid_hdr_aloffset;
|
|
err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
|
|
(void *)&data);
|
|
if (!err)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We failed to write to the media. This was observed with Spansion
|
|
* S29GL512N NOR flash. Most probably the previously eraseblock erasure
|
|
* was interrupted at a very inappropriate moment, so it became
|
|
* unwritable. In this case we probably anyway have garbage in this
|
|
* PEB.
|
|
*/
|
|
err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
|
|
if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
|
|
err1 == UBI_IO_FF) {
|
|
struct ubi_ec_hdr ec_hdr;
|
|
|
|
err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
|
|
if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
|
|
err1 == UBI_IO_FF)
|
|
/*
|
|
* Both VID and EC headers are corrupted, so we can
|
|
* safely erase this PEB and not afraid that it will be
|
|
* treated as a valid PEB in case of an unclean reboot.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The PEB contains a valid VID header, but we cannot invalidate it.
|
|
* Supposedly the flash media or the driver is screwed up, so return an
|
|
* error.
|
|
*/
|
|
ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
|
|
pnum, err, err1);
|
|
ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
|
|
return -EIO;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_sync_erase - synchronously erase a physical eraseblock.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to erase
|
|
* @torture: if this physical eraseblock has to be tortured
|
|
*
|
|
* This function synchronously erases physical eraseblock @pnum. If @torture
|
|
* flag is not zero, the physical eraseblock is checked by means of writing
|
|
* different patterns to it and reading them back. If the torturing is enabled,
|
|
* the physical eraseblock is erased more than once.
|
|
*
|
|
* This function returns the number of erasures made in case of success, %-EIO
|
|
* if the erasure failed or the torturing test failed, and other negative error
|
|
* codes in case of other errors. Note, %-EIO means that the physical
|
|
* eraseblock is bad.
|
|
*/
|
|
int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
|
|
{
|
|
int err, ret = 0;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
err = paranoid_check_not_bad(ubi, pnum);
|
|
if (err != 0)
|
|
return err;
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err("read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
if (ubi->nor_flash) {
|
|
err = nor_erase_prepare(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (torture) {
|
|
ret = torture_peb(ubi, pnum);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
err = do_sync_erase(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
return ret + 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_is_bad - check if a physical eraseblock is bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns a positive number if the physical eraseblock is bad,
|
|
* zero if not, and a negative error code if an error occurred.
|
|
*/
|
|
int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
struct mtd_info *mtd = ubi->mtd;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
if (ubi->bad_allowed) {
|
|
int ret;
|
|
|
|
ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
|
|
if (ret < 0)
|
|
ubi_err("error %d while checking if PEB %d is bad",
|
|
ret, pnum);
|
|
else if (ret)
|
|
dbg_io("PEB %d is bad", pnum);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_mark_bad - mark a physical eraseblock as bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to mark
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
struct mtd_info *mtd = ubi->mtd;
|
|
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
if (ubi->ro_mode) {
|
|
ubi_err("read-only mode");
|
|
return -EROFS;
|
|
}
|
|
|
|
if (!ubi->bad_allowed)
|
|
return 0;
|
|
|
|
err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
|
|
if (err)
|
|
ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* validate_ec_hdr - validate an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @ec_hdr: the erase counter header to check
|
|
*
|
|
* This function returns zero if the erase counter header is OK, and %1 if
|
|
* not.
