mirror of
https://github.com/torvalds/linux.git
synced 2024-11-26 14:12:06 +00:00
e3786b29c5
If a program is watching a file on a 9p mount, it won't see any change in
size if the file being exported by the server is changed directly in the
source filesystem, presumably because 9p doesn't have change notifications,
and because netfs skips the reads if the file is empty.
Fix this by attempting to read the full size specified when a DIO read is
requested (such as when 9p is operating in unbuffered mode) and dealing
with a short read if the EOF was less than the expected read.
To make this work, filesystems using netfslib must not set
NETFS_SREQ_CLEAR_TAIL if performing a DIO read where that read hit the EOF.
I don't want to mandatorily clear this flag in netfslib for DIO because,
say, ceph might make a read from an object that is not completely filled,
but does not reside at the end of file - and so we need to clear the
excess.
This can be tested by watching an empty file over 9p within a VM (such as
in the ktest framework):
while true; do read content; if [ -n "$content" ]; then echo $content; break; fi; done < /host/tmp/foo
then writing something into the empty file. The watcher should immediately
display the file content and break out of the loop. Without this fix, it
remains in the loop indefinitely.
Fixes: 80105ed2fd
("9p: Use netfslib read/write_iter")
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218916
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/1229195.1723211769@warthog.procyon.org.uk
cc: Eric Van Hensbergen <ericvh@kernel.org>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Steve French <sfrench@samba.org>
cc: Paulo Alcantara <pc@manguebit.com>
cc: Trond Myklebust <trond.myklebust@hammerspace.com>
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: linux-nfs@vger.kernel.org
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
797 lines
23 KiB
C
797 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Network filesystem high-level read support.
|
|
*
|
|
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Clear the unread part of an I/O request.
|
|
*/
|
|
static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
|
|
{
|
|
iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
|
|
}
|
|
|
|
static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq = priv;
|
|
|
|
netfs_subreq_terminated(subreq, transferred_or_error, was_async);
|
|
}
|
|
|
|
/*
|
|
* Issue a read against the cache.
|
|
* - Eats the caller's ref on subreq.
|
|
*/
|
|
static void netfs_read_from_cache(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq,
|
|
enum netfs_read_from_hole read_hole)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
netfs_stat(&netfs_n_rh_read);
|
|
cres->ops->read(cres, subreq->start, &subreq->io_iter, read_hole,
|
|
netfs_cache_read_terminated, subreq);
|
|
}
|
|
|
|
/*
|
|
* Fill a subrequest region with zeroes.
|
|
*/
|
|
static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_zero);
|
|
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
|
|
netfs_subreq_terminated(subreq, 0, false);
|
|
}
|
|
|
|
/*
|
|
* Ask the netfs to issue a read request to the server for us.
|
|
*
|
|
* The netfs is expected to read from subreq->pos + subreq->transferred to
|
|
* subreq->pos + subreq->len - 1. It may not backtrack and write data into the
|
|
* buffer prior to the transferred point as it might clobber dirty data
|
|
* obtained from the cache.
|
|
*
|
|
* Alternatively, the netfs is allowed to indicate one of two things:
|
|
*
|
|
* - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
|
|
* make progress.
|
|
*
|
|
* - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
|
|
* cleared.
|
|
*/
|
|
static void netfs_read_from_server(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_download);
|
|
|
|
if (rreq->origin != NETFS_DIO_READ &&
|
|
iov_iter_count(&subreq->io_iter) != subreq->len - subreq->transferred)
|
|
pr_warn("R=%08x[%u] ITER PRE-MISMATCH %zx != %zx-%zx %lx\n",
|
|
rreq->debug_id, subreq->debug_index,
|
|
iov_iter_count(&subreq->io_iter), subreq->len,
|
|
subreq->transferred, subreq->flags);
|
|
rreq->netfs_ops->issue_read(subreq);
|
|
}
|
|
|
|
/*
|
|
* Release those waiting.
