mirror of
https://github.com/torvalds/linux.git
synced 2024-11-01 01:31:44 +00:00
a836f5856a
Fix a bug in the cleanup of an spi_bitbang bus. The workqueue associated with the bus was destroyed before the call to spi_unregister_master. That meant that spi devices on that bus would be unable to do IO in their remove method. The shutdown flag should have been able to prevent a segfault, but was never getting set. By waiting to destroy the workqueue until after the master is unregistered, devices are able to do IO in their remove methods. An added benefit is that neither the shutdown flag nor a wait for the queue of messages to empty is needed. Signed-off-by: Chris Lesiak <chris.lesiak@licor.com> Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
516 lines
13 KiB
C
516 lines
13 KiB
C
/*
|
|
* spi_bitbang.c - polling/bitbanging SPI master controller driver utilities
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi_bitbang.h>
|
|
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
|
|
* Use this for GPIO or shift-register level hardware APIs.
|
|
*
|
|
* spi_bitbang_cs is in spi_device->controller_state, which is unavailable
|
|
* to glue code. These bitbang setup() and cleanup() routines are always
|
|
* used, though maybe they're called from controller-aware code.
|
|
*
|
|
* chipselect() and friends may use use spi_device->controller_data and
|
|
* controller registers as appropriate.
|
|
*
|
|
*
|
|
* NOTE: SPI controller pins can often be used as GPIO pins instead,
|
|
* which means you could use a bitbang driver either to get hardware
|
|
* working quickly, or testing for differences that aren't speed related.
|
|
*/
|
|
|
|
struct spi_bitbang_cs {
|
|
unsigned nsecs; /* (clock cycle time)/2 */
|
|
u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
|
|
u32 word, u8 bits);
|
|
unsigned (*txrx_bufs)(struct spi_device *,
|
|
u32 (*txrx_word)(
|
|
struct spi_device *spi,
|
|
unsigned nsecs,
|
|
u32 word, u8 bits),
|
|
unsigned, struct spi_transfer *);
|
|
};
|
|
|
|
static unsigned bitbang_txrx_8(
|
|
struct spi_device *spi,
|
|
u32 (*txrx_word)(struct spi_device *spi,
|
|
unsigned nsecs,
|
|
u32 word, u8 bits),
|
|
unsigned ns,
|
|
struct spi_transfer *t
|
|
) {
|
|
unsigned bits = spi->bits_per_word;
|
|
unsigned count = t->len;
|
|
const u8 *tx = t->tx_buf;
|
|
u8 *rx = t->rx_buf;
|
|
|
|
while (likely(count > 0)) {
|
|
u8 word = 0;
|
|
|
|
if (tx)
|
|
word = *tx++;
|
|
word = txrx_word(spi, ns, word, bits);
|
|
if (rx)
|
|
*rx++ = word;
|
|
count -= 1;
|
|
}
|
|
return t->len - count;
|
|
}
|
|
|
|
static unsigned bitbang_txrx_16(
|
|
struct spi_device *spi,
|
|
u32 (*txrx_word)(struct spi_device *spi,
|
|
unsigned nsecs,
|
|
u32 word, u8 bits),
|
|
unsigned ns,
|
|
struct spi_transfer *t
|
|
) {
|
|
unsigned bits = spi->bits_per_word;
|
|
unsigned count = t->len;
|
|
const u16 *tx = t->tx_buf;
|
|
u16 *rx = t->rx_buf;
|
|
|
|
while (likely(count > 1)) {
|
|
u16 word = 0;
|
|
|
|
if (tx)
|
|
word = *tx++;
|
|
word = txrx_word(spi, ns, word, bits);
|
|
if (rx)
|
|
*rx++ = word;
|
|
count -= 2;
|
|
}
|
|
return t->len - count;
|
|
}
|
|
|
|
static unsigned bitbang_txrx_32(
|
|
struct spi_device *spi,
|
|
u32 (*txrx_word)(struct spi_device *spi,
|
|
unsigned nsecs,
|
|
u32 word, u8 bits),
|
|
unsigned ns,
|
|
struct spi_transfer *t
|
|
) {
|
|
unsigned bits = spi->bits_per_word;
|
|
unsigned count = t->len;
|
|
const u32 *tx = t->tx_buf;
|
|
u32 *rx = t->rx_buf;
|
|
|
|
while (likely(count > 3)) {
|
|
u32 word = 0;
|
|
|
|
if (tx)
|
|
word = *tx++;