|
|
*/
|
|
static int validate_ec_hdr(const struct ubi_device *ubi,
|
|
const struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
long long ec;
|
|
int vid_hdr_offset, leb_start;
|
|
|
|
ec = be64_to_cpu(ec_hdr->ec);
|
|
vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
|
|
leb_start = be32_to_cpu(ec_hdr->data_offset);
|
|
|
|
if (ec_hdr->version != UBI_VERSION) {
|
|
ubi_err("node with incompatible UBI version found: "
|
|
"this UBI version is %d, image version is %d",
|
|
UBI_VERSION, (int)ec_hdr->version);
|
|
goto bad;
|
|
}
|
|
|
|
if (vid_hdr_offset != ubi->vid_hdr_offset) {
|
|
ubi_err("bad VID header offset %d, expected %d",
|
|
vid_hdr_offset, ubi->vid_hdr_offset);
|
|
goto bad;
|
|
}
|
|
|
|
if (leb_start != ubi->leb_start) {
|
|
ubi_err("bad data offset %d, expected %d",
|
|
leb_start, ubi->leb_start);
|
|
goto bad;
|
|
}
|
|
|
|
if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
|
|
ubi_err("bad erase counter %lld", ec);
|
|
goto bad;
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err("bad EC header");
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
ubi_dbg_dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_read_ec_hdr - read and check an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock to read from
|
|
* @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
|
|
* header
|
|
* @verbose: be verbose if the header is corrupted or was not found
|
|
*
|
|
* This function reads erase counter header from physical eraseblock @pnum and
|
|
* stores it in @ec_hdr. This function also checks CRC checksum of the read
|
|
* erase counter header. The following codes may be returned:
|
|
*
|
|
* o %0 if the CRC checksum is correct and the header was successfully read;
|
|
* o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
|
|
* and corrected by the flash driver; this is harmless but may indicate that
|
|
* this eraseblock may become bad soon (but may be not);
|
|
* o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
|
|
* o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
|
|
* a data integrity error (uncorrectable ECC error in case of NAND);
|
|
* o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
|
|
* o a negative error code in case of failure.
|
|
*/
|
|
int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_ec_hdr *ec_hdr, int verbose)
|
|
{
|
|
int err, read_err;
|
|
uint32_t crc, magic, hdr_crc;
|
|
|
|
dbg_io("read EC header from PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
|
|
if (read_err) {
|
|
if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
|
|
return read_err;
|
|
|
|
/*
|
|
* We read all the data, but either a correctable bit-flip
|
|
* occurred, or MTD reported a data integrity error
|
|
* (uncorrectable ECC error in case of NAND). The former is
|
|
* harmless, the later may mean that the read data is
|
|
* corrupted. But we have a CRC check-sum and we will detect
|
|
* this. If the EC header is still OK, we just report this as
|
|
* there was a bit-flip, to force scrubbing.
|
|
*/
|
|
}
|
|
|
|
magic = be32_to_cpu(ec_hdr->magic);
|
|
if (magic != UBI_EC_HDR_MAGIC) {
|
|
if (read_err == -EBADMSG)
|
|
return UBI_IO_BAD_HDR_EBADMSG;
|
|
|
|
/*
|
|
* The magic field is wrong. Let's check if we have read all
|
|
* 0xFF. If yes, this physical eraseblock is assumed to be
|
|
* empty.
|
|
*/
|
|
if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
|
|
/* The physical eraseblock is supposedly empty */
|
|
if (verbose)
|
|
ubi_warn("no EC header found at PEB %d, "
|
|
"only 0xFF bytes", pnum);
|
|
dbg_bld("no EC header found at PEB %d, "
|
|
"only 0xFF bytes", pnum);
|
|
if (!read_err)
|
|
return UBI_IO_FF;
|
|
else
|
|
return UBI_IO_FF_BITFLIPS;
|
|
}
|
|
|
|
/*
|
|
* This is not a valid erase counter header, and these are not
|
|
* 0xFF bytes. Report that the header is corrupted.
|
|
*/
|
|
if (verbose) {
|
|
ubi_warn("bad magic number at PEB %d: %08x instead of "
|
|
"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
}
|
|
dbg_bld("bad magic number at PEB %d: %08x instead of "
|
|
"%08x", pnum, magic, UBI_EC_HDR_MAGIC);
|
|
return UBI_IO_BAD_HDR;
|
|
}
|
|
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
|
|
|
|
if (hdr_crc != crc) {
|
|
if (verbose) {
|
|
ubi_warn("bad EC header CRC at PEB %d, calculated "
|
|
"%#08x, read %#08x", pnum, crc, hdr_crc);
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
}
|
|
dbg_bld("bad EC header CRC at PEB %d, calculated "
|
|
"%#08x, read %#08x", pnum, crc, hdr_crc);
|
|
|
|
if (!read_err)
|
|
return UBI_IO_BAD_HDR;
|
|
else
|
|
return UBI_IO_BAD_HDR_EBADMSG;
|
|
}
|
|
|
|
/* And of course validate what has just been read from the media */
|
|
err = validate_ec_hdr(ubi, ec_hdr);
|
|
if (err) {
|
|
ubi_err("validation failed for PEB %d", pnum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If there was %-EBADMSG, but the header CRC is still OK, report about
|
|
* a bit-flip to force scrubbing on this PEB.
|
|
*/
|
|
return read_err ? UBI_IO_BITFLIPS : 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write_ec_hdr - write an erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock to write to
|
|
* @ec_hdr: the erase counter header to write
|
|
*
|
|
* This function writes erase counter header described by @ec_hdr to physical
|
|
* eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
|
|
* the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
|
|
* field.