|
|
*/
|
|
static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_done);
|
|
netfs_clear_subrequests(rreq, was_async);
|
|
netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
|
|
}
|
|
|
|
/*
|
|
* [DEPRECATED] Deal with the completion of writing the data to the cache. We
|
|
* have to clear the PG_fscache bits on the folios involved and release the
|
|
* caller's ref.
|
|
*
|
|
* May be called in softirq mode and we inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
struct folio *folio;
|
|
pgoff_t unlocked = 0;
|
|
bool have_unlocked = false;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
|
|
|
|
xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
|
|
if (xas_retry(&xas, folio))
|
|
continue;
|
|
|
|
/* We might have multiple writes from the same huge
|
|
* folio, but we mustn't unlock a folio more than once.
|
|
*/
|
|
if (have_unlocked && folio->index <= unlocked)
|
|
continue;
|
|
unlocked = folio_next_index(folio) - 1;
|
|
trace_netfs_folio(folio, netfs_folio_trace_end_copy);
|
|
folio_end_private_2(folio);
|
|
have_unlocked = true;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async) /* [DEPRECATED] */
|
|
{
|
|
struct netfs_io_subrequest *subreq = priv;
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
netfs_stat(&netfs_n_rh_write_failed);
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_copy_to_cache);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_write_done);
|
|
}
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
|
|
|
|
/* If we decrement nr_copy_ops to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_copy_ops))
|
|
netfs_rreq_unmark_after_write(rreq, was_async);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
}
|
|
|
|
/*
|
|
* [DEPRECATED] Perform any outstanding writes to the cache. We inherit a ref
|
|
* from the caller.
|
|
*/
|
|
static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
struct netfs_io_subrequest *subreq, *next, *p;
|
|
struct iov_iter iter;
|
|
int ret;
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_copy);
|
|
|
|
/* We don't want terminating writes trying to wake us up whilst we're
|
|
* still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_copy_ops);
|
|
|
|
list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
|
|
if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
|
|
list_del_init(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, false,
|
|
netfs_sreq_trace_put_no_copy);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
/* Amalgamate adjacent writes */
|
|
while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
next = list_next_entry(subreq, rreq_link);
|
|
if (next->start != subreq->start + subreq->len)
|
|
break;
|
|
subreq->len += next->len;
|
|
list_del_init(&next->rreq_link);
|
|
netfs_put_subrequest(next, false,
|
|
netfs_sreq_trace_put_merged);
|
|
}
|
|
|
|
ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
|
|
subreq->len, rreq->i_size, true);
|
|
if (ret < 0) {
|
|
trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
|
|
continue;
|
|
}
|
|
|
|
iov_iter_xarray(&iter, ITER_SOURCE, &rreq->mapping->i_pages,
|
|
subreq->start, subreq->len);
|
|
|
|
atomic_inc(&rreq->nr_copy_ops);
|
|
netfs_stat(&netfs_n_rh_write);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write);
|
|
cres->ops->write(cres, subreq->start, &iter,
|
|
netfs_rreq_copy_terminated, subreq);
|
|
}
|
|
|
|
/* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_copy_ops))
|
|
netfs_rreq_unmark_after_write(rreq, false);
|
|
}
|
|
|
|
static void netfs_rreq_write_to_cache_work(struct work_struct *work) /* [DEPRECATED] */
|
|
{
|
|
struct netfs_io_request *rreq =
|
|
container_of(work, struct netfs_io_request, work);
|
|
|
|
netfs_rreq_do_write_to_cache(rreq);
|
|
}
|
|
|
|
static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq) /* [DEPRECATED] */
|
|
{
|
|
rreq->work.func = netfs_rreq_write_to_cache_work;
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* Handle a short read.
|
|
*/
|
|
static void netfs_rreq_short_read(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
__clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
|
__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
|
|
|
|
netfs_stat(&netfs_n_rh_short_read);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
|
|
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
if (subreq->source == NETFS_READ_FROM_CACHE)
|
|
netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
|
|
else
|
|
netfs_read_from_server(rreq, subreq);
|
|
}
|
|
|
|
/*
|
|
* Reset the subrequest iterator prior to resubmission.