|
|
word = txrx_word(spi, ns, word, bits);
|
|
if (rx)
|
|
*rx++ = word;
|
|
count -= 4;
|
|
}
|
|
return t->len - count;
|
|
}
|
|
|
|
int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
|
|
{
|
|
struct spi_bitbang_cs *cs = spi->controller_state;
|
|
u8 bits_per_word;
|
|
u32 hz;
|
|
|
|
if (t) {
|
|
bits_per_word = t->bits_per_word;
|
|
hz = t->speed_hz;
|
|
} else {
|
|
bits_per_word = 0;
|
|
hz = 0;
|
|
}
|
|
|
|
/* spi_transfer level calls that work per-word */
|
|
if (!bits_per_word)
|
|
bits_per_word = spi->bits_per_word;
|
|
if (bits_per_word <= 8)
|
|
cs->txrx_bufs = bitbang_txrx_8;
|
|
else if (bits_per_word <= 16)
|
|
cs->txrx_bufs = bitbang_txrx_16;
|
|
else if (bits_per_word <= 32)
|
|
cs->txrx_bufs = bitbang_txrx_32;
|
|
else
|
|
return -EINVAL;
|
|
|
|
/* nsecs = (clock period)/2 */
|
|
if (!hz)
|
|
hz = spi->max_speed_hz;
|
|
if (hz) {
|
|
cs->nsecs = (1000000000/2) / hz;
|
|
if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
|
|
|
|
/**
|
|
* spi_bitbang_setup - default setup for per-word I/O loops
|
|
*/
|
|
int spi_bitbang_setup(struct spi_device *spi)
|
|
{
|
|
struct spi_bitbang_cs *cs = spi->controller_state;
|
|
struct spi_bitbang *bitbang;
|
|
int retval;
|
|
|
|
bitbang = spi_master_get_devdata(spi->master);
|
|
|
|
/* REVISIT: some systems will want to support devices using lsb-first
|
|
* bit encodings on the wire. In pure software that would be trivial,
|
|
* just bitbang_txrx_le_cphaX() routines shifting the other way, and
|
|
* some hardware controllers also have this support.
|
|
*/
|
|
if ((spi->mode & SPI_LSB_FIRST) != 0)
|
|
return -EINVAL;
|
|
|
|
if (!cs) {
|
|
cs = kzalloc(sizeof *cs, GFP_KERNEL);
|
|
if (!cs)
|
|
return -ENOMEM;
|
|
spi->controller_state = cs;
|
|
}
|
|
|
|
if (!spi->bits_per_word)
|
|
spi->bits_per_word = 8;
|
|
|
|
/* per-word shift register access, in hardware or bitbanging */
|
|
cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
|
|
if (!cs->txrx_word)
|
|
return -EINVAL;
|
|
|
|
retval = bitbang->setup_transfer(spi, NULL);
|
|
if (retval < 0)
|
|
return retval;
|
|
|
|
dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec/bit\n",
|
|
__FUNCTION__, spi->mode & (SPI_CPOL | SPI_CPHA),
|
|
spi->bits_per_word, 2 * cs->nsecs);
|
|
|
|
/* NOTE we _need_ to call chipselect() early, ideally with adapter
|
|
* setup, unless the hardware defaults cooperate to avoid confusion
|
|
* between normal (active low) and inverted chipselects.
|
|
*/
|
|
|
|
/* deselect chip (low or high) */
|
|
spin_lock(&bitbang->lock);
|
|
if (!bitbang->busy) {
|
|
bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
|
|
ndelay(cs->nsecs);
|
|
}
|
|
spin_unlock(&bitbang->lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_setup);
|
|
|
|
/**
|
|
* spi_bitbang_cleanup - default cleanup for per-word I/O loops
|
|
*/
|
|
void spi_bitbang_cleanup(struct spi_device *spi)
|
|
{
|
|
kfree(spi->controller_state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
|
|
|
|
static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
|
|
{
|
|
struct spi_bitbang_cs *cs = spi->controller_state;
|
|
unsigned nsecs = cs->nsecs;
|
|
|
|
return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* SECOND PART ... simple transfer queue runner.
|
|
*
|
|
* This costs a task context per controller, running the queue by
|
|
* performing each transfer in sequence. Smarter hardware can queue
|
|
* several DMA transfers at once, and process several controller queues
|
|
* in parallel; this driver doesn't match such hardware very well.