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure. If %-EIO is returned, the physical eraseblock most probably
|
|
* went bad.
|
|
*/
|
|
int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
int err;
|
|
uint32_t crc;
|
|
|
|
dbg_io("write EC header to PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
|
|
ec_hdr->version = UBI_VERSION;
|
|
ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
|
|
ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
|
|
ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
ec_hdr->hdr_crc = cpu_to_be32(crc);
|
|
|
|
err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* validate_vid_hdr - validate a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @vid_hdr: the volume identifier header to check
|
|
*
|
|
* This function checks that data stored in the volume identifier header
|
|
* @vid_hdr. Returns zero if the VID header is OK and %1 if not.
|
|
*/
|
|
static int validate_vid_hdr(const struct ubi_device *ubi,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int vol_type = vid_hdr->vol_type;
|
|
int copy_flag = vid_hdr->copy_flag;
|
|
int vol_id = be32_to_cpu(vid_hdr->vol_id);
|
|
int lnum = be32_to_cpu(vid_hdr->lnum);
|
|
int compat = vid_hdr->compat;
|
|
int data_size = be32_to_cpu(vid_hdr->data_size);
|
|
int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
|
|
int data_pad = be32_to_cpu(vid_hdr->data_pad);
|
|
int data_crc = be32_to_cpu(vid_hdr->data_crc);
|
|
int usable_leb_size = ubi->leb_size - data_pad;
|
|
|
|
if (copy_flag != 0 && copy_flag != 1) {
|
|
dbg_err("bad copy_flag");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
|
|
data_pad < 0) {
|
|
dbg_err("negative values");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
|
|
dbg_err("bad vol_id");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
|
|
dbg_err("bad compat");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
|
|
compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
|
|
compat != UBI_COMPAT_REJECT) {
|
|
dbg_err("bad compat");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
|
|
dbg_err("bad vol_type");
|
|
goto bad;
|
|
}
|
|
|
|
if (data_pad >= ubi->leb_size / 2) {
|
|
dbg_err("bad data_pad");
|
|
goto bad;
|
|
}
|
|
|
|
if (vol_type == UBI_VID_STATIC) {
|
|
/*
|
|
* Although from high-level point of view static volumes may
|
|
* contain zero bytes of data, but no VID headers can contain
|
|
* zero at these fields, because they empty volumes do not have
|
|
* mapped logical eraseblocks.
|
|
*/
|
|
if (used_ebs == 0) {
|
|
dbg_err("zero used_ebs");
|
|
goto bad;
|
|
}
|
|
if (data_size == 0) {
|
|
dbg_err("zero data_size");
|
|
goto bad;
|
|
}
|
|
if (lnum < used_ebs - 1) {
|
|
if (data_size != usable_leb_size) {
|
|
dbg_err("bad data_size");
|
|
goto bad;
|
|
}
|
|
} else if (lnum == used_ebs - 1) {
|
|
if (data_size == 0) {
|
|
dbg_err("bad data_size at last LEB");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
dbg_err("too high lnum");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
if (copy_flag == 0) {
|
|
if (data_crc != 0) {
|
|
dbg_err("non-zero data CRC");
|
|
goto bad;
|
|
}
|
|
if (data_size != 0) {
|
|
dbg_err("non-zero data_size");
|
|
goto bad;
|
|
}
|
|
} else {
|
|
if (data_size == 0) {
|
|
dbg_err("zero data_size of copy");
|
|
goto bad;
|
|
}
|
|
}
|
|
if (used_ebs != 0) {
|
|
dbg_err("bad used_ebs");
|
|
goto bad;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
ubi_err("bad VID header");
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
ubi_dbg_dump_stack();
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_read_vid_hdr - read and check a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to read from
|
|
* @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
|
|
* identifier header
|
|
* @verbose: be verbose if the header is corrupted or wasn't found
|
|
*
|
|
* This function reads the volume identifier header from physical eraseblock
|
|
* @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
|
|
* volume identifier header. The error codes are the same as in
|
|
* 'ubi_io_read_ec_hdr()'.