|
|
*/
|
|
static void netfs_reset_subreq_iter(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq)
|
|
{
|
|
size_t remaining = subreq->len - subreq->transferred;
|
|
size_t count = iov_iter_count(&subreq->io_iter);
|
|
|
|
if (count == remaining)
|
|
return;
|
|
|
|
_debug("R=%08x[%u] ITER RESUB-MISMATCH %zx != %zx-%zx-%llx %x\n",
|
|
rreq->debug_id, subreq->debug_index,
|
|
iov_iter_count(&subreq->io_iter), subreq->transferred,
|
|
subreq->len, rreq->i_size,
|
|
subreq->io_iter.iter_type);
|
|
|
|
if (count < remaining)
|
|
iov_iter_revert(&subreq->io_iter, remaining - count);
|
|
else
|
|
iov_iter_advance(&subreq->io_iter, count - remaining);
|
|
}
|
|
|
|
/*
|
|
* Resubmit any short or failed operations. Returns true if we got the rreq
|
|
* ref back.
|
|
*/
|
|
static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
WARN_ON(in_interrupt());
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
|
|
|
|
/* We don't want terminating submissions trying to wake us up whilst
|
|
* we're still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
|
|
__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->error) {
|
|
if (subreq->source != NETFS_READ_FROM_CACHE)
|
|
break;
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->error = 0;
|
|
netfs_stat(&netfs_n_rh_download_instead);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
|
|
netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
netfs_reset_subreq_iter(rreq, subreq);
|
|
netfs_read_from_server(rreq, subreq);
|
|
} else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
|
|
netfs_rreq_short_read(rreq, subreq);
|
|
}
|
|
}
|
|
|
|
/* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
return true;
|
|
|
|
wake_up_var(&rreq->nr_outstanding);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if the data read is still valid.
|
|
*/
|
|
static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
|
|
if (!rreq->netfs_ops->is_still_valid ||
|
|
rreq->netfs_ops->is_still_valid(rreq))
|
|
return;
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
subreq->error = -ESTALE;
|
|
__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine how much we can admit to having read from a DIO read.
|
|
*/
|
|
static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
unsigned int i;
|
|
size_t transferred = 0;
|
|
|
|
for (i = 0; i < rreq->direct_bv_count; i++) {
|
|
flush_dcache_page(rreq->direct_bv[i].bv_page);
|
|
// TODO: cifs marks pages in the destination buffer
|
|
// dirty under some circumstances after a read. Do we
|
|
// need to do that too?
|
|
set_page_dirty(rreq->direct_bv[i].bv_page);
|
|
}
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->error || subreq->transferred == 0)
|
|
break;
|
|
transferred += subreq->transferred;
|
|
if (subreq->transferred < subreq->len)
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < rreq->direct_bv_count; i++)
|
|
flush_dcache_page(rreq->direct_bv[i].bv_page);
|
|
|
|
rreq->transferred = transferred;
|
|
task_io_account_read(transferred);
|
|
|
|
if (rreq->iocb) {
|
|
rreq->iocb->ki_pos += transferred;
|
|
if (rreq->iocb->ki_complete)
|
|
rreq->iocb->ki_complete(
|
|
rreq->iocb, rreq->error ? rreq->error : transferred);
|
|
}
|
|
if (rreq->netfs_ops->done)
|
|
rreq->netfs_ops->done(rreq);
|
|
inode_dio_end(rreq->inode);
|
|
}
|
|
|
|
/*
|
|
* Assess the state of a read request and decide what to do next.
