mirror of
https://github.com/torvalds/linux.git
synced 2024-12-04 18:13:04 +00:00
09cbfeaf1a
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3577 lines
95 KiB
C
3577 lines
95 KiB
C
/*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
|
|
* Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
|
|
* Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
|
|
* kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
|
|
* - July2000
|
|
* bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
|
|
*/
|
|
|
|
/*
|
|
* This handles all read/write requests to block devices
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/blk-cgroup.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/block.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
|
|
EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
|
|
|
|
DEFINE_IDA(blk_queue_ida);
|
|
|
|
/*
|
|
* For the allocated request tables
|
|
*/
|
|
struct kmem_cache *request_cachep;
|
|
|
|
/*
|
|
* For queue allocation
|
|
*/
|
|
struct kmem_cache *blk_requestq_cachep;
|
|
|
|
/*
|
|
* Controlling structure to kblockd
|
|
*/
|
|
static struct workqueue_struct *kblockd_workqueue;
|
|
|
|
static void blk_clear_congested(struct request_list *rl, int sync)
|
|
{
|
|
#ifdef CONFIG_CGROUP_WRITEBACK
|
|
clear_wb_congested(rl->blkg->wb_congested, sync);
|
|
#else
|
|
/*
|
|
* If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
|
|
* flip its congestion state for events on other blkcgs.
|
|
*/
|
|
if (rl == &rl->q->root_rl)
|
|
clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
|
|
#endif
|
|
}
|
|
|
|
static void blk_set_congested(struct request_list *rl, int sync)
|
|
{
|
|
#ifdef CONFIG_CGROUP_WRITEBACK
|
|
set_wb_congested(rl->blkg->wb_congested, sync);
|
|
#else
|
|
/* see blk_clear_congested() */
|
|
if (rl == &rl->q->root_rl)
|
|
set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
|
|
#endif
|
|
}
|
|
|
|
void blk_queue_congestion_threshold(struct request_queue *q)
|
|
{
|
|
int nr;
|
|
|
|
nr = q->nr_requests - (q->nr_requests / 8) + 1;
|
|
if (nr > q->nr_requests)
|
|
nr = q->nr_requests;
|
|
q->nr_congestion_on = nr;
|
|
|
|
nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
|
|
if (nr < 1)
|
|
nr = 1;
|
|
q->nr_congestion_off = nr;
|
|
}
|
|
|
|
/**
|
|
* blk_get_backing_dev_info - get the address of a queue's backing_dev_info
|
|
* @bdev: device
|
|
*
|
|
* Locates the passed device's request queue and returns the address of its
|
|
* backing_dev_info. This function can only be called if @bdev is opened
|
|
* and the return value is never NULL.
|
|
*/
|
|
struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
return &q->backing_dev_info;
|
|
}
|
|
EXPORT_SYMBOL(blk_get_backing_dev_info);
|
|
|
|
void blk_rq_init(struct request_queue *q, struct request *rq)
|
|
{
|
|
memset(rq, 0, sizeof(*rq));
|
|
|
|
INIT_LIST_HEAD(&rq->queuelist);
|
|
INIT_LIST_HEAD(&rq->timeout_list);
|
|
rq->cpu = -1;
|
|
rq->q = q;
|
|
rq->__sector = (sector_t) -1;
|
|
INIT_HLIST_NODE(&rq->hash);
|
|
RB_CLEAR_NODE(&rq->rb_node);
|
|
rq->cmd = rq->__cmd;
|
|
rq->cmd_len = BLK_MAX_CDB;
|
|
rq->tag = -1;
|
|
rq->start_time = jiffies;
|
|
set_start_time_ns(rq);
|
|
rq->part = NULL;
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_init);
|
|
|
|
static void req_bio_endio(struct request *rq, struct bio *bio,
|
|
unsigned int nbytes, int error)
|
|
{
|
|
if (error)
|
|
bio->bi_error = error;
|
|
|
|
if (unlikely(rq->cmd_flags & REQ_QUIET))
|
|
bio_set_flag(bio, BIO_QUIET);
|
|
|
|
bio_advance(bio, nbytes);
|
|
|
|
/* don't actually finish bio if it's part of flush sequence */
|
|
if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
|
|
bio_endio(bio);
|
|
}
|
|
|
|
void blk_dump_rq_flags(struct request *rq, char *msg)
|
|
{
|
|
int bit;
|
|
|
|
printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
|
|
rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
|
|
(unsigned long long) rq->cmd_flags);
|
|
|
|
printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
|
|
(unsigned long long)blk_rq_pos(rq),
|
|
blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
|
|
printk(KERN_INFO " bio %p, biotail %p, len %u\n",
|
|
rq->bio, rq->biotail, blk_rq_bytes(rq));
|
|
|
|
if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
|
|
printk(KERN_INFO " cdb: ");
|
|
for (bit = 0; bit < BLK_MAX_CDB; bit++)
|
|
printk("%02x ", rq->cmd[bit]);
|
|
printk("\n");
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(blk_dump_rq_flags);
|
|
|
|
static void blk_delay_work(struct work_struct *work)
|
|
{
|
|
struct request_queue *q;
|
|
|
|
q = container_of(work, struct request_queue, delay_work.work);
|
|
spin_lock_irq(q->queue_lock);
|
|
__blk_run_queue(q);
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
|
|
/**
|
|
* blk_delay_queue - restart queueing after defined interval
|
|
* @q: The &struct request_queue in question
|
|
* @msecs: Delay in msecs
|
|
*
|
|
* Description:
|
|
* Sometimes queueing needs to be postponed for a little while, to allow
|
|
* resources to come back. This function will make sure that queueing is
|
|
* restarted around the specified time. Queue lock must be held.
|
|
*/
|
|
void blk_delay_queue(struct request_queue *q, unsigned long msecs)
|
|
{
|
|
if (likely(!blk_queue_dead(q)))
|
|
queue_delayed_work(kblockd_workqueue, &q->delay_work,
|
|
msecs_to_jiffies(msecs));
|
|
}
|
|
EXPORT_SYMBOL(blk_delay_queue);
|
|
|
|
/**
|
|
* blk_start_queue_async - asynchronously restart a previously stopped queue
|
|
* @q: The &struct request_queue in question
|
|
*
|
|
* Description:
|
|
* blk_start_queue_async() will clear the stop flag on the queue, and
|
|
* ensure that the request_fn for the queue is run from an async
|
|
* context.
|
|
**/
|
|
void blk_start_queue_async(struct request_queue *q)
|
|
{
|
|
queue_flag_clear(QUEUE_FLAG_STOPPED, q);
|
|
blk_run_queue_async(q);
|
|
}
|
|
EXPORT_SYMBOL(blk_start_queue_async);
|
|
|
|
/**
|
|
* blk_start_queue - restart a previously stopped queue
|
|
* @q: The &struct request_queue in question
|
|
*
|
|
* Description:
|
|
* blk_start_queue() will clear the stop flag on the queue, and call
|
|
* the request_fn for the queue if it was in a stopped state when
|
|
* entered. Also see blk_stop_queue(). Queue lock must be held.
|
|
**/
|
|
void blk_start_queue(struct request_queue *q)
|
|
{
|
|
WARN_ON(!irqs_disabled());
|
|
|
|
queue_flag_clear(QUEUE_FLAG_STOPPED, q);
|
|
__blk_run_queue(q);
|
|
}
|
|
EXPORT_SYMBOL(blk_start_queue);
|
|
|
|
/**
|
|
* blk_stop_queue - stop a queue
|
|
* @q: The &struct request_queue in question
|
|
*
|
|
* Description:
|
|
* The Linux block layer assumes that a block driver will consume all
|
|
* entries on the request queue when the request_fn strategy is called.
|
|
* Often this will not happen, because of hardware limitations (queue
|
|
* depth settings). If a device driver gets a 'queue full' response,
|
|
* or if it simply chooses not to queue more I/O at one point, it can
|
|
* call this function to prevent the request_fn from being called until
|
|
* the driver has signalled it's ready to go again. This happens by calling
|
|
* blk_start_queue() to restart queue operations. Queue lock must be held.
|
|
**/
|
|
void blk_stop_queue(struct request_queue *q)
|
|
{
|
|
cancel_delayed_work(&q->delay_work);
|
|
queue_flag_set(QUEUE_FLAG_STOPPED, q);
|
|
}
|
|
EXPORT_SYMBOL(blk_stop_queue);
|
|
|
|
/**
|
|
* blk_sync_queue - cancel any pending callbacks on a queue
|
|
* @q: the queue
|
|
*
|
|
* Description:
|
|
* The block layer may perform asynchronous callback activity
|
|
* on a queue, such as calling the unplug function after a timeout.
|
|
* A block device may call blk_sync_queue to ensure that any
|
|
* such activity is cancelled, thus allowing it to release resources
|
|
* that the callbacks might use. The caller must already have made sure
|
|
* that its ->make_request_fn will not re-add plugging prior to calling
|
|
* this function.
|
|
*
|
|
* This function does not cancel any asynchronous activity arising
|
|
* out of elevator or throttling code. That would require elevator_exit()
|
|
* and blkcg_exit_queue() to be called with queue lock initialized.
|
|
*
|
|
*/
|
|
void blk_sync_queue(struct request_queue *q)
|
|
{
|
|
del_timer_sync(&q->timeout);
|
|
|
|
if (q->mq_ops) {
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
cancel_delayed_work_sync(&hctx->run_work);
|
|
cancel_delayed_work_sync(&hctx->delay_work);
|
|
}
|
|
} else {
|
|
cancel_delayed_work_sync(&q->delay_work);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(blk_sync_queue);
|
|
|
|
/**
|
|
* __blk_run_queue_uncond - run a queue whether or not it has been stopped
|
|
* @q: The queue to run
|
|
*
|
|
* Description:
|
|
* Invoke request handling on a queue if there are any pending requests.
|
|
* May be used to restart request handling after a request has completed.
|
|
* This variant runs the queue whether or not the queue has been
|
|
* stopped. Must be called with the queue lock held and interrupts
|
|
* disabled. See also @blk_run_queue.
|
|
*/
|
|
inline void __blk_run_queue_uncond(struct request_queue *q)
|
|
{
|
|
if (unlikely(blk_queue_dead(q)))
|
|
return;
|
|
|
|
/*
|
|
* Some request_fn implementations, e.g. scsi_request_fn(), unlock
|
|
* the queue lock internally. As a result multiple threads may be
|
|
* running such a request function concurrently. Keep track of the
|
|
* number of active request_fn invocations such that blk_drain_queue()
|
|
* can wait until all these request_fn calls have finished.
|
|
*/
|
|
q->request_fn_active++;
|
|
q->request_fn(q);
|
|
q->request_fn_active--;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
|
|
|
|
/**
|
|
* __blk_run_queue - run a single device queue
|
|
* @q: The queue to run
|
|
*
|
|
* Description:
|
|
* See @blk_run_queue. This variant must be called with the queue lock
|
|
* held and interrupts disabled.
|
|
*/
|
|
void __blk_run_queue(struct request_queue *q)
|
|
{
|
|
if (unlikely(blk_queue_stopped(q)))
|
|
return;
|
|
|
|
__blk_run_queue_uncond(q);
|
|
}
|
|
EXPORT_SYMBOL(__blk_run_queue);
|
|
|
|
/**
|
|
* blk_run_queue_async - run a single device queue in workqueue context
|
|
* @q: The queue to run
|
|
*
|
|
* Description:
|
|
* Tells kblockd to perform the equivalent of @blk_run_queue on behalf
|
|
* of us. The caller must hold the queue lock.
|
|
*/
|
|
void blk_run_queue_async(struct request_queue *q)
|
|
{
|
|
if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
|
|
mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
|
|
}
|
|
EXPORT_SYMBOL(blk_run_queue_async);
|
|
|
|
/**
|
|
* blk_run_queue - run a single device queue
|
|
* @q: The queue to run
|
|
*
|
|
* Description:
|
|
* Invoke request handling on this queue, if it has pending work to do.
|
|
* May be used to restart queueing when a request has completed.
|
|
*/
|
|
void blk_run_queue(struct request_queue *q)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
__blk_run_queue(q);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(blk_run_queue);
|
|
|
|
void blk_put_queue(struct request_queue *q)
|
|
{
|
|
kobject_put(&q->kobj);
|
|
}
|
|
EXPORT_SYMBOL(blk_put_queue);
|
|
|
|
/**
|
|
* __blk_drain_queue - drain requests from request_queue
|
|
* @q: queue to drain
|
|
* @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
|
|
*
|
|
* Drain requests from @q. If @drain_all is set, all requests are drained.
|
|
* If not, only ELVPRIV requests are drained. The caller is responsible
|
|
* for ensuring that no new requests which need to be drained are queued.
|
|
*/
|
|
static void __blk_drain_queue(struct request_queue *q, bool drain_all)
|
|
__releases(q->queue_lock)
|
|
__acquires(q->queue_lock)
|
|
{
|
|
int i;
|
|
|
|
lockdep_assert_held(q->queue_lock);
|
|
|
|
while (true) {
|
|
bool drain = false;
|
|
|
|
/*
|
|
* The caller might be trying to drain @q before its
|
|
* elevator is initialized.
|
|
*/
|
|
if (q->elevator)
|
|
elv_drain_elevator(q);
|
|
|
|
blkcg_drain_queue(q);
|
|
|
|
/*
|
|
* This function might be called on a queue which failed
|
|
* driver init after queue creation or is not yet fully
|
|
* active yet. Some drivers (e.g. fd and loop) get unhappy
|
|
* in such cases. Kick queue iff dispatch queue has
|
|
* something on it and @q has request_fn set.
|
|
*/
|
|
if (!list_empty(&q->queue_head) && q->request_fn)
|
|
__blk_run_queue(q);
|
|
|
|
drain |= q->nr_rqs_elvpriv;
|
|
drain |= q->request_fn_active;
|
|
|
|
/*
|
|
* Unfortunately, requests are queued at and tracked from
|
|
* multiple places and there's no single counter which can
|
|
* be drained. Check all the queues and counters.
|
|
*/
|
|
if (drain_all) {
|
|
struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
|
|
drain |= !list_empty(&q->queue_head);
|
|
for (i = 0; i < 2; i++) {
|
|
drain |= q->nr_rqs[i];
|
|
drain |= q->in_flight[i];
|
|
if (fq)
|
|
drain |= !list_empty(&fq->flush_queue[i]);
|
|
}
|
|
}
|
|
|
|
if (!drain)
|
|
break;
|
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
msleep(10);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
}
|
|
|
|
/*
|
|
* With queue marked dead, any woken up waiter will fail the
|
|
* allocation path, so the wakeup chaining is lost and we're
|
|
* left with hung waiters. We need to wake up those waiters.