|
|
*
|
|
* Note, the implementation of this function is also very similar to
|
|
* 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
|
|
*/
|
|
int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_vid_hdr *vid_hdr, int verbose)
|
|
{
|
|
int err, read_err;
|
|
uint32_t crc, magic, hdr_crc;
|
|
void *p;
|
|
|
|
dbg_io("read VID header from PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
p = (char *)vid_hdr - ubi->vid_hdr_shift;
|
|
read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_alsize);
|
|
if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
|
|
return read_err;
|
|
|
|
magic = be32_to_cpu(vid_hdr->magic);
|
|
if (magic != UBI_VID_HDR_MAGIC) {
|
|
if (read_err == -EBADMSG)
|
|
return UBI_IO_BAD_HDR_EBADMSG;
|
|
|
|
if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
|
|
if (verbose)
|
|
ubi_warn("no VID header found at PEB %d, "
|
|
"only 0xFF bytes", pnum);
|
|
dbg_bld("no VID header found at PEB %d, "
|
|
"only 0xFF bytes", pnum);
|
|
if (!read_err)
|
|
return UBI_IO_FF;
|
|
else
|
|
return UBI_IO_FF_BITFLIPS;
|
|
}
|
|
|
|
if (verbose) {
|
|
ubi_warn("bad magic number at PEB %d: %08x instead of "
|
|
"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
}
|
|
dbg_bld("bad magic number at PEB %d: %08x instead of "
|
|
"%08x", pnum, magic, UBI_VID_HDR_MAGIC);
|
|
return UBI_IO_BAD_HDR;
|
|
}
|
|
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
|
|
|
|
if (hdr_crc != crc) {
|
|
if (verbose) {
|
|
ubi_warn("bad CRC at PEB %d, calculated %#08x, "
|
|
"read %#08x", pnum, crc, hdr_crc);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
}
|
|
dbg_bld("bad CRC at PEB %d, calculated %#08x, "
|
|
"read %#08x", pnum, crc, hdr_crc);
|
|
if (!read_err)
|
|
return UBI_IO_BAD_HDR;
|
|
else
|
|
return UBI_IO_BAD_HDR_EBADMSG;
|
|
}
|
|
|
|
err = validate_vid_hdr(ubi, vid_hdr);
|
|
if (err) {
|
|
ubi_err("validation failed for PEB %d", pnum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return read_err ? UBI_IO_BITFLIPS : 0;
|
|
}
|
|
|
|
/**
|
|
* ubi_io_write_vid_hdr - write a volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to write to
|
|
* @vid_hdr: the volume identifier header to write
|
|
*
|
|
* This function writes the volume identifier header described by @vid_hdr to
|
|
* physical eraseblock @pnum. This function automatically fills the
|
|
* @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
|
|
* header CRC checksum and stores it at vid_hdr->hdr_crc.
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure. If %-EIO is returned, the physical eraseblock probably went
|
|
* bad.
|
|
*/
|
|
int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
|
|
struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int err;
|
|
uint32_t crc;
|
|
void *p;
|
|
|
|
dbg_io("write VID header to PEB %d", pnum);
|
|
ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
|
|
|
|
err = paranoid_check_peb_ec_hdr(ubi, pnum);
|
|
if (err)
|
|
return err;
|
|
|
|
vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
|
|
vid_hdr->version = UBI_VERSION;
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
|
|
vid_hdr->hdr_crc = cpu_to_be32(crc);
|
|
|
|
err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
|
|
if (err)
|
|
return err;
|
|
|
|
p = (char *)vid_hdr - ubi->vid_hdr_shift;
|
|
err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_alsize);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_UBI_DEBUG
|
|
|
|
/**
|
|
* paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the physical eraseblock is good, %-EINVAL if
|
|
* it is bad and a negative error code if an error occurred.