|
|
*
|
|
* Note that we could be in an ordinary kernel thread, on a workqueue or in
|
|
* softirq context at this point. We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
|
|
|
|
again:
|
|
netfs_rreq_is_still_valid(rreq);
|
|
|
|
if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
|
|
if (netfs_rreq_perform_resubmissions(rreq))
|
|
goto again;
|
|
return;
|
|
}
|
|
|
|
if (rreq->origin != NETFS_DIO_READ)
|
|
netfs_rreq_unlock_folios(rreq);
|
|
else
|
|
netfs_rreq_assess_dio(rreq);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
|
wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags))
|
|
return netfs_rreq_write_to_cache(rreq);
|
|
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_work(struct work_struct *work)
|
|
{
|
|
struct netfs_io_request *rreq =
|
|
container_of(work, struct netfs_io_request, work);
|
|
netfs_rreq_assess(rreq, false);
|
|
}
|
|
|
|
/*
|
|
* Handle the completion of all outstanding I/O operations on a read request.
|
|
* We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_terminated(struct netfs_io_request *rreq,
|
|
bool was_async)
|
|
{
|
|
if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
|
|
was_async) {
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
} else {
|
|
netfs_rreq_assess(rreq, was_async);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_subreq_terminated - Note the termination of an I/O operation.
|
|
* @subreq: The I/O request that has terminated.
|
|
* @transferred_or_error: The amount of data transferred or an error code.
|
|
* @was_async: The termination was asynchronous
|
|
*
|
|
* This tells the read helper that a contributory I/O operation has terminated,
|
|
* one way or another, and that it should integrate the results.
|
|
*
|
|
* The caller indicates in @transferred_or_error the outcome of the operation,
|
|
* supplying a positive value to indicate the number of bytes transferred, 0 to
|
|
* indicate a failure to transfer anything that should be retried or a negative
|
|
* error code. The helper will look after reissuing I/O operations as
|
|
* appropriate and writing downloaded data to the cache.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*/
|
|
void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
|
|
ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
int u;
|
|
|
|
_enter("R=%x[%x]{%llx,%lx},%zd",
|
|
rreq->debug_id, subreq->debug_index,
|
|
subreq->start, subreq->flags, transferred_or_error);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_stat(&netfs_n_rh_read_done);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_stat(&netfs_n_rh_download_done);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
subreq->error = transferred_or_error;
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_read);
|
|
goto failed;
|
|
}
|
|
|
|
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
|
"Subreq overread: R%x[%x] %zd > %zu - %zu",
|
|
rreq->debug_id, subreq->debug_index,
|
|
transferred_or_error, subreq->len, subreq->transferred))
|
|
transferred_or_error = subreq->len - subreq->transferred;
|
|
|
|
subreq->error = 0;
|
|
subreq->transferred += transferred_or_error;
|
|
if (subreq->transferred < subreq->len)
|
|
goto incomplete;
|
|
|
|
complete:
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
|
|
set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
|
|
|
|
out:
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
|
u = atomic_dec_return(&rreq->nr_outstanding);
|
|
if (u == 0)
|
|
netfs_rreq_terminated(rreq, was_async);
|
|
else if (u == 1)
|
|
wake_up_var(&rreq->nr_outstanding);
|
|
|
|
netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
|
|
return;
|
|
|
|
incomplete:
|
|
if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
|
|
netfs_clear_unread(subreq);
|
|
subreq->transferred = subreq->len;
|
|
goto complete;
|
|
}
|
|
|
|
if (transferred_or_error == 0) {
|
|
if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
|
|
if (rreq->origin != NETFS_DIO_READ)
|
|
subreq->error = -ENODATA;
|
|
goto failed;
|
|
}
|
|
} else {
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
}
|
|
|
|
__set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
goto out;
|
|
|
|
failed:
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
netfs_stat(&netfs_n_rh_read_failed);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_download_failed);
|
|
set_bit(NETFS_RREQ_FAILED, &rreq->flags);
|
|
rreq->error = subreq->error;
|
|
}
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(netfs_subreq_terminated);
|
|
|
|
static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
|
|
loff_t i_size)
|
|
{
|
|
struct netfs_io_request *rreq = subreq->rreq;
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops)
|
|
return cres->ops->prepare_read(subreq, i_size);
|
|
if (subreq->start >= rreq->i_size)
|
|
return NETFS_FILL_WITH_ZEROES;
|
|
return NETFS_DOWNLOAD_FROM_SERVER;
|
|
}
|
|
|
|
/*
|
|
* Work out what sort of subrequest the next one will be.