|
|
*/
|
|
if (q->request_fn) {
|
|
struct request_list *rl;
|
|
|
|
blk_queue_for_each_rl(rl, q)
|
|
for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
|
|
wake_up_all(&rl->wait[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* blk_queue_bypass_start - enter queue bypass mode
|
|
* @q: queue of interest
|
|
*
|
|
* In bypass mode, only the dispatch FIFO queue of @q is used. This
|
|
* function makes @q enter bypass mode and drains all requests which were
|
|
* throttled or issued before. On return, it's guaranteed that no request
|
|
* is being throttled or has ELVPRIV set and blk_queue_bypass() %true
|
|
* inside queue or RCU read lock.
|
|
*/
|
|
void blk_queue_bypass_start(struct request_queue *q)
|
|
{
|
|
spin_lock_irq(q->queue_lock);
|
|
q->bypass_depth++;
|
|
queue_flag_set(QUEUE_FLAG_BYPASS, q);
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
/*
|
|
* Queues start drained. Skip actual draining till init is
|
|
* complete. This avoids lenghty delays during queue init which
|
|
* can happen many times during boot.
|
|
*/
|
|
if (blk_queue_init_done(q)) {
|
|
spin_lock_irq(q->queue_lock);
|
|
__blk_drain_queue(q, false);
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
/* ensure blk_queue_bypass() is %true inside RCU read lock */
|
|
synchronize_rcu();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
|
|
|
|
/**
|
|
* blk_queue_bypass_end - leave queue bypass mode
|
|
* @q: queue of interest
|
|
*
|
|
* Leave bypass mode and restore the normal queueing behavior.
|
|
*/
|
|
void blk_queue_bypass_end(struct request_queue *q)
|
|
{
|
|
spin_lock_irq(q->queue_lock);
|
|
if (!--q->bypass_depth)
|
|
queue_flag_clear(QUEUE_FLAG_BYPASS, q);
|
|
WARN_ON_ONCE(q->bypass_depth < 0);
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
|
|
|
|
void blk_set_queue_dying(struct request_queue *q)
|
|
{
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
|
|
|
|
if (q->mq_ops)
|
|
blk_mq_wake_waiters(q);
|
|
else {
|
|
struct request_list *rl;
|
|
|
|
blk_queue_for_each_rl(rl, q) {
|
|
if (rl->rq_pool) {
|
|
wake_up(&rl->wait[BLK_RW_SYNC]);
|
|
wake_up(&rl->wait[BLK_RW_ASYNC]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_set_queue_dying);
|
|
|
|
/**
|
|
* blk_cleanup_queue - shutdown a request queue
|
|
* @q: request queue to shutdown
|
|
*
|
|
* Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
|
|
* put it. All future requests will be failed immediately with -ENODEV.
|
|
*/
|
|
void blk_cleanup_queue(struct request_queue *q)
|
|
{
|
|
spinlock_t *lock = q->queue_lock;
|
|
|
|
/* mark @q DYING, no new request or merges will be allowed afterwards */
|
|
mutex_lock(&q->sysfs_lock);
|
|
blk_set_queue_dying(q);
|
|
spin_lock_irq(lock);
|
|
|
|
/*
|
|
* A dying queue is permanently in bypass mode till released. Note
|
|
* that, unlike blk_queue_bypass_start(), we aren't performing
|
|
* synchronize_rcu() after entering bypass mode to avoid the delay
|
|
* as some drivers create and destroy a lot of queues while
|
|
* probing. This is still safe because blk_release_queue() will be
|
|
* called only after the queue refcnt drops to zero and nothing,
|
|
* RCU or not, would be traversing the queue by then.
|
|
*/
|
|
q->bypass_depth++;
|
|
queue_flag_set(QUEUE_FLAG_BYPASS, q);
|
|
|
|
queue_flag_set(QUEUE_FLAG_NOMERGES, q);
|
|
queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
|
|
queue_flag_set(QUEUE_FLAG_DYING, q);
|
|
spin_unlock_irq(lock);
|
|
mutex_unlock(&q->sysfs_lock);
|
|
|
|
/*
|
|
* Drain all requests queued before DYING marking. Set DEAD flag to
|
|
* prevent that q->request_fn() gets invoked after draining finished.
|
|
*/
|
|
blk_freeze_queue(q);
|
|
spin_lock_irq(lock);
|
|
if (!q->mq_ops)
|
|
__blk_drain_queue(q, true);
|
|
queue_flag_set(QUEUE_FLAG_DEAD, q);
|
|
spin_unlock_irq(lock);
|
|
|
|
/* for synchronous bio-based driver finish in-flight integrity i/o */
|
|
blk_flush_integrity();
|
|
|
|
/* @q won't process any more request, flush async actions */
|
|
del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
|
|
blk_sync_queue(q);
|
|
|
|
if (q->mq_ops)
|
|
blk_mq_free_queue(q);
|
|
percpu_ref_exit(&q->q_usage_counter);
|
|
|
|
spin_lock_irq(lock);
|
|
if (q->queue_lock != &q->__queue_lock)
|
|
q->queue_lock = &q->__queue_lock;
|
|
spin_unlock_irq(lock);
|
|
|
|
bdi_unregister(&q->backing_dev_info);
|
|
|
|
/* @q is and will stay empty, shutdown and put */
|
|
blk_put_queue(q);
|
|
}
|
|
EXPORT_SYMBOL(blk_cleanup_queue);
|
|
|
|
/* Allocate memory local to the request queue */
|
|
static void *alloc_request_struct(gfp_t gfp_mask, void *data)
|
|
{
|
|
int nid = (int)(long)data;
|
|
return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
|
|
}
|
|
|
|
static void free_request_struct(void *element, void *unused)
|
|
{
|
|
kmem_cache_free(request_cachep, element);
|
|
}
|
|
|
|
int blk_init_rl(struct request_list *rl, struct request_queue *q,
|
|
gfp_t gfp_mask)
|
|
{
|
|
if (unlikely(rl->rq_pool))
|
|
return 0;
|
|
|
|
rl->q = q;
|
|
rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
|
|
rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
|
|
init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
|
|
init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
|
|
|
|
rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
|
|
free_request_struct,
|
|
(void *)(long)q->node, gfp_mask,
|
|
q->node);
|
|
if (!rl->rq_pool)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void blk_exit_rl(struct request_list *rl)
|
|
{
|
|
if (rl->rq_pool)
|
|
mempool_destroy(rl->rq_pool);
|
|
}
|
|
|
|
struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
|
|
{
|
|
return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
|
|
}
|
|
EXPORT_SYMBOL(blk_alloc_queue);
|
|
|
|
int blk_queue_enter(struct request_queue *q, bool nowait)
|
|
{
|
|
while (true) {
|
|
int ret;
|
|
|
|
if (percpu_ref_tryget_live(&q->q_usage_counter))
|
|
return 0;
|
|
|
|
if (nowait)
|
|
return -EBUSY;
|
|
|
|
ret = wait_event_interruptible(q->mq_freeze_wq,
|
|
!atomic_read(&q->mq_freeze_depth) ||
|
|
blk_queue_dying(q));
|
|
if (blk_queue_dying(q))
|
|
return -ENODEV;
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
void blk_queue_exit(struct request_queue *q)
|
|
{
|
|
percpu_ref_put(&q->q_usage_counter);
|
|
}
|
|
|
|
static void blk_queue_usage_counter_release(struct percpu_ref *ref)
|
|
{
|
|
struct request_queue *q =
|
|
container_of(ref, struct request_queue, q_usage_counter);
|
|
|
|
wake_up_all(&q->mq_freeze_wq);
|
|
}
|
|
|
|
static void blk_rq_timed_out_timer(unsigned long data)
|
|
{
|
|
struct request_queue *q = (struct request_queue *)data;
|
|
|
|
kblockd_schedule_work(&q->timeout_work);
|
|
}
|
|
|
|
struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
|
|
{
|
|
struct request_queue *q;
|
|
int err;
|
|
|
|
q = kmem_cache_alloc_node(blk_requestq_cachep,
|
|
gfp_mask | __GFP_ZERO, node_id);
|
|
if (!q)
|
|
return NULL;
|
|
|
|
q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
|
|
if (q->id < 0)
|
|
goto fail_q;
|
|
|
|
q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
|
|
if (!q->bio_split)
|
|
goto fail_id;
|
|
|
|
q->backing_dev_info.ra_pages =
|
|
(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
|
|
q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
|
|
q->backing_dev_info.name = "block";
|
|
q->node = node_id;
|
|
|
|
err = bdi_init(&q->backing_dev_info);
|
|
if (err)
|
|
goto fail_split;
|
|
|
|
setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
|
|
laptop_mode_timer_fn, (unsigned long) q);
|
|
setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
|
|
INIT_LIST_HEAD(&q->queue_head);
|
|
INIT_LIST_HEAD(&q->timeout_list);
|
|
INIT_LIST_HEAD(&q->icq_list);
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
INIT_LIST_HEAD(&q->blkg_list);
|
|
#endif
|
|
INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
|
|
|
|
kobject_init(&q->kobj, &blk_queue_ktype);
|
|
|
|
mutex_init(&q->sysfs_lock);
|
|
spin_lock_init(&q->__queue_lock);
|
|
|
|
/*
|
|
* By default initialize queue_lock to internal lock and driver can
|
|
* override it later if need be.
|
|
*/
|
|
q->queue_lock = &q->__queue_lock;
|
|
|
|
/*
|
|
* A queue starts its life with bypass turned on to avoid
|
|
* unnecessary bypass on/off overhead and nasty surprises during
|
|
* init. The initial bypass will be finished when the queue is
|
|
* registered by blk_register_queue().
|
|
*/
|
|
q->bypass_depth = 1;
|
|
__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
|
|
|
|
init_waitqueue_head(&q->mq_freeze_wq);
|
|
|
|
/*
|
|
* Init percpu_ref in atomic mode so that it's faster to shutdown.
|
|
* See blk_register_queue() for details.
|
|
*/
|
|
if (percpu_ref_init(&q->q_usage_counter,
|
|
blk_queue_usage_counter_release,
|
|
PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
|
|
goto fail_bdi;
|
|
|
|
if (blkcg_init_queue(q))
|
|
goto fail_ref;
|
|
|
|
return q;
|
|
|
|
fail_ref:
|
|
percpu_ref_exit(&q->q_usage_counter);
|
|
fail_bdi:
|
|
bdi_destroy(&q->backing_dev_info);
|
|
fail_split:
|
|
bioset_free(q->bio_split);
|
|
fail_id:
|
|
ida_simple_remove(&blk_queue_ida, q->id);
|
|
fail_q:
|
|
kmem_cache_free(blk_requestq_cachep, q);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(blk_alloc_queue_node);
|
|
|
|
/**
|
|
* blk_init_queue - prepare a request queue for use with a block device
|
|
* @rfn: The function to be called to process requests that have been
|
|
* placed on the queue.
|
|
* @lock: Request queue spin lock
|
|
*
|
|
* Description:
|
|
* If a block device wishes to use the standard request handling procedures,
|
|
* which sorts requests and coalesces adjacent requests, then it must
|
|
* call blk_init_queue(). The function @rfn will be called when there
|
|
* are requests on the queue that need to be processed. If the device
|
|
* supports plugging, then @rfn may not be called immediately when requests
|
|
* are available on the queue, but may be called at some time later instead.
|
|
* Plugged queues are generally unplugged when a buffer belonging to one
|
|
* of the requests on the queue is needed, or due to memory pressure.
|
|
*
|
|
* @rfn is not required, or even expected, to remove all requests off the
|
|
* queue, but only as many as it can handle at a time. If it does leave
|
|
* requests on the queue, it is responsible for arranging that the requests
|
|
* get dealt with eventually.
|
|
*
|
|
* The queue spin lock must be held while manipulating the requests on the
|
|
* request queue; this lock will be taken also from interrupt context, so irq
|
|
* disabling is needed for it.
|
|
*
|
|
* Function returns a pointer to the initialized request queue, or %NULL if
|
|
* it didn't succeed.
|
|
*
|
|
* Note:
|
|
* blk_init_queue() must be paired with a blk_cleanup_queue() call
|
|
* when the block device is deactivated (such as at module unload).
|
|
**/
|
|
|
|
struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
|
|
{
|
|
return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
|
|
}
|
|
EXPORT_SYMBOL(blk_init_queue);
|
|
|
|
struct request_queue *
|
|
blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
|
|
{
|
|
struct request_queue *uninit_q, *q;
|
|
|
|
uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
|
|
if (!uninit_q)
|
|
return NULL;
|
|
|
|
q = blk_init_allocated_queue(uninit_q, rfn, lock);
|
|
if (!q)
|
|
blk_cleanup_queue(uninit_q);
|
|
|
|
return q;
|
|
}
|
|
EXPORT_SYMBOL(blk_init_queue_node);
|
|
|
|
static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
|
|
|
|
struct request_queue *
|
|
blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
|
|
spinlock_t *lock)
|
|
{
|
|
if (!q)
|
|
return NULL;
|
|
|
|
q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
|
|
if (!q->fq)
|
|
return NULL;
|
|
|
|
if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
|
|
goto fail;
|
|
|
|
INIT_WORK(&q->timeout_work, blk_timeout_work);
|
|
q->request_fn = rfn;
|
|
q->prep_rq_fn = NULL;
|
|
q->unprep_rq_fn = NULL;
|
|
q->queue_flags |= QUEUE_FLAG_DEFAULT;
|
|
|
|
/* Override internal queue lock with supplied lock pointer */
|
|
if (lock)
|
|
q->queue_lock = lock;
|
|
|
|
/*
|
|
* This also sets hw/phys segments, boundary and size
|
|
*/
|
|
blk_queue_make_request(q, blk_queue_bio);
|
|
|
|
q->sg_reserved_size = INT_MAX;
|
|
|
|
/* Protect q->elevator from elevator_change */
|
|
mutex_lock(&q->sysfs_lock);
|
|
|
|
/* init elevator */
|
|
if (elevator_init(q, NULL)) {
|
|
mutex_unlock(&q->sysfs_lock);
|
|
goto fail;
|
|
}
|
|
|
|
mutex_unlock(&q->sysfs_lock);
|
|
|
|
return q;
|
|
|
|
fail:
|
|
blk_free_flush_queue(q->fq);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(blk_init_allocated_queue);
|
|
|
|
bool blk_get_queue(struct request_queue *q)
|
|
{
|
|
if (likely(!blk_queue_dying(q))) {
|
|
__blk_get_queue(q);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(blk_get_queue);
|
|
|
|
static inline void blk_free_request(struct request_list *rl, struct request *rq)
|
|
{
|
|
if (rq->cmd_flags & REQ_ELVPRIV) {
|
|
elv_put_request(rl->q, rq);
|
|
if (rq->elv.icq)
|
|
put_io_context(rq->elv.icq->ioc);
|
|
}
|
|
|
|
mempool_free(rq, rl->rq_pool);
|
|
}
|
|
|
|
/*
|
|
* ioc_batching returns true if the ioc is a valid batching request and
|
|
* should be given priority access to a request.