|
|
*/
|
|
static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
|
|
if (!(ubi_chk_flags & UBI_CHK_IO))
|
|
return 0;
|
|
|
|
err = ubi_io_is_bad(ubi, pnum);
|
|
if (!err)
|
|
return err;
|
|
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_dbg_dump_stack();
|
|
return err > 0 ? -EINVAL : err;
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_ec_hdr - check if an erase counter header is all right.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number the erase counter header belongs to
|
|
* @ec_hdr: the erase counter header to check
|
|
*
|
|
* This function returns zero if the erase counter header contains valid
|
|
* values, and %-EINVAL if not.
|
|
*/
|
|
static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_ec_hdr *ec_hdr)
|
|
{
|
|
int err;
|
|
uint32_t magic;
|
|
|
|
if (!(ubi_chk_flags & UBI_CHK_IO))
|
|
return 0;
|
|
|
|
magic = be32_to_cpu(ec_hdr->magic);
|
|
if (magic != UBI_EC_HDR_MAGIC) {
|
|
ubi_err("bad magic %#08x, must be %#08x",
|
|
magic, UBI_EC_HDR_MAGIC);
|
|
goto fail;
|
|
}
|
|
|
|
err = validate_ec_hdr(ubi, ec_hdr);
|
|
if (err) {
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
ubi_dbg_dump_stack();
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_peb_ec_hdr - check erase counter header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the erase counter header is all right and and
|
|
* a negative error code if not or if an error occurred.
|
|
*/
|
|
static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
uint32_t crc, hdr_crc;
|
|
struct ubi_ec_hdr *ec_hdr;
|
|
|
|
if (!(ubi_chk_flags & UBI_CHK_IO))
|
|
return 0;
|
|
|
|
ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
|
|
if (!ec_hdr)
|
|
return -ENOMEM;
|
|
|
|
err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
|
|
if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
|
|
goto exit;
|
|
|
|
crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
|
|
if (hdr_crc != crc) {
|
|
ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_dbg_dump_ec_hdr(ec_hdr);
|
|
ubi_dbg_dump_stack();
|
|
err = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
|
|
|
|
exit:
|
|
kfree(ec_hdr);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_vid_hdr - check that a volume identifier header is all right.
|
|
* @ubi: UBI device description object
|
|
* @pnum: physical eraseblock number the volume identifier header belongs to
|
|
* @vid_hdr: the volume identifier header to check
|
|
*
|
|
* This function returns zero if the volume identifier header is all right, and
|
|
* %-EINVAL if not.
|
|
*/
|
|
static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
|
|
const struct ubi_vid_hdr *vid_hdr)
|
|
{
|
|
int err;
|
|
uint32_t magic;
|
|
|
|
if (!(ubi_chk_flags & UBI_CHK_IO))
|
|
return 0;
|
|
|
|
magic = be32_to_cpu(vid_hdr->magic);
|
|
if (magic != UBI_VID_HDR_MAGIC) {
|
|
ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
|
|
magic, pnum, UBI_VID_HDR_MAGIC);
|
|
goto fail;
|
|
}
|
|
|
|
err = validate_vid_hdr(ubi, vid_hdr);
|
|
if (err) {
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
goto fail;
|
|
}
|
|
|
|
return err;
|
|
|
|
fail:
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
ubi_dbg_dump_stack();
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
/**
|
|
* paranoid_check_peb_vid_hdr - check volume identifier header.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
*
|
|
* This function returns zero if the volume identifier header is all right,
|
|
* and a negative error code if not or if an error occurred.
|
|
*/
|
|
static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
|
|
{
|
|
int err;
|
|
uint32_t crc, hdr_crc;
|
|
struct ubi_vid_hdr *vid_hdr;
|
|
void *p;
|
|
|
|
if (!(ubi_chk_flags & UBI_CHK_IO))
|
|
return 0;
|
|
|
|
vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
|
|
if (!vid_hdr)
|
|
return -ENOMEM;
|
|
|
|
p = (char *)vid_hdr - ubi->vid_hdr_shift;
|
|
err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
|
|
ubi->vid_hdr_alsize);
|
|
if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
|
|
goto exit;
|
|
|
|
crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
|
|
hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
|
|
if (hdr_crc != crc) {
|
|
ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
|
|
"read %#08x", pnum, crc, hdr_crc);
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_dbg_dump_vid_hdr(vid_hdr);
|
|
ubi_dbg_dump_stack();
|
|
err = -EINVAL;
|
|
goto exit;
|
|
}
|
|
|
|
err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
|
|
|
|
exit:
|
|
ubi_free_vid_hdr(ubi, vid_hdr);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_dbg_check_write - make sure write succeeded.