|
|
*/
|
|
static enum netfs_io_source
|
|
netfs_rreq_prepare_read(struct netfs_io_request *rreq,
|
|
struct netfs_io_subrequest *subreq,
|
|
struct iov_iter *io_iter)
|
|
{
|
|
enum netfs_io_source source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
struct netfs_inode *ictx = netfs_inode(rreq->inode);
|
|
size_t lsize;
|
|
|
|
_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
|
|
|
|
if (rreq->origin != NETFS_DIO_READ) {
|
|
source = netfs_cache_prepare_read(subreq, rreq->i_size);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto out;
|
|
}
|
|
|
|
if (source == NETFS_DOWNLOAD_FROM_SERVER) {
|
|
/* Call out to the netfs to let it shrink the request to fit
|
|
* its own I/O sizes and boundaries. If it shinks it here, it
|
|
* will be called again to make simultaneous calls; if it wants
|
|
* to make serial calls, it can indicate a short read and then
|
|
* we will call it again.
|
|
*/
|
|
if (rreq->origin != NETFS_DIO_READ) {
|
|
if (subreq->start >= ictx->zero_point) {
|
|
source = NETFS_FILL_WITH_ZEROES;
|
|
goto set;
|
|
}
|
|
if (subreq->len > ictx->zero_point - subreq->start)
|
|
subreq->len = ictx->zero_point - subreq->start;
|
|
|
|
/* We limit buffered reads to the EOF, but let the
|
|
* server deal with larger-than-EOF DIO/unbuffered
|
|
* reads.
|
|
*/
|
|
if (subreq->len > rreq->i_size - subreq->start)
|
|
subreq->len = rreq->i_size - subreq->start;
|
|
}
|
|
if (rreq->rsize && subreq->len > rreq->rsize)
|
|
subreq->len = rreq->rsize;
|
|
|
|
if (rreq->netfs_ops->clamp_length &&
|
|
!rreq->netfs_ops->clamp_length(subreq)) {
|
|
source = NETFS_INVALID_READ;
|
|
goto out;
|
|
}
|
|
|
|
if (subreq->max_nr_segs) {
|
|
lsize = netfs_limit_iter(io_iter, 0, subreq->len,
|
|
subreq->max_nr_segs);
|
|
if (subreq->len > lsize) {
|
|
subreq->len = lsize;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
|
|
}
|
|
}
|
|
}
|
|
|
|
set:
|
|
if (subreq->len > rreq->len)
|
|
pr_warn("R=%08x[%u] SREQ>RREQ %zx > %llx\n",
|
|
rreq->debug_id, subreq->debug_index,
|
|
subreq->len, rreq->len);
|
|
|
|
if (WARN_ON(subreq->len == 0)) {
|
|
source = NETFS_INVALID_READ;
|
|
goto out;
|
|
}
|
|
|
|
subreq->source = source;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
|
|
subreq->io_iter = *io_iter;
|
|
iov_iter_truncate(&subreq->io_iter, subreq->len);
|
|
iov_iter_advance(io_iter, subreq->len);
|
|
out:
|
|
subreq->source = source;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
return source;
|
|
}
|
|
|
|
/*
|
|
* Slice off a piece of a read request and submit an I/O request for it.