|
|
*/
|
|
static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
|
|
{
|
|
if (!ioc)
|
|
return 0;
|
|
|
|
/*
|
|
* Make sure the process is able to allocate at least 1 request
|
|
* even if the batch times out, otherwise we could theoretically
|
|
* lose wakeups.
|
|
*/
|
|
return ioc->nr_batch_requests == q->nr_batching ||
|
|
(ioc->nr_batch_requests > 0
|
|
&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
|
|
}
|
|
|
|
/*
|
|
* ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
|
|
* will cause the process to be a "batcher" on all queues in the system. This
|
|
* is the behaviour we want though - once it gets a wakeup it should be given
|
|
* a nice run.
|
|
*/
|
|
static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
|
|
{
|
|
if (!ioc || ioc_batching(q, ioc))
|
|
return;
|
|
|
|
ioc->nr_batch_requests = q->nr_batching;
|
|
ioc->last_waited = jiffies;
|
|
}
|
|
|
|
static void __freed_request(struct request_list *rl, int sync)
|
|
{
|
|
struct request_queue *q = rl->q;
|
|
|
|
if (rl->count[sync] < queue_congestion_off_threshold(q))
|
|
blk_clear_congested(rl, sync);
|
|
|
|
if (rl->count[sync] + 1 <= q->nr_requests) {
|
|
if (waitqueue_active(&rl->wait[sync]))
|
|
wake_up(&rl->wait[sync]);
|
|
|
|
blk_clear_rl_full(rl, sync);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A request has just been released. Account for it, update the full and
|
|
* congestion status, wake up any waiters. Called under q->queue_lock.
|
|
*/
|
|
static void freed_request(struct request_list *rl, unsigned int flags)
|
|
{
|
|
struct request_queue *q = rl->q;
|
|
int sync = rw_is_sync(flags);
|
|
|
|
q->nr_rqs[sync]--;
|
|
rl->count[sync]--;
|
|
if (flags & REQ_ELVPRIV)
|
|
q->nr_rqs_elvpriv--;
|
|
|
|
__freed_request(rl, sync);
|
|
|
|
if (unlikely(rl->starved[sync ^ 1]))
|
|
__freed_request(rl, sync ^ 1);
|
|
}
|
|
|
|
int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
|
|
{
|
|
struct request_list *rl;
|
|
int on_thresh, off_thresh;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
q->nr_requests = nr;
|
|
blk_queue_congestion_threshold(q);
|
|
on_thresh = queue_congestion_on_threshold(q);
|
|
off_thresh = queue_congestion_off_threshold(q);
|
|
|
|
blk_queue_for_each_rl(rl, q) {
|
|
if (rl->count[BLK_RW_SYNC] >= on_thresh)
|
|
blk_set_congested(rl, BLK_RW_SYNC);
|
|
else if (rl->count[BLK_RW_SYNC] < off_thresh)
|
|
blk_clear_congested(rl, BLK_RW_SYNC);
|
|
|
|
if (rl->count[BLK_RW_ASYNC] >= on_thresh)
|
|
blk_set_congested(rl, BLK_RW_ASYNC);
|
|
else if (rl->count[BLK_RW_ASYNC] < off_thresh)
|
|
blk_clear_congested(rl, BLK_RW_ASYNC);
|
|
|
|
if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
|
|
blk_set_rl_full(rl, BLK_RW_SYNC);
|
|
} else {
|
|
blk_clear_rl_full(rl, BLK_RW_SYNC);
|
|
wake_up(&rl->wait[BLK_RW_SYNC]);
|
|
}
|
|
|
|
if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
|
|
blk_set_rl_full(rl, BLK_RW_ASYNC);
|
|
} else {
|
|
blk_clear_rl_full(rl, BLK_RW_ASYNC);
|
|
wake_up(&rl->wait[BLK_RW_ASYNC]);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine if elevator data should be initialized when allocating the
|
|
* request associated with @bio.
|
|
*/
|
|
static bool blk_rq_should_init_elevator(struct bio *bio)
|
|
{
|
|
if (!bio)
|
|
return true;
|
|
|
|
/*
|
|
* Flush requests do not use the elevator so skip initialization.
|
|
* This allows a request to share the flush and elevator data.
|
|
*/
|
|
if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* rq_ioc - determine io_context for request allocation
|
|
* @bio: request being allocated is for this bio (can be %NULL)
|
|
*
|
|
* Determine io_context to use for request allocation for @bio. May return
|
|
* %NULL if %current->io_context doesn't exist.
|
|
*/
|
|
static struct io_context *rq_ioc(struct bio *bio)
|
|
{
|
|
#ifdef CONFIG_BLK_CGROUP
|
|
if (bio && bio->bi_ioc)
|
|
return bio->bi_ioc;
|
|
#endif
|
|
return current->io_context;
|
|
}
|
|
|
|
/**
|
|
* __get_request - get a free request
|
|
* @rl: request list to allocate from
|
|
* @rw_flags: RW and SYNC flags
|
|
* @bio: bio to allocate request for (can be %NULL)
|
|
* @gfp_mask: allocation mask
|
|
*
|
|
* Get a free request from @q. This function may fail under memory
|
|
* pressure or if @q is dead.
|
|
*
|
|
* Must be called with @q->queue_lock held and,
|
|
* Returns ERR_PTR on failure, with @q->queue_lock held.
|
|
* Returns request pointer on success, with @q->queue_lock *not held*.
|
|
*/
|
|
static struct request *__get_request(struct request_list *rl, int rw_flags,
|
|
struct bio *bio, gfp_t gfp_mask)
|
|
{
|
|
struct request_queue *q = rl->q;
|
|
struct request *rq;
|
|
struct elevator_type *et = q->elevator->type;
|
|
struct io_context *ioc = rq_ioc(bio);
|
|
struct io_cq *icq = NULL;
|
|
const bool is_sync = rw_is_sync(rw_flags) != 0;
|
|
int may_queue;
|
|
|
|
if (unlikely(blk_queue_dying(q)))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
may_queue = elv_may_queue(q, rw_flags);
|
|
if (may_queue == ELV_MQUEUE_NO)
|
|
goto rq_starved;
|
|
|
|
if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
|
|
if (rl->count[is_sync]+1 >= q->nr_requests) {
|
|
/*
|
|
* The queue will fill after this allocation, so set
|
|
* it as full, and mark this process as "batching".
|
|
* This process will be allowed to complete a batch of
|
|
* requests, others will be blocked.
|
|
*/
|
|
if (!blk_rl_full(rl, is_sync)) {
|
|
ioc_set_batching(q, ioc);
|
|
blk_set_rl_full(rl, is_sync);
|
|
} else {
|
|
if (may_queue != ELV_MQUEUE_MUST
|
|
&& !ioc_batching(q, ioc)) {
|
|
/*
|
|
* The queue is full and the allocating
|
|
* process is not a "batcher", and not
|
|
* exempted by the IO scheduler
|
|
*/
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
}
|
|
}
|
|
blk_set_congested(rl, is_sync);
|
|
}
|
|
|
|
/*
|
|
* Only allow batching queuers to allocate up to 50% over the defined
|
|
* limit of requests, otherwise we could have thousands of requests
|
|
* allocated with any setting of ->nr_requests
|
|
*/
|
|
if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
q->nr_rqs[is_sync]++;
|
|
rl->count[is_sync]++;
|
|
rl->starved[is_sync] = 0;
|
|
|
|
/*
|
|
* Decide whether the new request will be managed by elevator. If
|
|
* so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
|
|
* prevent the current elevator from being destroyed until the new
|
|
* request is freed. This guarantees icq's won't be destroyed and
|
|
* makes creating new ones safe.
|
|
*
|
|
* Also, lookup icq while holding queue_lock. If it doesn't exist,
|
|
* it will be created after releasing queue_lock.
|
|
*/
|
|
if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
|
|
rw_flags |= REQ_ELVPRIV;
|
|
q->nr_rqs_elvpriv++;
|
|
if (et->icq_cache && ioc)
|
|
icq = ioc_lookup_icq(ioc, q);
|
|
}
|
|
|
|
if (blk_queue_io_stat(q))
|
|
rw_flags |= REQ_IO_STAT;
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
/* allocate and init request */
|
|
rq = mempool_alloc(rl->rq_pool, gfp_mask);
|
|
if (!rq)
|
|
goto fail_alloc;
|
|
|
|
blk_rq_init(q, rq);
|
|
blk_rq_set_rl(rq, rl);
|
|
rq->cmd_flags = rw_flags | REQ_ALLOCED;
|
|
|
|
/* init elvpriv */
|
|
if (rw_flags & REQ_ELVPRIV) {
|
|
if (unlikely(et->icq_cache && !icq)) {
|
|
if (ioc)
|
|
icq = ioc_create_icq(ioc, q, gfp_mask);
|
|
if (!icq)
|
|
goto fail_elvpriv;
|
|
}
|
|
|
|
rq->elv.icq = icq;
|
|
if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
|
|
goto fail_elvpriv;
|
|
|
|
/* @rq->elv.icq holds io_context until @rq is freed */
|
|
if (icq)
|
|
get_io_context(icq->ioc);
|
|
}
|
|
out:
|
|
/*
|
|
* ioc may be NULL here, and ioc_batching will be false. That's
|
|
* OK, if the queue is under the request limit then requests need
|
|
* not count toward the nr_batch_requests limit. There will always
|
|
* be some limit enforced by BLK_BATCH_TIME.
|
|
*/
|
|
if (ioc_batching(q, ioc))
|
|
ioc->nr_batch_requests--;
|
|
|
|
trace_block_getrq(q, bio, rw_flags & 1);
|
|
return rq;
|
|
|
|
fail_elvpriv:
|
|
/*
|
|
* elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
|
|
* and may fail indefinitely under memory pressure and thus
|
|
* shouldn't stall IO. Treat this request as !elvpriv. This will
|
|
* disturb iosched and blkcg but weird is bettern than dead.
|
|
*/
|
|
printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
|
|
__func__, dev_name(q->backing_dev_info.dev));
|
|
|
|
rq->cmd_flags &= ~REQ_ELVPRIV;
|
|
rq->elv.icq = NULL;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
q->nr_rqs_elvpriv--;
|
|
spin_unlock_irq(q->queue_lock);
|
|
goto out;
|
|
|
|
fail_alloc:
|
|
/*
|
|
* Allocation failed presumably due to memory. Undo anything we
|
|
* might have messed up.
|
|
*
|
|
* Allocating task should really be put onto the front of the wait
|
|
* queue, but this is pretty rare.
|
|
*/
|
|
spin_lock_irq(q->queue_lock);
|
|
freed_request(rl, rw_flags);
|
|
|
|
/*
|
|
* in the very unlikely event that allocation failed and no
|
|
* requests for this direction was pending, mark us starved so that
|
|
* freeing of a request in the other direction will notice
|
|
* us. another possible fix would be to split the rq mempool into
|
|
* READ and WRITE
|
|
*/
|
|
rq_starved:
|
|
if (unlikely(rl->count[is_sync] == 0))
|
|
rl->starved[is_sync] = 1;
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
/**
|
|
* get_request - get a free request
|
|
* @q: request_queue to allocate request from
|
|
* @rw_flags: RW and SYNC flags
|
|
* @bio: bio to allocate request for (can be %NULL)
|
|
* @gfp_mask: allocation mask
|
|
*
|
|
* Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
|
|
* this function keeps retrying under memory pressure and fails iff @q is dead.
|
|
*
|
|
* Must be called with @q->queue_lock held and,
|
|
* Returns ERR_PTR on failure, with @q->queue_lock held.
|
|
* Returns request pointer on success, with @q->queue_lock *not held*.
|
|
*/
|
|
static struct request *get_request(struct request_queue *q, int rw_flags,
|
|
struct bio *bio, gfp_t gfp_mask)
|
|
{
|
|
const bool is_sync = rw_is_sync(rw_flags) != 0;
|
|
DEFINE_WAIT(wait);
|
|
struct request_list *rl;
|
|
struct request *rq;
|
|
|
|
rl = blk_get_rl(q, bio); /* transferred to @rq on success */
|
|
retry:
|
|
rq = __get_request(rl, rw_flags, bio, gfp_mask);
|
|
if (!IS_ERR(rq))
|
|
return rq;
|
|
|
|
if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
|
|
blk_put_rl(rl);
|
|
return rq;
|
|
}
|
|
|
|
/* wait on @rl and retry */
|
|
prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
trace_block_sleeprq(q, bio, rw_flags & 1);
|
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
io_schedule();
|
|
|
|
/*
|
|
* After sleeping, we become a "batching" process and will be able
|
|
* to allocate at least one request, and up to a big batch of them
|
|
* for a small period time. See ioc_batching, ioc_set_batching
|
|
*/
|
|
ioc_set_batching(q, current->io_context);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
finish_wait(&rl->wait[is_sync], &wait);
|
|
|
|
goto retry;
|
|
}
|
|
|
|
static struct request *blk_old_get_request(struct request_queue *q, int rw,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct request *rq;
|
|
|
|
BUG_ON(rw != READ && rw != WRITE);
|
|
|
|
/* create ioc upfront */
|
|
create_io_context(gfp_mask, q->node);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
rq = get_request(q, rw, NULL, gfp_mask);
|
|
if (IS_ERR(rq))
|
|
spin_unlock_irq(q->queue_lock);
|
|
/* q->queue_lock is unlocked at this point */
|
|
|
|
return rq;
|
|
}
|
|
|
|
struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
|
|
{
|
|
if (q->mq_ops)
|
|
return blk_mq_alloc_request(q, rw,
|
|
(gfp_mask & __GFP_DIRECT_RECLAIM) ?
|
|
0 : BLK_MQ_REQ_NOWAIT);
|
|
else
|
|
return blk_old_get_request(q, rw, gfp_mask);
|
|
}
|
|
EXPORT_SYMBOL(blk_get_request);
|
|
|
|
/**
|
|
* blk_make_request - given a bio, allocate a corresponding struct request.
|
|
* @q: target request queue
|
|
* @bio: The bio describing the memory mappings that will be submitted for IO.
|
|
* It may be a chained-bio properly constructed by block/bio layer.
|
|
* @gfp_mask: gfp flags to be used for memory allocation
|
|
*
|
|
* blk_make_request is the parallel of generic_make_request for BLOCK_PC
|
|
* type commands. Where the struct request needs to be farther initialized by
|
|
* the caller. It is passed a &struct bio, which describes the memory info of
|
|
* the I/O transfer.