|
|
*
|
|
* Drivers can provide word-at-a-time i/o primitives, or provide
|
|
* transfer-at-a-time ones to leverage dma or fifo hardware.
|
|
*/
|
|
static void bitbang_work(struct work_struct *work)
|
|
{
|
|
struct spi_bitbang *bitbang =
|
|
container_of(work, struct spi_bitbang, work);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&bitbang->lock, flags);
|
|
bitbang->busy = 1;
|
|
while (!list_empty(&bitbang->queue)) {
|
|
struct spi_message *m;
|
|
struct spi_device *spi;
|
|
unsigned nsecs;
|
|
struct spi_transfer *t = NULL;
|
|
unsigned tmp;
|
|
unsigned cs_change;
|
|
int status;
|
|
int (*setup_transfer)(struct spi_device *,
|
|
struct spi_transfer *);
|
|
|
|
m = container_of(bitbang->queue.next, struct spi_message,
|
|
queue);
|
|
list_del_init(&m->queue);
|
|
spin_unlock_irqrestore(&bitbang->lock, flags);
|
|
|
|
/* FIXME this is made-up ... the correct value is known to
|
|
* word-at-a-time bitbang code, and presumably chipselect()
|
|
* should enforce these requirements too?
|
|
*/
|
|
nsecs = 100;
|
|
|
|
spi = m->spi;
|
|
tmp = 0;
|
|
cs_change = 1;
|
|
status = 0;
|
|
setup_transfer = NULL;
|
|
|
|
list_for_each_entry (t, &m->transfers, transfer_list) {
|
|
|
|
/* override or restore speed and wordsize */
|
|
if (t->speed_hz || t->bits_per_word) {
|
|
setup_transfer = bitbang->setup_transfer;
|
|
if (!setup_transfer) {
|
|
status = -ENOPROTOOPT;
|
|
break;
|
|
}
|
|
}
|
|
if (setup_transfer) {
|
|
status = setup_transfer(spi, t);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
|
|
/* set up default clock polarity, and activate chip;
|
|
* this implicitly updates clock and spi modes as
|
|
* previously recorded for this device via setup().
|
|
* (and also deselects any other chip that might be
|
|
* selected ...)
|
|
*/
|
|
if (cs_change) {
|
|
bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
|
|
ndelay(nsecs);
|
|
}
|
|
cs_change = t->cs_change;
|
|
if (!t->tx_buf && !t->rx_buf && t->len) {
|
|
status = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* transfer data. the lower level code handles any
|
|
* new dma mappings it needs. our caller always gave
|
|
* us dma-safe buffers.
|
|
*/
|
|
if (t->len) {
|
|
/* REVISIT dma API still needs a designated
|
|
* DMA_ADDR_INVALID; ~0 might be better.
|
|
*/
|
|
if (!m->is_dma_mapped)
|
|
t->rx_dma = t->tx_dma = 0;
|
|
status = bitbang->txrx_bufs(spi, t);
|
|
}
|
|
if (status != t->len) {
|
|
if (status > 0)
|
|
status = -EMSGSIZE;
|
|
break;
|
|
}
|
|
m->actual_length += status;
|
|
status = 0;
|
|
|
|
/* protocol tweaks before next transfer */
|
|
if (t->delay_usecs)
|
|
udelay(t->delay_usecs);
|
|
|
|
if (!cs_change)
|
|
continue;
|
|
if (t->transfer_list.next == &m->transfers)
|
|
break;
|
|
|
|
/* sometimes a short mid-message deselect of the chip
|
|
* may be needed to terminate a mode or command
|
|
*/
|
|
ndelay(nsecs);
|
|
bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
|
|
ndelay(nsecs);
|
|
}
|
|
|
|
m->status = status;
|
|
m->complete(m->context);
|
|
|
|
/* restore speed and wordsize */
|
|
if (setup_transfer)
|
|
setup_transfer(spi, NULL);
|
|
|
|
/* normally deactivate chipselect ... unless no error and
|
|
* cs_change has hinted that the next message will probably
|
|
* be for this chip too.