|
|
* @ubi: UBI device description object
|
|
* @buf: buffer with data which were written
|
|
* @pnum: physical eraseblock number the data were written to
|
|
* @offset: offset within the physical eraseblock the data were written to
|
|
* @len: how many bytes were written
|
|
*
|
|
* This functions reads data which were recently written and compares it with
|
|
* the original data buffer - the data have to match. Returns zero if the data
|
|
* match and a negative error code if not or in case of failure.
|
|
*/
|
|
int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
|
|
int offset, int len)
|
|
{
|
|
int err, i;
|
|
size_t read;
|
|
void *buf1;
|
|
loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
|
|
if (!(ubi_chk_flags & UBI_CHK_IO))
|
|
return 0;
|
|
|
|
buf1 = __vmalloc(len, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL);
|
|
if (!buf1) {
|
|
ubi_err("cannot allocate memory to check writes");
|
|
return 0;
|
|
}
|
|
|
|
err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf1);
|
|
if (err && err != -EUCLEAN)
|
|
goto out_free;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
uint8_t c = ((uint8_t *)buf)[i];
|
|
uint8_t c1 = ((uint8_t *)buf1)[i];
|
|
int dump_len;
|
|
|
|
if (c == c1)
|
|
continue;
|
|
|
|
ubi_err("paranoid check failed for PEB %d:%d, len %d",
|
|
pnum, offset, len);
|
|
ubi_msg("data differ at position %d", i);
|
|
dump_len = max_t(int, 128, len - i);
|
|
ubi_msg("hex dump of the original buffer from %d to %d",
|
|
i, i + dump_len);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
|
|
buf + i, dump_len, 1);
|
|
ubi_msg("hex dump of the read buffer from %d to %d",
|
|
i, i + dump_len);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
|
|
buf1 + i, dump_len, 1);
|
|
ubi_dbg_dump_stack();
|
|
err = -EINVAL;
|
|
goto out_free;
|
|
}
|
|
|
|
vfree(buf1);
|
|
return 0;
|
|
|
|
out_free:
|
|
vfree(buf1);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubi_dbg_check_all_ff - check that a region of flash is empty.
|
|
* @ubi: UBI device description object
|
|
* @pnum: the physical eraseblock number to check
|
|
* @offset: the starting offset within the physical eraseblock to check
|
|
* @len: the length of the region to check
|
|
*
|
|
* This function returns zero if only 0xFF bytes are present at offset
|
|
* @offset of the physical eraseblock @pnum, and a negative error code if not
|
|
* or if an error occurred.
|
|
*/
|
|
int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
|
|
{
|
|
size_t read;
|
|
int err;
|
|
void *buf;
|
|
loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
|
|
|
|
if (!(ubi_chk_flags & UBI_CHK_IO))
|
|
return 0;
|
|
|
|
buf = __vmalloc(len, GFP_KERNEL | GFP_NOFS, PAGE_KERNEL);
|
|
if (!buf) {
|
|
ubi_err("cannot allocate memory to check for 0xFFs");
|
|
return 0;
|
|
}
|
|
|
|
err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
|
|
if (err && err != -EUCLEAN) {
|
|
ubi_err("error %d while reading %d bytes from PEB %d:%d, "
|
|
"read %zd bytes", err, len, pnum, offset, read);
|
|
goto error;
|
|
}
|
|
|
|
err = ubi_check_pattern(buf, 0xFF, len);
|
|
if (err == 0) {
|
|
ubi_err("flash region at PEB %d:%d, length %d does not "
|
|
"contain all 0xFF bytes", pnum, offset, len);
|
|
goto fail;
|
|
}
|
|
|
|
vfree(buf);
|
|
return 0;
|
|
|
|
fail:
|
|
ubi_err("paranoid check failed for PEB %d", pnum);
|
|
ubi_msg("hex dump of the %d-%d region", offset, offset + len);
|
|
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
|
|
err = -EINVAL;
|
|
error:
|
|
ubi_dbg_dump_stack();
|
|
vfree(buf);
|
|
return err;
|
|
}
|
|
|
|
#endif /* CONFIG_MTD_UBI_DEBUG */
|