|
|
*
|
|
* The caller of blk_make_request must make sure that bi_io_vec
|
|
* are set to describe the memory buffers. That bio_data_dir() will return
|
|
* the needed direction of the request. (And all bio's in the passed bio-chain
|
|
* are properly set accordingly)
|
|
*
|
|
* If called under none-sleepable conditions, mapped bio buffers must not
|
|
* need bouncing, by calling the appropriate masked or flagged allocator,
|
|
* suitable for the target device. Otherwise the call to blk_queue_bounce will
|
|
* BUG.
|
|
*
|
|
* WARNING: When allocating/cloning a bio-chain, careful consideration should be
|
|
* given to how you allocate bios. In particular, you cannot use
|
|
* __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
|
|
* you risk waiting for IO completion of a bio that hasn't been submitted yet,
|
|
* thus resulting in a deadlock. Alternatively bios should be allocated using
|
|
* bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
|
|
* If possible a big IO should be split into smaller parts when allocation
|
|
* fails. Partial allocation should not be an error, or you risk a live-lock.
|
|
*/
|
|
struct request *blk_make_request(struct request_queue *q, struct bio *bio,
|
|
gfp_t gfp_mask)
|
|
{
|
|
struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
|
|
|
|
if (IS_ERR(rq))
|
|
return rq;
|
|
|
|
blk_rq_set_block_pc(rq);
|
|
|
|
for_each_bio(bio) {
|
|
struct bio *bounce_bio = bio;
|
|
int ret;
|
|
|
|
blk_queue_bounce(q, &bounce_bio);
|
|
ret = blk_rq_append_bio(q, rq, bounce_bio);
|
|
if (unlikely(ret)) {
|
|
blk_put_request(rq);
|
|
return ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
return rq;
|
|
}
|
|
EXPORT_SYMBOL(blk_make_request);
|
|
|
|
/**
|
|
* blk_rq_set_block_pc - initialize a request to type BLOCK_PC
|
|
* @rq: request to be initialized
|
|
*
|
|
*/
|
|
void blk_rq_set_block_pc(struct request *rq)
|
|
{
|
|
rq->cmd_type = REQ_TYPE_BLOCK_PC;
|
|
rq->__data_len = 0;
|
|
rq->__sector = (sector_t) -1;
|
|
rq->bio = rq->biotail = NULL;
|
|
memset(rq->__cmd, 0, sizeof(rq->__cmd));
|
|
}
|
|
EXPORT_SYMBOL(blk_rq_set_block_pc);
|
|
|
|
/**
|
|
* blk_requeue_request - put a request back on queue
|
|
* @q: request queue where request should be inserted
|
|
* @rq: request to be inserted
|
|
*
|
|
* Description:
|
|
* Drivers often keep queueing requests until the hardware cannot accept
|
|
* more, when that condition happens we need to put the request back
|
|
* on the queue. Must be called with queue lock held.
|
|
*/
|
|
void blk_requeue_request(struct request_queue *q, struct request *rq)
|
|
{
|
|
blk_delete_timer(rq);
|
|
blk_clear_rq_complete(rq);
|
|
trace_block_rq_requeue(q, rq);
|
|
|
|
if (rq->cmd_flags & REQ_QUEUED)
|
|
blk_queue_end_tag(q, rq);
|
|
|
|
BUG_ON(blk_queued_rq(rq));
|
|
|
|
elv_requeue_request(q, rq);
|
|
}
|
|
EXPORT_SYMBOL(blk_requeue_request);
|
|
|
|
static void add_acct_request(struct request_queue *q, struct request *rq,
|
|
int where)
|
|
{
|
|
blk_account_io_start(rq, true);
|
|
__elv_add_request(q, rq, where);
|
|
}
|
|
|
|
static void part_round_stats_single(int cpu, struct hd_struct *part,
|
|
unsigned long now)
|
|
{
|
|
int inflight;
|
|
|
|
if (now == part->stamp)
|
|
return;
|
|
|
|
inflight = part_in_flight(part);
|
|
if (inflight) {
|
|
__part_stat_add(cpu, part, time_in_queue,
|
|
inflight * (now - part->stamp));
|
|
__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
|
|
}
|
|
part->stamp = now;
|
|
}
|
|
|
|
/**
|
|
* part_round_stats() - Round off the performance stats on a struct disk_stats.
|
|
* @cpu: cpu number for stats access
|
|
* @part: target partition
|
|
*
|
|
* The average IO queue length and utilisation statistics are maintained
|
|
* by observing the current state of the queue length and the amount of
|
|
* time it has been in this state for.
|
|
*
|
|
* Normally, that accounting is done on IO completion, but that can result
|
|
* in more than a second's worth of IO being accounted for within any one
|
|
* second, leading to >100% utilisation. To deal with that, we call this
|
|
* function to do a round-off before returning the results when reading
|
|
* /proc/diskstats. This accounts immediately for all queue usage up to
|
|
* the current jiffies and restarts the counters again.
|
|
*/
|
|
void part_round_stats(int cpu, struct hd_struct *part)
|
|
{
|
|
unsigned long now = jiffies;
|
|
|
|
if (part->partno)
|
|
part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
|
|
part_round_stats_single(cpu, part, now);
|
|
}
|
|
EXPORT_SYMBOL_GPL(part_round_stats);
|
|
|
|
#ifdef CONFIG_PM
|
|
static void blk_pm_put_request(struct request *rq)
|
|
{
|
|
if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
|
|
pm_runtime_mark_last_busy(rq->q->dev);
|
|
}
|
|
#else
|
|
static inline void blk_pm_put_request(struct request *rq) {}
|
|
#endif
|
|
|
|
/*
|
|
* queue lock must be held
|
|
*/
|
|
void __blk_put_request(struct request_queue *q, struct request *req)
|
|
{
|
|
if (unlikely(!q))
|
|
return;
|
|
|
|
if (q->mq_ops) {
|
|
blk_mq_free_request(req);
|
|
return;
|
|
}
|
|
|
|
blk_pm_put_request(req);
|
|
|
|
elv_completed_request(q, req);
|
|
|
|
/* this is a bio leak */
|
|
WARN_ON(req->bio != NULL);
|
|
|
|
/*
|
|
* Request may not have originated from ll_rw_blk. if not,
|
|
* it didn't come out of our reserved rq pools
|
|
*/
|
|
if (req->cmd_flags & REQ_ALLOCED) {
|
|
unsigned int flags = req->cmd_flags;
|
|
struct request_list *rl = blk_rq_rl(req);
|
|
|
|
BUG_ON(!list_empty(&req->queuelist));
|
|
BUG_ON(ELV_ON_HASH(req));
|
|
|
|
blk_free_request(rl, req);
|
|
freed_request(rl, flags);
|
|
blk_put_rl(rl);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__blk_put_request);
|
|
|
|
void blk_put_request(struct request *req)
|
|
{
|
|
struct request_queue *q = req->q;
|
|
|
|
if (q->mq_ops)
|
|
blk_mq_free_request(req);
|
|
else {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
__blk_put_request(q, req);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(blk_put_request);
|
|
|
|
/**
|
|
* blk_add_request_payload - add a payload to a request
|
|
* @rq: request to update
|
|
* @page: page backing the payload
|
|
* @len: length of the payload.
|
|
*
|
|
* This allows to later add a payload to an already submitted request by
|
|
* a block driver. The driver needs to take care of freeing the payload
|
|
* itself.
|
|
*
|
|
* Note that this is a quite horrible hack and nothing but handling of
|
|
* discard requests should ever use it.
|
|
*/
|
|
void blk_add_request_payload(struct request *rq, struct page *page,
|
|
unsigned int len)
|
|
{
|
|
struct bio *bio = rq->bio;
|
|
|
|
bio->bi_io_vec->bv_page = page;
|
|
bio->bi_io_vec->bv_offset = 0;
|
|
bio->bi_io_vec->bv_len = len;
|
|
|
|
bio->bi_iter.bi_size = len;
|
|
bio->bi_vcnt = 1;
|
|
bio->bi_phys_segments = 1;
|
|
|
|
rq->__data_len = rq->resid_len = len;
|
|
rq->nr_phys_segments = 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_add_request_payload);
|
|
|
|
bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
|
|
struct bio *bio)
|
|
{
|
|
const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
|
|
|
|
if (!ll_back_merge_fn(q, req, bio))
|
|
return false;
|
|
|
|
trace_block_bio_backmerge(q, req, bio);
|
|
|
|
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
|
|
blk_rq_set_mixed_merge(req);
|
|
|
|
req->biotail->bi_next = bio;
|
|
req->biotail = bio;
|
|
req->__data_len += bio->bi_iter.bi_size;
|
|
req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
|
|
|
|
blk_account_io_start(req, false);
|
|
return true;
|
|
}
|
|
|
|
bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
|
|
struct bio *bio)
|
|
{
|
|
const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
|
|
|
|
if (!ll_front_merge_fn(q, req, bio))
|
|
return false;
|
|
|
|
trace_block_bio_frontmerge(q, req, bio);
|
|
|
|
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
|
|
blk_rq_set_mixed_merge(req);
|
|
|
|
bio->bi_next = req->bio;
|
|
req->bio = bio;
|
|
|
|
req->__sector = bio->bi_iter.bi_sector;
|
|
req->__data_len += bio->bi_iter.bi_size;
|
|
req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
|
|
|
|
blk_account_io_start(req, false);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* blk_attempt_plug_merge - try to merge with %current's plugged list
|
|
* @q: request_queue new bio is being queued at
|
|
* @bio: new bio being queued
|
|
* @request_count: out parameter for number of traversed plugged requests
|
|
* @same_queue_rq: pointer to &struct request that gets filled in when
|
|
* another request associated with @q is found on the plug list
|
|
* (optional, may be %NULL)
|
|
*
|
|
* Determine whether @bio being queued on @q can be merged with a request
|
|
* on %current's plugged list. Returns %true if merge was successful,
|
|
* otherwise %false.
|
|
*
|
|
* Plugging coalesces IOs from the same issuer for the same purpose without
|
|
* going through @q->queue_lock. As such it's more of an issuing mechanism
|
|
* than scheduling, and the request, while may have elvpriv data, is not
|
|
* added on the elevator at this point. In addition, we don't have
|
|
* reliable access to the elevator outside queue lock. Only check basic
|
|
* merging parameters without querying the elevator.
|
|
*
|
|
* Caller must ensure !blk_queue_nomerges(q) beforehand.
|
|
*/
|
|
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int *request_count,
|
|
struct request **same_queue_rq)
|
|
{
|
|
struct blk_plug *plug;
|
|
struct request *rq;
|
|
bool ret = false;
|
|
struct list_head *plug_list;
|
|
|
|
plug = current->plug;
|
|
if (!plug)
|
|
goto out;
|
|
*request_count = 0;
|
|
|
|
if (q->mq_ops)
|
|
plug_list = &plug->mq_list;
|
|
else
|
|
plug_list = &plug->list;
|
|
|
|
list_for_each_entry_reverse(rq, plug_list, queuelist) {
|
|
int el_ret;
|
|
|
|
if (rq->q == q) {
|
|
(*request_count)++;
|
|
/*
|
|
* Only blk-mq multiple hardware queues case checks the
|
|
* rq in the same queue, there should be only one such
|
|
* rq in a queue
|
|
**/
|
|
if (same_queue_rq)
|
|
*same_queue_rq = rq;
|
|
}
|
|
|
|
if (rq->q != q || !blk_rq_merge_ok(rq, bio))
|
|
continue;
|
|
|
|
el_ret = blk_try_merge(rq, bio);
|
|
if (el_ret == ELEVATOR_BACK_MERGE) {
|
|
ret = bio_attempt_back_merge(q, rq, bio);
|
|
if (ret)
|
|
break;
|
|
} else if (el_ret == ELEVATOR_FRONT_MERGE) {
|
|
ret = bio_attempt_front_merge(q, rq, bio);
|
|
if (ret)
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
unsigned int blk_plug_queued_count(struct request_queue *q)
|
|
{
|
|
struct blk_plug *plug;
|
|
struct request *rq;
|
|
struct list_head *plug_list;
|
|
unsigned int ret = 0;
|
|
|
|
plug = current->plug;
|
|
if (!plug)
|
|
goto out;
|
|
|
|
if (q->mq_ops)
|
|
plug_list = &plug->mq_list;
|
|
else
|
|
plug_list = &plug->list;
|
|
|
|
list_for_each_entry(rq, plug_list, queuelist) {
|
|
if (rq->q == q)
|
|
ret++;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void init_request_from_bio(struct request *req, struct bio *bio)
|
|
{
|
|
req->cmd_type = REQ_TYPE_FS;
|
|
|
|
req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
|
|
if (bio->bi_rw & REQ_RAHEAD)
|
|
req->cmd_flags |= REQ_FAILFAST_MASK;
|
|
|
|
req->errors = 0;
|
|
req->__sector = bio->bi_iter.bi_sector;
|
|
req->ioprio = bio_prio(bio);
|
|
blk_rq_bio_prep(req->q, req, bio);
|
|
}
|
|
|
|
static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
|
|
{
|
|
const bool sync = !!(bio->bi_rw & REQ_SYNC);
|
|
struct blk_plug *plug;
|
|
int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
|
|
struct request *req;
|
|
unsigned int request_count = 0;
|
|
|
|
/*
|
|
* low level driver can indicate that it wants pages above a
|
|
* certain limit bounced to low memory (ie for highmem, or even
|
|
* ISA dma in theory)
|
|
*/
|
|
blk_queue_bounce(q, &bio);
|
|
|
|
blk_queue_split(q, &bio, q->bio_split);
|
|
|
|
if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
|
|
bio->bi_error = -EIO;
|
|
bio_endio(bio);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
|
|
spin_lock_irq(q->queue_lock);
|
|
where = ELEVATOR_INSERT_FLUSH;
|
|
goto get_rq;
|
|
}
|
|
|
|
/*
|
|
* Check if we can merge with the plugged list before grabbing
|
|
* any locks.
|
|
*/
|
|
if (!blk_queue_nomerges(q)) {
|
|
if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
|
|
return BLK_QC_T_NONE;
|
|
} else
|
|
request_count = blk_plug_queued_count(q);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
el_ret = elv_merge(q, &req, bio);
|
|
if (el_ret == ELEVATOR_BACK_MERGE) {
|
|
if (bio_attempt_back_merge(q, req, bio)) {
|
|
elv_bio_merged(q, req, bio);
|
|
if (!attempt_back_merge(q, req))
|
|
elv_merged_request(q, req, el_ret);
|
|
goto out_unlock;
|
|
}
|
|
} else if (el_ret == ELEVATOR_FRONT_MERGE) {
|
|
if (bio_attempt_front_merge(q, req, bio)) {
|
|
elv_bio_merged(q, req, bio);
|
|
if (!attempt_front_merge(q, req))
|
|
elv_merged_request(q, req, el_ret);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
get_rq:
|
|
/*
|
|
* This sync check and mask will be re-done in init_request_from_bio(),
|
|
* but we need to set it earlier to expose the sync flag to the
|
|
* rq allocator and io schedulers.