|
|
*/
|
|
if (!(status == 0 && cs_change)) {
|
|
ndelay(nsecs);
|
|
bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
|
|
ndelay(nsecs);
|
|
}
|
|
|
|
spin_lock_irqsave(&bitbang->lock, flags);
|
|
}
|
|
bitbang->busy = 0;
|
|
spin_unlock_irqrestore(&bitbang->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* spi_bitbang_transfer - default submit to transfer queue
|
|
*/
|
|
int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
|
|
{
|
|
struct spi_bitbang *bitbang;
|
|
unsigned long flags;
|
|
int status = 0;
|
|
|
|
m->actual_length = 0;
|
|
m->status = -EINPROGRESS;
|
|
|
|
bitbang = spi_master_get_devdata(spi->master);
|
|
|
|
spin_lock_irqsave(&bitbang->lock, flags);
|
|
if (!spi->max_speed_hz)
|
|
status = -ENETDOWN;
|
|
else {
|
|
list_add_tail(&m->queue, &bitbang->queue);
|
|
queue_work(bitbang->workqueue, &bitbang->work);
|
|
}
|
|
spin_unlock_irqrestore(&bitbang->lock, flags);
|
|
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
|
|
|
|
/*----------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* spi_bitbang_start - start up a polled/bitbanging SPI master driver
|
|
* @bitbang: driver handle
|
|
*
|
|
* Caller should have zero-initialized all parts of the structure, and then
|
|
* provided callbacks for chip selection and I/O loops. If the master has
|
|
* a transfer method, its final step should call spi_bitbang_transfer; or,
|
|
* that's the default if the transfer routine is not initialized. It should
|
|
* also set up the bus number and number of chipselects.
|
|
*
|
|
* For i/o loops, provide callbacks either per-word (for bitbanging, or for
|
|
* hardware that basically exposes a shift register) or per-spi_transfer
|
|
* (which takes better advantage of hardware like fifos or DMA engines).
|
|
*
|
|
* Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
|
|
* spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
|
|
* master methods. Those methods are the defaults if the bitbang->txrx_bufs
|
|
* routine isn't initialized.
|
|
*
|
|
* This routine registers the spi_master, which will process requests in a
|
|
* dedicated task, keeping IRQs unblocked most of the time. To stop
|
|
* processing those requests, call spi_bitbang_stop().
|
|
*/
|
|
int spi_bitbang_start(struct spi_bitbang *bitbang)
|
|
{
|
|
int status;
|
|
|
|
if (!bitbang->master || !bitbang->chipselect)
|
|
return -EINVAL;
|
|
|
|
INIT_WORK(&bitbang->work, bitbang_work);
|
|
spin_lock_init(&bitbang->lock);
|
|
INIT_LIST_HEAD(&bitbang->queue);
|
|
|
|
if (!bitbang->master->transfer)
|
|
bitbang->master->transfer = spi_bitbang_transfer;
|
|
if (!bitbang->txrx_bufs) {
|
|
bitbang->use_dma = 0;
|
|
bitbang->txrx_bufs = spi_bitbang_bufs;
|
|
if (!bitbang->master->setup) {
|
|
if (!bitbang->setup_transfer)
|
|
bitbang->setup_transfer =
|
|
spi_bitbang_setup_transfer;
|
|
bitbang->master->setup = spi_bitbang_setup;
|
|
bitbang->master->cleanup = spi_bitbang_cleanup;
|
|
}
|
|
} else if (!bitbang->master->setup)
|
|
return -EINVAL;
|
|
|
|
/* this task is the only thing to touch the SPI bits */
|
|
bitbang->busy = 0;
|
|
bitbang->workqueue = create_singlethread_workqueue(
|
|
bitbang->master->cdev.dev->bus_id);
|
|
if (bitbang->workqueue == NULL) {
|
|
status = -EBUSY;
|
|
goto err1;
|
|
}
|
|
|
|
/* driver may get busy before register() returns, especially
|
|
* if someone registered boardinfo for devices
|
|
*/
|
|
status = spi_register_master(bitbang->master);
|
|
if (status < 0)
|
|
goto err2;
|
|
|
|
return status;
|
|
|
|
err2:
|
|
destroy_workqueue(bitbang->workqueue);
|
|
err1:
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_start);
|
|
|
|
/**
|
|
* spi_bitbang_stop - stops the task providing spi communication
|
|
*/
|
|
int spi_bitbang_stop(struct spi_bitbang *bitbang)
|
|
{
|
|
spi_unregister_master(bitbang->master);
|
|
|
|
WARN_ON(!list_empty(&bitbang->queue));
|
|
|
|
destroy_workqueue(bitbang->workqueue);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spi_bitbang_stop);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
|