|
|
*/
|
|
static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
|
|
struct iov_iter *io_iter)
|
|
{
|
|
struct netfs_io_subrequest *subreq;
|
|
enum netfs_io_source source;
|
|
|
|
subreq = netfs_alloc_subrequest(rreq);
|
|
if (!subreq)
|
|
return false;
|
|
|
|
subreq->start = rreq->start + rreq->submitted;
|
|
subreq->len = io_iter->count;
|
|
|
|
_debug("slice %llx,%zx,%llx", subreq->start, subreq->len, rreq->submitted);
|
|
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
|
|
|
|
/* Call out to the cache to find out what it can do with the remaining
|
|
* subset. It tells us in subreq->flags what it decided should be done
|
|
* and adjusts subreq->len down if the subset crosses a cache boundary.
|
|
*
|
|
* Then when we hand the subset, it can choose to take a subset of that
|
|
* (the starts must coincide), in which case, we go around the loop
|
|
* again and ask it to download the next piece.
|
|
*/
|
|
source = netfs_rreq_prepare_read(rreq, subreq, io_iter);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto subreq_failed;
|
|
|
|
atomic_inc(&rreq->nr_outstanding);
|
|
|
|
rreq->submitted += subreq->len;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
|
switch (source) {
|
|
case NETFS_FILL_WITH_ZEROES:
|
|
netfs_fill_with_zeroes(rreq, subreq);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_read_from_server(rreq, subreq);
|
|
break;
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
|
|
subreq_failed:
|
|
rreq->error = subreq->error;
|
|
netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Begin the process of reading in a chunk of data, where that data may be
|
|
* stitched together from multiple sources, including multiple servers and the
|
|
* local cache.
|
|
*/
|
|
int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
|
|
{
|
|
struct iov_iter io_iter;
|
|
int ret;
|
|
|
|
_enter("R=%x %llx-%llx",
|
|
rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
|
|
|
|
if (rreq->len == 0) {
|
|
pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
|
|
return -EIO;
|
|
}
|
|
|
|
if (rreq->origin == NETFS_DIO_READ)
|
|
inode_dio_begin(rreq->inode);
|
|
|
|
// TODO: Use bounce buffer if requested
|
|
rreq->io_iter = rreq->iter;
|
|
|
|
INIT_WORK(&rreq->work, netfs_rreq_work);
|
|
|
|
/* Chop the read into slices according to what the cache and the netfs
|
|
* want and submit each one.
|
|
*/
|
|
netfs_get_request(rreq, netfs_rreq_trace_get_for_outstanding);
|
|
atomic_set(&rreq->nr_outstanding, 1);
|
|
io_iter = rreq->io_iter;
|
|
do {
|
|
_debug("submit %llx + %llx >= %llx",
|
|
rreq->start, rreq->submitted, rreq->i_size);
|
|
if (!netfs_rreq_submit_slice(rreq, &io_iter))
|
|
break;
|
|
if (test_bit(NETFS_SREQ_NO_PROGRESS, &rreq->flags))
|
|
break;
|
|
if (test_bit(NETFS_RREQ_BLOCKED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_NONBLOCK, &rreq->flags))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
if (!rreq->submitted) {
|
|
netfs_put_request(rreq, false, netfs_rreq_trace_put_no_submit);
|
|
if (rreq->origin == NETFS_DIO_READ)
|
|
inode_dio_end(rreq->inode);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (sync) {
|
|
/* Keep nr_outstanding incremented so that the ref always
|
|
* belongs to us, and the service code isn't punted off to a
|
|
* random thread pool to process. Note that this might start
|
|
* further work, such as writing to the cache.
|
|
*/
|
|
wait_var_event(&rreq->nr_outstanding,
|
|
atomic_read(&rreq->nr_outstanding) == 1);
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
netfs_rreq_assess(rreq, false);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip);
|
|
wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
ret = rreq->error;
|
|
if (ret == 0 && rreq->submitted < rreq->len &&
|
|
rreq->origin != NETFS_DIO_READ) {
|
|
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
|
|
ret = -EIO;
|
|
}
|
|
} else {
|
|
/* If we decrement nr_outstanding to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_outstanding))
|
|
netfs_rreq_assess(rreq, false);
|
|
ret = -EIOCBQUEUED;
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|