|
|
*/
|
|
rw_flags = bio_data_dir(bio);
|
|
if (sync)
|
|
rw_flags |= REQ_SYNC;
|
|
|
|
/*
|
|
* Grab a free request. This is might sleep but can not fail.
|
|
* Returns with the queue unlocked.
|
|
*/
|
|
req = get_request(q, rw_flags, bio, GFP_NOIO);
|
|
if (IS_ERR(req)) {
|
|
bio->bi_error = PTR_ERR(req);
|
|
bio_endio(bio);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* After dropping the lock and possibly sleeping here, our request
|
|
* may now be mergeable after it had proven unmergeable (above).
|
|
* We don't worry about that case for efficiency. It won't happen
|
|
* often, and the elevators are able to handle it.
|
|
*/
|
|
init_request_from_bio(req, bio);
|
|
|
|
if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
|
|
req->cpu = raw_smp_processor_id();
|
|
|
|
plug = current->plug;
|
|
if (plug) {
|
|
/*
|
|
* If this is the first request added after a plug, fire
|
|
* of a plug trace.
|
|
*/
|
|
if (!request_count)
|
|
trace_block_plug(q);
|
|
else {
|
|
if (request_count >= BLK_MAX_REQUEST_COUNT) {
|
|
blk_flush_plug_list(plug, false);
|
|
trace_block_plug(q);
|
|
}
|
|
}
|
|
list_add_tail(&req->queuelist, &plug->list);
|
|
blk_account_io_start(req, true);
|
|
} else {
|
|
spin_lock_irq(q->queue_lock);
|
|
add_acct_request(q, req, where);
|
|
__blk_run_queue(q);
|
|
out_unlock:
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
/*
|
|
* If bio->bi_dev is a partition, remap the location
|
|
*/
|
|
static inline void blk_partition_remap(struct bio *bio)
|
|
{
|
|
struct block_device *bdev = bio->bi_bdev;
|
|
|
|
if (bio_sectors(bio) && bdev != bdev->bd_contains) {
|
|
struct hd_struct *p = bdev->bd_part;
|
|
|
|
bio->bi_iter.bi_sector += p->start_sect;
|
|
bio->bi_bdev = bdev->bd_contains;
|
|
|
|
trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
|
|
bdev->bd_dev,
|
|
bio->bi_iter.bi_sector - p->start_sect);
|
|
}
|
|
}
|
|
|
|
static void handle_bad_sector(struct bio *bio)
|
|
{
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
printk(KERN_INFO "attempt to access beyond end of device\n");
|
|
printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
|
|
bdevname(bio->bi_bdev, b),
|
|
bio->bi_rw,
|
|
(unsigned long long)bio_end_sector(bio),
|
|
(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
|
|
}
|
|
|
|
#ifdef CONFIG_FAIL_MAKE_REQUEST
|
|
|
|
static DECLARE_FAULT_ATTR(fail_make_request);
|
|
|
|
static int __init setup_fail_make_request(char *str)
|
|
{
|
|
return setup_fault_attr(&fail_make_request, str);
|
|
}
|
|
__setup("fail_make_request=", setup_fail_make_request);
|
|
|
|
static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
|
|
{
|
|
return part->make_it_fail && should_fail(&fail_make_request, bytes);
|
|
}
|
|
|
|
static int __init fail_make_request_debugfs(void)
|
|
{
|
|
struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
|
|
NULL, &fail_make_request);
|
|
|
|
return PTR_ERR_OR_ZERO(dir);
|
|
}
|
|
|
|
late_initcall(fail_make_request_debugfs);
|
|
|
|
#else /* CONFIG_FAIL_MAKE_REQUEST */
|
|
|
|
static inline bool should_fail_request(struct hd_struct *part,
|
|
unsigned int bytes)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* CONFIG_FAIL_MAKE_REQUEST */
|
|
|
|
/*
|
|
* Check whether this bio extends beyond the end of the device.
|
|
*/
|
|
static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
|
|
{
|
|
sector_t maxsector;
|
|
|
|
if (!nr_sectors)
|
|
return 0;
|
|
|
|
/* Test device or partition size, when known. */
|
|
maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
|
|
if (maxsector) {
|
|
sector_t sector = bio->bi_iter.bi_sector;
|
|
|
|
if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
|
|
/*
|
|
* This may well happen - the kernel calls bread()
|
|
* without checking the size of the device, e.g., when
|
|
* mounting a device.
|
|
*/
|
|
handle_bad_sector(bio);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline_for_stack bool
|
|
generic_make_request_checks(struct bio *bio)
|
|
{
|
|
struct request_queue *q;
|
|
int nr_sectors = bio_sectors(bio);
|
|
int err = -EIO;
|
|
char b[BDEVNAME_SIZE];
|
|
struct hd_struct *part;
|
|
|
|
might_sleep();
|
|
|
|
if (bio_check_eod(bio, nr_sectors))
|
|
goto end_io;
|
|
|
|
q = bdev_get_queue(bio->bi_bdev);
|
|
if (unlikely(!q)) {
|
|
printk(KERN_ERR
|
|
"generic_make_request: Trying to access "
|
|
"nonexistent block-device %s (%Lu)\n",
|
|
bdevname(bio->bi_bdev, b),
|
|
(long long) bio->bi_iter.bi_sector);
|
|
goto end_io;
|
|
}
|
|
|
|
part = bio->bi_bdev->bd_part;
|
|
if (should_fail_request(part, bio->bi_iter.bi_size) ||
|
|
should_fail_request(&part_to_disk(part)->part0,
|
|
bio->bi_iter.bi_size))
|
|
goto end_io;
|
|
|
|
/*
|
|
* If this device has partitions, remap block n
|
|
* of partition p to block n+start(p) of the disk.
|
|
*/
|
|
blk_partition_remap(bio);
|
|
|
|
if (bio_check_eod(bio, nr_sectors))
|
|
goto end_io;
|
|
|
|
/*
|
|
* Filter flush bio's early so that make_request based
|
|
* drivers without flush support don't have to worry
|
|
* about them.
|
|
*/
|
|
if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
|
|
bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
|
|
if (!nr_sectors) {
|
|
err = 0;
|
|
goto end_io;
|
|
}
|
|
}
|
|
|
|
if ((bio->bi_rw & REQ_DISCARD) &&
|
|
(!blk_queue_discard(q) ||
|
|
((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
|
|
err = -EOPNOTSUPP;
|
|
goto end_io;
|
|
}
|
|
|
|
if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
|
|
err = -EOPNOTSUPP;
|
|
goto end_io;
|
|
}
|
|
|
|
/*
|
|
* Various block parts want %current->io_context and lazy ioc
|
|
* allocation ends up trading a lot of pain for a small amount of
|
|
* memory. Just allocate it upfront. This may fail and block
|
|
* layer knows how to live with it.
|
|
*/
|
|
create_io_context(GFP_ATOMIC, q->node);
|
|
|
|
if (!blkcg_bio_issue_check(q, bio))
|
|
return false;
|
|
|
|
trace_block_bio_queue(q, bio);
|
|
return true;
|
|
|
|
end_io:
|
|
bio->bi_error = err;
|
|
bio_endio(bio);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* generic_make_request - hand a buffer to its device driver for I/O
|
|
* @bio: The bio describing the location in memory and on the device.
|
|
*
|
|
* generic_make_request() is used to make I/O requests of block
|
|
* devices. It is passed a &struct bio, which describes the I/O that needs
|
|
* to be done.
|
|
*
|
|
* generic_make_request() does not return any status. The
|
|
* success/failure status of the request, along with notification of
|
|
* completion, is delivered asynchronously through the bio->bi_end_io
|
|
* function described (one day) else where.
|
|
*
|
|
* The caller of generic_make_request must make sure that bi_io_vec
|
|
* are set to describe the memory buffer, and that bi_dev and bi_sector are
|
|
* set to describe the device address, and the
|
|
* bi_end_io and optionally bi_private are set to describe how
|
|
* completion notification should be signaled.
|
|
*
|
|
* generic_make_request and the drivers it calls may use bi_next if this
|
|
* bio happens to be merged with someone else, and may resubmit the bio to
|
|
* a lower device by calling into generic_make_request recursively, which
|
|
* means the bio should NOT be touched after the call to ->make_request_fn.
|
|
*/
|
|
blk_qc_t generic_make_request(struct bio *bio)
|
|
{
|
|
struct bio_list bio_list_on_stack;
|
|
blk_qc_t ret = BLK_QC_T_NONE;
|
|
|
|
if (!generic_make_request_checks(bio))
|
|
goto out;
|
|
|
|
/*
|
|
* We only want one ->make_request_fn to be active at a time, else
|
|
* stack usage with stacked devices could be a problem. So use
|
|
* current->bio_list to keep a list of requests submited by a
|
|
* make_request_fn function. current->bio_list is also used as a
|
|
* flag to say if generic_make_request is currently active in this
|
|
* task or not. If it is NULL, then no make_request is active. If
|
|
* it is non-NULL, then a make_request is active, and new requests
|
|
* should be added at the tail
|
|
*/
|
|
if (current->bio_list) {
|
|
bio_list_add(current->bio_list, bio);
|
|
goto out;
|
|
}
|
|
|
|
/* following loop may be a bit non-obvious, and so deserves some
|
|
* explanation.
|
|
* Before entering the loop, bio->bi_next is NULL (as all callers
|
|
* ensure that) so we have a list with a single bio.
|
|
* We pretend that we have just taken it off a longer list, so
|
|
* we assign bio_list to a pointer to the bio_list_on_stack,
|
|
* thus initialising the bio_list of new bios to be
|
|
* added. ->make_request() may indeed add some more bios
|
|
* through a recursive call to generic_make_request. If it
|
|
* did, we find a non-NULL value in bio_list and re-enter the loop
|
|
* from the top. In this case we really did just take the bio
|
|
* of the top of the list (no pretending) and so remove it from
|
|
* bio_list, and call into ->make_request() again.
|
|
*/
|
|
BUG_ON(bio->bi_next);
|
|
bio_list_init(&bio_list_on_stack);
|
|
current->bio_list = &bio_list_on_stack;
|
|
do {
|
|
struct request_queue *q = bdev_get_queue(bio->bi_bdev);
|
|
|
|
if (likely(blk_queue_enter(q, false) == 0)) {
|
|
ret = q->make_request_fn(q, bio);
|
|
|
|
blk_queue_exit(q);
|
|
|
|
bio = bio_list_pop(current->bio_list);
|
|
} else {
|
|
struct bio *bio_next = bio_list_pop(current->bio_list);
|
|
|
|
bio_io_error(bio);
|
|
bio = bio_next;
|
|
}
|
|
} while (bio);
|
|
current->bio_list = NULL; /* deactivate */
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(generic_make_request);
|
|
|
|
/**
|
|
* submit_bio - submit a bio to the block device layer for I/O
|
|
* @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
|
|
* @bio: The &struct bio which describes the I/O
|
|
*
|
|
* submit_bio() is very similar in purpose to generic_make_request(), and
|
|
* uses that function to do most of the work. Both are fairly rough
|
|
* interfaces; @bio must be presetup and ready for I/O.
|
|
*
|
|
*/
|
|
blk_qc_t submit_bio(int rw, struct bio *bio)
|
|
{
|
|
bio->bi_rw |= rw;
|
|
|
|
/*
|
|
* If it's a regular read/write or a barrier with data attached,
|
|
* go through the normal accounting stuff before submission.
|
|
*/
|
|
if (bio_has_data(bio)) {
|
|
unsigned int count;
|
|
|
|
if (unlikely(rw & REQ_WRITE_SAME))
|
|
count = bdev_logical_block_size(bio->bi_bdev) >> 9;
|
|
else
|
|
count = bio_sectors(bio);
|
|
|
|
if (rw & WRITE) {
|
|
count_vm_events(PGPGOUT, count);
|
|
} else {
|
|
task_io_account_read(bio->bi_iter.bi_size);
|
|
count_vm_events(PGPGIN, count);
|
|
}
|
|
|
|
if (unlikely(block_dump)) {
|
|
char b[BDEVNAME_SIZE];
|
|
printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
|
|
current->comm, task_pid_nr(current),
|
|
(rw & WRITE) ? "WRITE" : "READ",
|
|
(unsigned long long)bio->bi_iter.bi_sector,
|
|
bdevname(bio->bi_bdev, b),
|
|
count);
|
|
}
|
|
}
|
|
|
|
return generic_make_request(bio);
|
|
}
|
|
EXPORT_SYMBOL(submit_bio);
|
|
|
|
/**
|
|
* blk_cloned_rq_check_limits - Helper function to check a cloned request
|
|
* for new the queue limits
|
|
* @q: the queue
|
|
* @rq: the request being checked
|
|
*
|
|
* Description:
|
|
* @rq may have been made based on weaker limitations of upper-level queues
|
|
* in request stacking drivers, and it may violate the limitation of @q.
|
|
* Since the block layer and the underlying device driver trust @rq
|
|
* after it is inserted to @q, it should be checked against @q before
|
|
* the insertion using this generic function.
|
|
*
|
|
* Request stacking drivers like request-based dm may change the queue
|
|
* limits when retrying requests on other queues. Those requests need
|
|
* to be checked against the new queue limits again during dispatch.
|
|
*/
|
|
static int blk_cloned_rq_check_limits(struct request_queue *q,
|
|
struct request *rq)
|
|
{
|
|
if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
|
|
printk(KERN_ERR "%s: over max size limit.\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* queue's settings related to segment counting like q->bounce_pfn
|
|
* may differ from that of other stacking queues.
|
|
* Recalculate it to check the request correctly on this queue's
|
|
* limitation.
|
|
*/
|
|
blk_recalc_rq_segments(rq);
|
|
if (rq->nr_phys_segments > queue_max_segments(q)) {
|
|
printk(KERN_ERR "%s: over max segments limit.\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* blk_insert_cloned_request - Helper for stacking drivers to submit a request
|
|
* @q: the queue to submit the request
|
|
* @rq: the request being queued
|
|
*/
|
|
int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
|
|
{
|
|
unsigned long flags;
|
|
int where = ELEVATOR_INSERT_BACK;
|
|
|
|
if (blk_cloned_rq_check_limits(q, rq))
|
|
return -EIO;
|
|
|
|
if (rq->rq_disk &&
|
|
should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
|
|
return -EIO;
|
|
|
|
if (q->mq_ops) {
|
|
if (blk_queue_io_stat(q))
|
|
blk_account_io_start(rq, true);
|
|
blk_mq_insert_request(rq, false, true, false);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
if (unlikely(blk_queue_dying(q))) {
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Submitting request must be dequeued before calling this function
|
|
* because it will be linked to another request_queue
|
|
*/
|
|
BUG_ON(blk_queued_rq(rq));
|
|
|
|
if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
|
|
where = ELEVATOR_INSERT_FLUSH;
|
|
|
|
add_acct_request(q, rq, where);
|
|
if (where == ELEVATOR_INSERT_FLUSH)
|
|
__blk_run_queue(q);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
|
|
|
|
/**
|
|
* blk_rq_err_bytes - determine number of bytes till the next failure boundary
|
|
* @rq: request to examine
|
|
*
|
|
* Description:
|
|
* A request could be merge of IOs which require different failure
|
|
* handling. This function determines the number of bytes which
|
|
* can be failed from the beginning of the request without
|
|
* crossing into area which need to be retried further.
|
|
*
|
|
* Return:
|
|
* The number of bytes to fail.
|
|
*
|
|
* Context:
|
|
* queue_lock must be held.
|
|
*/
|
|
unsigned int blk_rq_err_bytes(const struct request *rq)
|
|
{
|
|
unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
|
|
unsigned int bytes = 0;
|
|
struct bio *bio;
|
|
|
|
if (!(rq->cmd_flags & REQ_MIXED_MERGE))
|
|
return blk_rq_bytes(rq);
|
|
|
|
/*
|
|
* Currently the only 'mixing' which can happen is between
|
|
* different fastfail types. We can safely fail portions
|
|
* which have all the failfast bits that the first one has -
|
|
* the ones which are at least as eager to fail as the first
|
|
* one.
|
|
*/
|
|
for (bio = rq->bio; bio; bio = bio->bi_next) {
|
|
if ((bio->bi_rw & ff) != ff)
|
|
break;
|
|
bytes += bio->bi_iter.bi_size;
|
|
}
|
|
|
|
/* this could lead to infinite loop */
|
|
BUG_ON(blk_rq_bytes(rq) && !bytes);
|
|
return bytes;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
|
|
|
|
void blk_account_io_completion(struct request *req, unsigned int bytes)
|
|
{
|
|
if (blk_do_io_stat(req)) {
|
|
const int rw = rq_data_dir(req);
|
|
struct hd_struct *part;
|
|
int cpu;
|
|
|
|
cpu = part_stat_lock();
|
|
part = req->part;
|
|
part_stat_add(cpu, part, sectors[rw], bytes >> 9);
|
|
part_stat_unlock();
|
|
}
|
|
}
|
|
|
|
void blk_account_io_done(struct request *req)
|
|
{
|
|
/*
|
|
* Account IO completion. flush_rq isn't accounted as a
|
|
* normal IO on queueing nor completion. Accounting the
|
|
* containing request is enough.
|
|
*/
|
|
if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
|
|
unsigned long duration = jiffies - req->start_time;
|
|
const int rw = rq_data_dir(req);
|
|
struct hd_struct *part;
|
|
int cpu;
|
|
|
|
cpu = part_stat_lock();
|
|
part = req->part;
|
|
|
|
part_stat_inc(cpu, part, ios[rw]);
|
|
part_stat_add(cpu, part, ticks[rw], duration);
|
|
part_round_stats(cpu, part);
|
|
part_dec_in_flight(part, rw);
|
|
|
|
hd_struct_put(part);
|
|
part_stat_unlock();
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
/*
|
|
* Don't process normal requests when queue is suspended
|
|
* or in the process of suspending/resuming
|
|
*/
|
|
static struct request *blk_pm_peek_request(struct request_queue *q,
|
|
struct request *rq)
|
|
{
|
|
if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
|
|
(q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
|
|
return NULL;
|
|
else
|
|
return rq;
|
|
}
|
|
#else
|
|
static inline struct request *blk_pm_peek_request(struct request_queue *q,
|
|
struct request *rq)
|
|
{
|
|
return rq;
|
|
}
|
|
#endif
|
|
|
|
void blk_account_io_start(struct request *rq, bool new_io)
|
|
{
|
|
struct hd_struct *part;
|
|
int rw = rq_data_dir(rq);
|
|
int cpu;
|
|
|
|
if (!blk_do_io_stat(rq))
|
|
return;
|
|
|
|
cpu = part_stat_lock();
|
|
|
|
if (!new_io) {
|
|
part = rq->part;
|
|
part_stat_inc(cpu, part, merges[rw]);
|
|
} else {
|
|
part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
|
|
if (!hd_struct_try_get(part)) {
|
|
/*
|
|
* The partition is already being removed,
|
|
* the request will be accounted on the disk only
|
|
*
|
|
* We take a reference on disk->part0 although that
|
|
* partition will never be deleted, so we can treat
|
|
* it as any other partition.
|
|
*/
|
|
part = &rq->rq_disk->part0;
|
|
hd_struct_get(part);
|
|
}
|
|
part_round_stats(cpu, part);
|
|
part_inc_in_flight(part, rw);
|
|
rq->part = part;
|
|
}
|
|
|
|
part_stat_unlock();
|
|
}
|
|
|
|
/**
|
|
* blk_peek_request - peek at the top of a request queue
|
|
* @q: request queue to peek at
|
|
*
|
|
* Description:
|
|
* Return the request at the top of @q. The returned request
|
|
* should be started using blk_start_request() before LLD starts
|
|
* processing it.
|
|
*
|
|
* Return:
|
|
* Pointer to the request at the top of @q if available. Null
|
|
* otherwise.
|
|
*
|
|
* Context:
|
|
* queue_lock must be held.
|
|
*/
|
|
struct request *blk_peek_request(struct request_queue *q)
|
|
{
|
|
struct request *rq;
|
|
int ret;
|
|
|
|
while ((rq = __elv_next_request(q)) != NULL) {
|
|
|
|
rq = blk_pm_peek_request(q, rq);
|
|
if (!rq)
|
|
break;
|
|
|
|
if (!(rq->cmd_flags & REQ_STARTED)) {
|
|
/*
|
|
* This is the first time the device driver
|
|
* sees this request (possibly after
|
|
* requeueing). Notify IO scheduler.
|
|
*/
|
|
if (rq->cmd_flags & REQ_SORTED)
|
|
elv_activate_rq(q, rq);
|
|
|
|
/*
|
|
* just mark as started even if we don't start
|
|
* it, a request that has been delayed should
|
|
* not be passed by new incoming requests
|
|
*/
|
|
rq->cmd_flags |= REQ_STARTED;
|
|
trace_block_rq_issue(q, rq);
|
|
}
|
|
|
|
if (!q->boundary_rq || q->boundary_rq == rq) {
|
|
q->end_sector = rq_end_sector(rq);
|
|
q->boundary_rq = NULL;
|
|
}
|
|
|
|
if (rq->cmd_flags & REQ_DONTPREP)
|
|
break;
|
|
|
|
if (q->dma_drain_size && blk_rq_bytes(rq)) {
|
|
/*
|
|
* make sure space for the drain appears we
|
|
* know we can do this because max_hw_segments
|
|
* has been adjusted to be one fewer than the
|
|
* device can handle
|
|
*/
|
|
rq->nr_phys_segments++;
|
|
}
|
|
|
|
if (!q->prep_rq_fn)
|
|
break;
|
|
|
|
ret = q->prep_rq_fn(q, rq);
|
|
if (ret == BLKPREP_OK) {
|
|
break;
|
|
} else if (ret == BLKPREP_DEFER) {
|
|
/*
|
|
* the request may have been (partially) prepped.
|
|
* we need to keep this request in the front to
|
|
* avoid resource deadlock. REQ_STARTED will
|
|
* prevent other fs requests from passing this one.
|
|
*/
|
|
if (q->dma_drain_size && blk_rq_bytes(rq) &&
|
|
!(rq->cmd_flags & REQ_DONTPREP)) {
|
|
/*
|
|
* remove the space for the drain we added
|
|
* so that we don't add it again
|
|
*/
|
|
--rq->nr_phys_segments;
|
|
}
|
|
|
|
rq = NULL;
|
|
break;
|
|
} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
|
|
int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
|
|
|
|
rq->cmd_flags |= REQ_QUIET;
|
|
/*
|
|
* Mark this request as started so we don't trigger
|
|
* any debug logic in the end I/O path.
|
|
*/
|
|
blk_start_request(rq);
|
|
__blk_end_request_all(rq, err);
|
|
} else {
|
|
printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return rq;
|
|
}
|
|
EXPORT_SYMBOL(blk_peek_request);
|
|
|
|
void blk_dequeue_request(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
|
|
BUG_ON(list_empty(&rq->queuelist));
|
|
BUG_ON(ELV_ON_HASH(rq));
|
|
|
|
list_del_init(&rq->queuelist);
|
|
|
|
/*
|
|
* the time frame between a request being removed from the lists
|
|
* and to it is freed is accounted as io that is in progress at
|
|
* the driver side.
|
|
*/
|
|
if (blk_account_rq(rq)) {
|
|
q->in_flight[rq_is_sync(rq)]++;
|
|
set_io_start_time_ns(rq);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* blk_start_request - start request processing on the driver
|
|
* @req: request to dequeue
|
|
*
|
|
* Description:
|
|
* Dequeue @req and start timeout timer on it. This hands off the
|
|
* request to the driver.
|
|
*
|
|
* Block internal functions which don't want to start timer should
|
|
* call blk_dequeue_request().
|
|
*
|
|
* Context:
|
|
* queue_lock must be held.
|
|
*/
|
|
void blk_start_request(struct request *req)
|
|
{
|
|
blk_dequeue_request(req);
|
|
|
|
/*
|
|
* We are now handing the request to the hardware, initialize
|
|
* resid_len to full count and add the timeout handler.
|
|
*/
|
|
req->resid_len = blk_rq_bytes(req);
|
|
if (unlikely(blk_bidi_rq(req)))
|
|
req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
|
|
|
|
BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
|
|
blk_add_timer(req);
|
|
}
|
|
EXPORT_SYMBOL(blk_start_request);
|
|
|
|
/**
|
|
* blk_fetch_request - fetch a request from a request queue
|
|
* @q: request queue to fetch a request from
|
|
*
|
|
* Description:
|
|
* Return the request at the top of @q. The request is started on
|
|
* return and LLD can start processing it immediately.
|
|
*
|
|
* Return:
|
|
* Pointer to the request at the top of @q if available. Null
|
|
* otherwise.
|
|
*
|
|
* Context:
|
|
* queue_lock must be held.
|
|
*/
|
|
struct request *blk_fetch_request(struct request_queue *q)
|
|
{
|
|
struct request *rq;
|
|
|
|
rq = blk_peek_request(q);
|
|
if (rq)
|
|
blk_start_request(rq);
|
|
return rq;
|
|
}
|
|
EXPORT_SYMBOL(blk_fetch_request);
|
|
|
|
/**
|
|
* blk_update_request - Special helper function for request stacking drivers
|
|
* @req: the request being processed
|
|
* @error: %0 for success, < %0 for error
|
|
* @nr_bytes: number of bytes to complete @req
|
|
*
|
|
* Description:
|
|
* Ends I/O on a number of bytes attached to @req, but doesn't complete
|
|
* the request structure even if @req doesn't have leftover.
|
|
* If @req has leftover, sets it up for the next range of segments.
|
|
*
|
|
* This special helper function is only for request stacking drivers
|
|
* (e.g. request-based dm) so that they can handle partial completion.
|
|
* Actual device drivers should use blk_end_request instead.
|
|
*
|
|
* Passing the result of blk_rq_bytes() as @nr_bytes guarantees
|
|
* %false return from this function.
|
|
*
|
|
* Return:
|
|
* %false - this request doesn't have any more data
|
|
* %true - this request has more data
|
|
**/
|
|
bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
|
|
{
|
|
int total_bytes;
|
|
|
|
trace_block_rq_complete(req->q, req, nr_bytes);
|
|
|
|
if (!req->bio)
|
|
return false;
|
|
|
|
/*
|
|
* For fs requests, rq is just carrier of independent bio's
|
|
* and each partial completion should be handled separately.
|
|
* Reset per-request error on each partial completion.
|
|
*
|
|
* TODO: tj: This is too subtle. It would be better to let
|
|
* low level drivers do what they see fit.
|
|
*/
|
|
if (req->cmd_type == REQ_TYPE_FS)
|
|
req->errors = 0;
|
|
|
|
if (error && req->cmd_type == REQ_TYPE_FS &&
|
|
!(req->cmd_flags & REQ_QUIET)) {
|
|
char *error_type;
|
|
|
|
switch (error) {
|
|
case -ENOLINK:
|
|
error_type = "recoverable transport";
|
|
break;
|
|
case -EREMOTEIO:
|
|
error_type = "critical target";
|
|
break;
|
|
case -EBADE:
|
|
error_type = "critical nexus";
|
|
break;
|
|
case -ETIMEDOUT:
|
|
error_type = "timeout";
|
|
break;
|
|
case -ENOSPC:
|
|
error_type = "critical space allocation";
|
|
break;
|
|
case -ENODATA:
|
|
error_type = "critical medium";
|
|
break;
|
|
case -EIO:
|
|
default:
|
|
error_type = "I/O";
|
|
break;
|
|
}
|
|
printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
|
|
__func__, error_type, req->rq_disk ?
|
|
req->rq_disk->disk_name : "?",
|
|
(unsigned long long)blk_rq_pos(req));
|
|
|
|
}
|
|
|
|
blk_account_io_completion(req, nr_bytes);
|
|
|
|
total_bytes = 0;
|
|
while (req->bio) {
|
|
struct bio *bio = req->bio;
|
|
unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
|
|
|
|
if (bio_bytes == bio->bi_iter.bi_size)
|
|
req->bio = bio->bi_next;
|
|
|
|
req_bio_endio(req, bio, bio_bytes, error);
|
|
|
|
total_bytes += bio_bytes;
|
|
nr_bytes -= bio_bytes;
|
|
|
|
if (!nr_bytes)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* completely done
|
|
*/
|
|
if (!req->bio) {
|
|
/*
|
|
* Reset counters so that the request stacking driver
|
|
* can find how many bytes remain in the request
|
|
* later.
|
|
*/
|
|
req->__data_len = 0;
|
|
return false;
|
|
}
|
|
|
|
req->__data_len -= total_bytes;
|
|
|
|
/* update sector only for requests with clear definition of sector */
|
|
if (req->cmd_type == REQ_TYPE_FS)
|
|
req->__sector += total_bytes >> 9;
|
|
|
|
/* mixed attributes always follow the first bio */
|
|
if (req->cmd_flags & REQ_MIXED_MERGE) {
|
|
req->cmd_flags &= ~REQ_FAILFAST_MASK;
|
|
req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
|
|
}
|
|
|
|
/*
|
|
* If total number of sectors is less than the first segment
|
|
* size, something has gone terribly wrong.
|
|
*/
|
|
if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
|
|
blk_dump_rq_flags(req, "request botched");
|
|
req->__data_len = blk_rq_cur_bytes(req);
|
|
}
|
|
|
|
/* recalculate the number of segments */
|
|
blk_recalc_rq_segments(req);
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_update_request);
|
|
|
|
static bool blk_update_bidi_request(struct request *rq, int error,
|
|
unsigned int nr_bytes,
|
|
unsigned int bidi_bytes)
|
|
{
|
|
if (blk_update_request(rq, error, nr_bytes))
|
|
return true;
|
|
|
|
/* Bidi request must be completed as a whole */
|
|
if (unlikely(blk_bidi_rq(rq)) &&
|
|
blk_update_request(rq->next_rq, error, bidi_bytes))
|
|
return true;
|
|
|
|
if (blk_queue_add_random(rq->q))
|
|
add_disk_randomness(rq->rq_disk);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* blk_unprep_request - unprepare a request
|
|
* @req: the request
|
|
*
|
|
* This function makes a request ready for complete resubmission (or
|
|
* completion). It happens only after all error handling is complete,
|
|
* so represents the appropriate moment to deallocate any resources
|
|
* that were allocated to the request in the prep_rq_fn. The queue
|
|
* lock is held when calling this.
|
|
*/
|
|
void blk_unprep_request(struct request *req)
|
|
{
|
|
struct request_queue *q = req->q;
|
|
|
|
req->cmd_flags &= ~REQ_DONTPREP;
|
|
if (q->unprep_rq_fn)
|
|
q->unprep_rq_fn(q, req);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_unprep_request);
|
|
|
|
/*
|
|
* queue lock must be held
|
|
*/
|
|
void blk_finish_request(struct request *req, int error)
|
|
{
|
|
if (req->cmd_flags & REQ_QUEUED)
|
|
blk_queue_end_tag(req->q, req);
|
|
|
|
BUG_ON(blk_queued_rq(req));
|
|
|
|
if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
|
|
laptop_io_completion(&req->q->backing_dev_info);
|
|
|
|
blk_delete_timer(req);
|
|
|
|
if (req->cmd_flags & REQ_DONTPREP)
|
|
blk_unprep_request(req);
|
|
|
|
blk_account_io_done(req);
|
|
|
|
if (req->end_io)
|
|
req->end_io(req, error);
|
|
else {
|
|
if (blk_bidi_rq(req))
|
|
__blk_put_request(req->next_rq->q, req->next_rq);
|
|
|
|
__blk_put_request(req->q, req);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(blk_finish_request);
|
|
|
|
/**
|
|
* blk_end_bidi_request - Complete a bidi request
|
|
* @rq: the request to complete
|
|
* @error: %0 for success, < %0 for error
|
|
* @nr_bytes: number of bytes to complete @rq
|
|
* @bidi_bytes: number of bytes to complete @rq->next_rq
|
|
*
|
|
* Description:
|
|
* Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
|
|
* Drivers that supports bidi can safely call this member for any
|
|
* type of request, bidi or uni. In the later case @bidi_bytes is
|
|
* just ignored.
|
|
*
|
|
* Return:
|
|
* %false - we are done with this request
|
|
* %true - still buffers pending for this request
|
|
**/
|
|
static bool blk_end_bidi_request(struct request *rq, int error,
|
|
unsigned int nr_bytes, unsigned int bidi_bytes)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
unsigned long flags;
|
|
|
|
if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
|
|
return true;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
blk_finish_request(rq, error);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* __blk_end_bidi_request - Complete a bidi request with queue lock held
|
|
* @rq: the request to complete
|
|
* @error: %0 for success, < %0 for error
|
|
* @nr_bytes: number of bytes to complete @rq
|
|
* @bidi_bytes: number of bytes to complete @rq->next_rq
|
|
*
|
|
* Description:
|
|
* Identical to blk_end_bidi_request() except that queue lock is
|
|
* assumed to be locked on entry and remains so on return.
|
|
*
|
|
* Return:
|
|
* %false - we are done with this request
|
|
* %true - still buffers pending for this request
|
|
**/
|
|
bool __blk_end_bidi_request(struct request *rq, int error,
|
|
unsigned int nr_bytes, unsigned int bidi_bytes)
|
|
{
|
|
if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
|
|
return true;
|
|
|
|
blk_finish_request(rq, error);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* blk_end_request - Helper function for drivers to complete the request.
|
|
* @rq: the request being processed
|
|
* @error: %0 for success, < %0 for error
|
|
* @nr_bytes: number of bytes to complete
|
|
*
|
|
* Description:
|
|
* Ends I/O on a number of bytes attached to @rq.
|
|
* If @rq has leftover, sets it up for the next range of segments.
|
|
*
|
|
* Return:
|
|
* %false - we are done with this request
|
|
* %true - still buffers pending for this request
|
|
**/
|
|
bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
|
|
{
|
|
return blk_end_bidi_request(rq, error, nr_bytes, 0);
|
|
}
|
|
EXPORT_SYMBOL(blk_end_request);
|
|
|
|
/**
|
|
* blk_end_request_all - Helper function for drives to finish the request.
|
|
* @rq: the request to finish
|
|
* @error: %0 for success, < %0 for error
|
|
*
|
|
* Description:
|
|
* Completely finish @rq.
|
|
*/
|
|
void blk_end_request_all(struct request *rq, int error)
|
|
{
|
|
bool pending;
|
|
unsigned int bidi_bytes = 0;
|
|
|
|
if (unlikely(blk_bidi_rq(rq)))
|
|
bidi_bytes = blk_rq_bytes(rq->next_rq);
|
|
|
|
pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
|
|
BUG_ON(pending);
|
|
}
|
|
EXPORT_SYMBOL(blk_end_request_all);
|
|
|
|
/**
|
|
* blk_end_request_cur - Helper function to finish the current request chunk.
|
|
* @rq: the request to finish the current chunk for
|
|
* @error: %0 for success, < %0 for error
|
|
*
|
|
* Description:
|
|
* Complete the current consecutively mapped chunk from @rq.
|
|
*
|
|
* Return:
|
|
* %false - we are done with this request
|
|
* %true - still buffers pending for this request
|
|
*/
|
|
bool blk_end_request_cur(struct request *rq, int error)
|
|
{
|
|
return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
|
|
}
|
|
EXPORT_SYMBOL(blk_end_request_cur);
|
|
|
|
/**
|
|
* blk_end_request_err - Finish a request till the next failure boundary.
|
|
* @rq: the request to finish till the next failure boundary for
|
|
* @error: must be negative errno
|
|
*
|
|
* Description:
|
|
* Complete @rq till the next failure boundary.
|
|
*
|
|
* Return:
|
|
* %false - we are done with this request
|
|
* %true - still buffers pending for this request
|
|
*/
|
|
bool blk_end_request_err(struct request *rq, int error)
|
|
{
|
|
WARN_ON(error >= 0);
|
|
return blk_end_request(rq, error, blk_rq_err_bytes(rq));
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_end_request_err);
|
|
|
|
/**
|
|
* __blk_end_request - Helper function for drivers to complete the request.
|
|
* @rq: the request being processed
|
|
* @error: %0 for success, < %0 for error
|
|
* @nr_bytes: number of bytes to complete
|
|
*
|
|
* Description:
|
|
* Must be called with queue lock held unlike blk_end_request().
|
|
*
|
|
* Return:
|
|
* %false - we are done with this request
|
|
* %true - still buffers pending for this request
|
|
**/
|
|
bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
|
|
{
|
|
return __blk_end_bidi_request(rq, error, nr_bytes, 0);
|
|
}
|
|
EXPORT_SYMBOL(__blk_end_request);
|
|
|
|
/**
|
|
* __blk_end_request_all - Helper function for drives to finish the request.
|
|
* @rq: the request to finish
|
|
* @error: %0 for success, < %0 for error
|
|
*
|
|
* Description:
|
|
* Completely finish @rq. Must be called with queue lock held.
|
|
*/
|
|
void __blk_end_request_all(struct request *rq, int error)
|
|
{
|
|
bool pending;
|
|
unsigned int bidi_bytes = 0;
|
|
|
|
if (unlikely(blk_bidi_rq(rq)))
|
|
bidi_bytes = blk_rq_bytes(rq->next_rq);
|
|
|
|
pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
|
|
BUG_ON(pending);
|
|
}
|
|
EXPORT_SYMBOL(__blk_end_request_all);
|
|
|
|
/**
|
|
* __blk_end_request_cur - Helper function to finish the current request chunk.
|
|
* @rq: the request to finish the current chunk for
|
|
* @error: %0 for success, < %0 for error
|
|
*
|
|
* Description:
|
|
* Complete the current consecutively mapped chunk from @rq. Must
|
|
* be called with queue lock held.
|
|
*
|
|
* Return:
|
|
* %false - we are done with this request
|
|
* %true - still buffers pending for this request
|
|
*/
|
|
bool __blk_end_request_cur(struct request *rq, int error)
|
|
{
|
|
return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
|
|
}
|
|
EXPORT_SYMBOL(__blk_end_request_cur);
|
|
|
|
/**
|
|
* __blk_end_request_err - Finish a request till the next failure boundary.
|
|
* @rq: the request to finish till the next failure boundary for
|
|
* @error: must be negative errno
|
|
*
|
|
* Description:
|
|
* Complete @rq till the next failure boundary. Must be called
|
|
* with queue lock held.
|
|
*
|
|
* Return:
|
|
* %false - we are done with this request
|
|
* %true - still buffers pending for this request
|
|
*/
|
|
bool __blk_end_request_err(struct request *rq, int error)
|
|
{
|
|
WARN_ON(error >= 0);
|
|
return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
|
|
}
|
|
EXPORT_SYMBOL_GPL(__blk_end_request_err);
|
|
|
|
void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
|
|
struct bio *bio)
|
|
{
|
|
/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
|
|
rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
|
|
|
|
if (bio_has_data(bio))
|
|
rq->nr_phys_segments = bio_phys_segments(q, bio);
|
|
|
|
rq->__data_len = bio->bi_iter.bi_size;
|
|
rq->bio = rq->biotail = bio;
|
|
|
|
if (bio->bi_bdev)
|
|
rq->rq_disk = bio->bi_bdev->bd_disk;
|
|
}
|
|
|
|
#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
|
|
/**
|
|
* rq_flush_dcache_pages - Helper function to flush all pages in a request
|
|
* @rq: the request to be flushed
|
|
*
|
|
* Description:
|
|
* Flush all pages in @rq.
|
|
*/
|
|
void rq_flush_dcache_pages(struct request *rq)
|
|
{
|
|
struct req_iterator iter;
|
|
struct bio_vec bvec;
|
|
|
|
rq_for_each_segment(bvec, rq, iter)
|
|
flush_dcache_page(bvec.bv_page);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
|
|
#endif
|
|
|
|
/**
|
|
* blk_lld_busy - Check if underlying low-level drivers of a device are busy
|
|
* @q : the queue of the device being checked
|
|
*
|
|
* Description:
|
|
* Check if underlying low-level drivers of a device are busy.
|
|
* If the drivers want to export their busy state, they must set own
|
|
* exporting function using blk_queue_lld_busy() first.
|
|
*
|
|
* Basically, this function is used only by request stacking drivers
|
|
* to stop dispatching requests to underlying devices when underlying
|
|
* devices are busy. This behavior helps more I/O merging on the queue
|
|
* of the request stacking driver and prevents I/O throughput regression
|
|
* on burst I/O load.
|
|
*
|
|
* Return:
|
|
* 0 - Not busy (The request stacking driver should dispatch request)
|
|
* 1 - Busy (The request stacking driver should stop dispatching request)
|
|
*/
|
|
int blk_lld_busy(struct request_queue *q)
|
|
{
|
|
if (q->lld_busy_fn)
|
|
return q->lld_busy_fn(q);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_lld_busy);
|
|
|
|
/**
|
|
* blk_rq_unprep_clone - Helper function to free all bios in a cloned request
|
|
* @rq: the clone request to be cleaned up
|
|
*
|
|
* Description:
|
|
* Free all bios in @rq for a cloned request.
|
|
*/
|
|
void blk_rq_unprep_clone(struct request *rq)
|
|
{
|
|
struct bio *bio;
|
|
|
|
while ((bio = rq->bio) != NULL) {
|
|
rq->bio = bio->bi_next;
|
|
|
|
bio_put(bio);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
|
|
|
|
/*
|
|
* Copy attributes of the original request to the clone request.
|
|
* The actual data parts (e.g. ->cmd, ->sense) are not copied.
|
|
*/
|
|
static void __blk_rq_prep_clone(struct request *dst, struct request *src)
|
|
{
|
|
dst->cpu = src->cpu;
|
|
dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
|
|
dst->cmd_type = src->cmd_type;
|
|
dst->__sector = blk_rq_pos(src);
|
|
dst->__data_len = blk_rq_bytes(src);
|
|
dst->nr_phys_segments = src->nr_phys_segments;
|
|
dst->ioprio = src->ioprio;
|
|
dst->extra_len = src->extra_len;
|
|
}
|
|
|
|
/**
|
|
* blk_rq_prep_clone - Helper function to setup clone request
|
|
* @rq: the request to be setup
|
|
* @rq_src: original request to be cloned
|
|
* @bs: bio_set that bios for clone are allocated from
|
|
* @gfp_mask: memory allocation mask for bio
|
|
* @bio_ctr: setup function to be called for each clone bio.
|
|
* Returns %0 for success, non %0 for failure.
|
|
* @data: private data to be passed to @bio_ctr
|
|
*
|
|
* Description:
|
|
* Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
|
|
* The actual data parts of @rq_src (e.g. ->cmd, ->sense)
|
|
* are not copied, and copying such parts is the caller's responsibility.
|
|
* Also, pages which the original bios are pointing to are not copied
|
|
* and the cloned bios just point same pages.
|
|
* So cloned bios must be completed before original bios, which means
|
|
* the caller must complete @rq before @rq_src.
|
|
*/
|
|
int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
|
|
struct bio_set *bs, gfp_t gfp_mask,
|
|
int (*bio_ctr)(struct bio *, struct bio *, void *),
|
|
void *data)
|
|
{
|
|
struct bio *bio, *bio_src;
|
|
|
|
if (!bs)
|
|
bs = fs_bio_set;
|
|
|
|
__rq_for_each_bio(bio_src, rq_src) {
|
|
bio = bio_clone_fast(bio_src, gfp_mask, bs);
|
|
if (!bio)
|
|
goto free_and_out;
|
|
|
|
if (bio_ctr && bio_ctr(bio, bio_src, data))
|
|
goto free_and_out;
|
|
|
|
if (rq->bio) {
|
|
rq->biotail->bi_next = bio;
|
|
rq->biotail = bio;
|
|
} else
|
|
rq->bio = rq->biotail = bio;
|
|
}
|
|
|
|
__blk_rq_prep_clone(rq, rq_src);
|
|
|
|
return 0;
|
|
|
|
free_and_out:
|
|
if (bio)
|
|
bio_put(bio);
|
|
blk_rq_unprep_clone(rq);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
|
|
|
|
int kblockd_schedule_work(struct work_struct *work)
|
|
{
|
|
return queue_work(kblockd_workqueue, work);
|
|
}
|
|
EXPORT_SYMBOL(kblockd_schedule_work);
|
|
|
|
int kblockd_schedule_delayed_work(struct delayed_work *dwork,
|
|
unsigned long delay)
|
|
{
|
|
return queue_delayed_work(kblockd_workqueue, dwork, delay);
|
|
}
|
|
EXPORT_SYMBOL(kblockd_schedule_delayed_work);
|
|
|
|
int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
|
|
unsigned long delay)
|
|
{
|
|
return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
|
|
}
|
|
EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
|
|
|
|
/**
|
|
* blk_start_plug - initialize blk_plug and track it inside the task_struct
|
|
* @plug: The &struct blk_plug that needs to be initialized
|
|
*
|
|
* Description:
|
|
* Tracking blk_plug inside the task_struct will help with auto-flushing the
|
|
* pending I/O should the task end up blocking between blk_start_plug() and
|
|
* blk_finish_plug(). This is important from a performance perspective, but
|
|
* also ensures that we don't deadlock. For instance, if the task is blocking
|
|
* for a memory allocation, memory reclaim could end up wanting to free a
|
|
* page belonging to that request that is currently residing in our private
|
|
* plug. By flushing the pending I/O when the process goes to sleep, we avoid
|
|
* this kind of deadlock.
|
|
*/
|
|
void blk_start_plug(struct blk_plug *plug)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
/*
|
|
* If this is a nested plug, don't actually assign it.
|
|
*/
|
|
if (tsk->plug)
|
|
return;
|
|
|
|
INIT_LIST_HEAD(&plug->list);
|
|
INIT_LIST_HEAD(&plug->mq_list);
|
|
INIT_LIST_HEAD(&plug->cb_list);
|
|
/*
|
|
* Store ordering should not be needed here, since a potential
|
|
* preempt will imply a full memory barrier
|
|
*/
|
|
tsk->plug = plug;
|
|
}
|
|
EXPORT_SYMBOL(blk_start_plug);
|
|
|
|
static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
|
|
{
|
|
struct request *rqa = container_of(a, struct request, queuelist);
|
|
struct request *rqb = container_of(b, struct request, queuelist);
|
|
|
|
return !(rqa->q < rqb->q ||
|
|
(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
|
|
}
|
|
|
|
/*
|
|
* If 'from_schedule' is true, then postpone the dispatch of requests
|
|
* until a safe kblockd context. We due this to avoid accidental big
|
|
* additional stack usage in driver dispatch, in places where the originally
|
|
* plugger did not intend it.
|
|
*/
|
|
static void queue_unplugged(struct request_queue *q, unsigned int depth,
|
|
bool from_schedule)
|
|
__releases(q->queue_lock)
|
|
{
|
|
trace_block_unplug(q, depth, !from_schedule);
|
|
|
|
if (from_schedule)
|
|
blk_run_queue_async(q);
|
|
else
|
|
__blk_run_queue(q);
|
|
spin_unlock(q->queue_lock);
|
|
}
|
|
|
|
static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
|
|
{
|
|
LIST_HEAD(callbacks);
|
|
|
|
while (!list_empty(&plug->cb_list)) {
|
|
list_splice_init(&plug->cb_list, &callbacks);
|
|
|
|
while (!list_empty(&callbacks)) {
|
|
struct blk_plug_cb *cb = list_first_entry(&callbacks,
|
|
struct blk_plug_cb,
|
|
list);
|
|
list_del(&cb->list);
|
|
cb->callback(cb, from_schedule);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
|
|
int size)
|
|
{
|
|
struct blk_plug *plug = current->plug;
|
|
struct blk_plug_cb *cb;
|
|
|
|
if (!plug)
|
|
return NULL;
|
|
|
|
list_for_each_entry(cb, &plug->cb_list, list)
|
|
if (cb->callback == unplug && cb->data == data)
|
|
return cb;
|
|
|
|
/* Not currently on the callback list */
|
|
BUG_ON(size < sizeof(*cb));
|
|
cb = kzalloc(size, GFP_ATOMIC);
|
|
if (cb) {
|
|
cb->data = data;
|
|
cb->callback = unplug;
|
|
list_add(&cb->list, &plug->cb_list);
|
|
}
|
|
return cb;
|
|
}
|
|
EXPORT_SYMBOL(blk_check_plugged);
|
|
|
|
void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
|
|
{
|
|
struct request_queue *q;
|
|
unsigned long flags;
|
|
struct request *rq;
|
|
LIST_HEAD(list);
|
|
unsigned int depth;
|
|
|
|
flush_plug_callbacks(plug, from_schedule);
|
|
|
|
if (!list_empty(&plug->mq_list))
|
|
blk_mq_flush_plug_list(plug, from_schedule);
|
|
|
|
if (list_empty(&plug->list))
|
|
return;
|
|
|
|
list_splice_init(&plug->list, &list);
|
|
|
|
list_sort(NULL, &list, plug_rq_cmp);
|
|
|
|
q = NULL;
|
|
depth = 0;
|
|
|
|
/*
|
|
* Save and disable interrupts here, to avoid doing it for every
|
|
* queue lock we have to take.
|
|
*/
|
|
local_irq_save(flags);
|
|
while (!list_empty(&list)) {
|
|
rq = list_entry_rq(list.next);
|
|
list_del_init(&rq->queuelist);
|
|
BUG_ON(!rq->q);
|
|
if (rq->q != q) {
|
|
/*
|
|
* This drops the queue lock
|
|
*/
|
|
if (q)
|
|
queue_unplugged(q, depth, from_schedule);
|
|
q = rq->q;
|
|
depth = 0;
|
|
spin_lock(q->queue_lock);
|
|
}
|
|
|
|
/*
|
|
* Short-circuit if @q is dead
|
|
*/
|
|
if (unlikely(blk_queue_dying(q))) {
|
|
__blk_end_request_all(rq, -ENODEV);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* rq is already accounted, so use raw insert
|
|
*/
|
|
if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
|
|
__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
|
|
else
|
|
__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
|
|
|
|
depth++;
|
|
}
|
|
|
|
/*
|
|
* This drops the queue lock
|
|
*/
|
|
if (q)
|
|
queue_unplugged(q, depth, from_schedule);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void blk_finish_plug(struct blk_plug *plug)
|
|
{
|
|
if (plug != current->plug)
|
|
return;
|
|
blk_flush_plug_list(plug, false);
|
|
|
|
current->plug = NULL;
|
|
}
|
|
EXPORT_SYMBOL(blk_finish_plug);
|
|
|
|
bool blk_poll(struct request_queue *q, blk_qc_t cookie)
|
|
{
|
|
struct blk_plug *plug;
|
|
long state;
|
|
|
|
if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
|
|
!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
|
|
return false;
|
|
|
|
plug = current->plug;
|
|
if (plug)
|
|
blk_flush_plug_list(plug, false);
|
|
|
|
state = current->state;
|
|
while (!need_resched()) {
|
|
unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
|
|
struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
|
|
int ret;
|
|
|
|
hctx->poll_invoked++;
|
|
|
|
ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
|
|
if (ret > 0) {
|
|
hctx->poll_success++;
|
|
set_current_state(TASK_RUNNING);
|
|
return true;
|
|
}
|
|
|
|
if (signal_pending_state(state, current))
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
if (current->state == TASK_RUNNING)
|
|
return true;
|
|
if (ret < 0)
|
|
break;
|
|
cpu_relax();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
/**
|
|
* blk_pm_runtime_init - Block layer runtime PM initialization routine
|
|
* @q: the queue of the device
|
|
* @dev: the device the queue belongs to
|
|
*
|
|
* Description:
|
|
* Initialize runtime-PM-related fields for @q and start auto suspend for
|
|
* @dev. Drivers that want to take advantage of request-based runtime PM
|
|
* should call this function after @dev has been initialized, and its
|
|
* request queue @q has been allocated, and runtime PM for it can not happen
|
|
* yet(either due to disabled/forbidden or its usage_count > 0). In most
|
|
* cases, driver should call this function before any I/O has taken place.
|
|
*
|
|
* This function takes care of setting up using auto suspend for the device,
|
|
* the autosuspend delay is set to -1 to make runtime suspend impossible
|
|
* until an updated value is either set by user or by driver. Drivers do
|
|
* not need to touch other autosuspend settings.
|
|
*
|
|
* The block layer runtime PM is request based, so only works for drivers
|
|
* that use request as their IO unit instead of those directly use bio's.
|
|
*/
|
|
void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
|
|
{
|
|
q->dev = dev;
|
|
q->rpm_status = RPM_ACTIVE;
|
|
pm_runtime_set_autosuspend_delay(q->dev, -1);
|
|
pm_runtime_use_autosuspend(q->dev);
|
|
}
|
|
EXPORT_SYMBOL(blk_pm_runtime_init);
|
|
|
|
/**
|
|
* blk_pre_runtime_suspend - Pre runtime suspend check
|
|
* @q: the queue of the device
|
|
*
|
|
* Description:
|
|
* This function will check if runtime suspend is allowed for the device
|
|
* by examining if there are any requests pending in the queue. If there
|
|
* are requests pending, the device can not be runtime suspended; otherwise,
|
|
* the queue's status will be updated to SUSPENDING and the driver can
|
|
* proceed to suspend the device.
|
|
*
|
|
* For the not allowed case, we mark last busy for the device so that
|
|
* runtime PM core will try to autosuspend it some time later.
|
|
*
|
|
* This function should be called near the start of the device's
|
|
* runtime_suspend callback.
|
|
*
|
|
* Return:
|
|
* 0 - OK to runtime suspend the device
|
|
* -EBUSY - Device should not be runtime suspended
|
|
*/
|
|
int blk_pre_runtime_suspend(struct request_queue *q)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!q->dev)
|
|
return ret;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
if (q->nr_pending) {
|
|
ret = -EBUSY;
|
|
pm_runtime_mark_last_busy(q->dev);
|
|
} else {
|
|
q->rpm_status = RPM_SUSPENDING;
|
|
}
|
|
spin_unlock_irq(q->queue_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_pre_runtime_suspend);
|
|
|
|
/**
|
|
* blk_post_runtime_suspend - Post runtime suspend processing
|
|
* @q: the queue of the device
|
|
* @err: return value of the device's runtime_suspend function
|
|
*
|
|
* Description:
|
|
* Update the queue's runtime status according to the return value of the
|
|
* device's runtime suspend function and mark last busy for the device so
|
|
* that PM core will try to auto suspend the device at a later time.
|
|
*
|
|
* This function should be called near the end of the device's
|
|
* runtime_suspend callback.
|
|
*/
|
|
void blk_post_runtime_suspend(struct request_queue *q, int err)
|
|
{
|
|
if (!q->dev)
|
|
return;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
if (!err) {
|
|
q->rpm_status = RPM_SUSPENDED;
|
|
} else {
|
|
q->rpm_status = RPM_ACTIVE;
|
|
pm_runtime_mark_last_busy(q->dev);
|
|
}
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
EXPORT_SYMBOL(blk_post_runtime_suspend);
|
|
|
|
/**
|
|
* blk_pre_runtime_resume - Pre runtime resume processing
|
|
* @q: the queue of the device
|
|
*
|
|
* Description:
|
|
* Update the queue's runtime status to RESUMING in preparation for the
|
|
* runtime resume of the device.
|
|
*
|
|
* This function should be called near the start of the device's
|
|
* runtime_resume callback.
|
|
*/
|
|
void blk_pre_runtime_resume(struct request_queue *q)
|
|
{
|
|
if (!q->dev)
|
|
return;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
q->rpm_status = RPM_RESUMING;
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
EXPORT_SYMBOL(blk_pre_runtime_resume);
|
|
|
|
/**
|
|
* blk_post_runtime_resume - Post runtime resume processing
|
|
* @q: the queue of the device
|
|
* @err: return value of the device's runtime_resume function
|
|
*
|
|
* Description:
|
|
* Update the queue's runtime status according to the return value of the
|
|
* device's runtime_resume function. If it is successfully resumed, process
|
|
* the requests that are queued into the device's queue when it is resuming
|
|
* and then mark last busy and initiate autosuspend for it.
|
|
*
|
|
* This function should be called near the end of the device's
|
|
* runtime_resume callback.
|
|
*/
|
|
void blk_post_runtime_resume(struct request_queue *q, int err)
|
|
{
|
|
if (!q->dev)
|
|
return;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
if (!err) {
|
|
q->rpm_status = RPM_ACTIVE;
|
|
__blk_run_queue(q);
|
|
pm_runtime_mark_last_busy(q->dev);
|
|
pm_request_autosuspend(q->dev);
|
|
} else {
|
|
q->rpm_status = RPM_SUSPENDED;
|
|
}
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
EXPORT_SYMBOL(blk_post_runtime_resume);
|
|
|
|
/**
|
|
* blk_set_runtime_active - Force runtime status of the queue to be active
|
|
* @q: the queue of the device
|
|
*
|
|
* If the device is left runtime suspended during system suspend the resume
|
|
* hook typically resumes the device and corrects runtime status
|
|
* accordingly. However, that does not affect the queue runtime PM status
|
|
* which is still "suspended". This prevents processing requests from the
|
|
* queue.
|
|
*
|
|
* This function can be used in driver's resume hook to correct queue
|
|
* runtime PM status and re-enable peeking requests from the queue. It
|
|
* should be called before first request is added to the queue.
|
|
*/
|
|
void blk_set_runtime_active(struct request_queue *q)
|
|
{
|
|
spin_lock_irq(q->queue_lock);
|
|
q->rpm_status = RPM_ACTIVE;
|
|
pm_runtime_mark_last_busy(q->dev);
|
|
pm_request_autosuspend(q->dev);
|
|
spin_unlock_irq(q->queue_lock);
|
|
}
|
|
EXPORT_SYMBOL(blk_set_runtime_active);
|
|
#endif
|
|
|
|
int __init blk_dev_init(void)
|
|
{
|
|
BUILD_BUG_ON(__REQ_NR_BITS > 8 *
|
|
FIELD_SIZEOF(struct request, cmd_flags));
|
|
|
|
/* used for unplugging and affects IO latency/throughput - HIGHPRI */
|
|
kblockd_workqueue = alloc_workqueue("kblockd",
|
|
WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
|
|
if (!kblockd_workqueue)
|
|
panic("Failed to create kblockd\n");
|
|
|
|
request_cachep = kmem_cache_create("blkdev_requests",
|
|
sizeof(struct request), 0, SLAB_PANIC, NULL);
|
|
|
|
blk_requestq_cachep = kmem_cache_create("request_queue",
|
|
sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
|
|
|
|
return 0;
|
|
}
|