mirror of
https://github.com/torvalds/linux.git
synced 2024-12-01 00:21:32 +00:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
740 lines
18 KiB
C
740 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/ext4/file.c
|
|
*
|
|
* Copyright (C) 1992, 1993, 1994, 1995
|
|
* Remy Card (card@masi.ibp.fr)
|
|
* Laboratoire MASI - Institut Blaise Pascal
|
|
* Universite Pierre et Marie Curie (Paris VI)
|
|
*
|
|
* from
|
|
*
|
|
* linux/fs/minix/file.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* ext4 fs regular file handling primitives
|
|
*
|
|
* 64-bit file support on 64-bit platforms by Jakub Jelinek
|
|
* (jj@sunsite.ms.mff.cuni.cz)
|
|
*/
|
|
|
|
#include <linux/time.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/path.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/uio.h>
|
|
#include "ext4.h"
|
|
#include "ext4_jbd2.h"
|
|
#include "xattr.h"
|
|
#include "acl.h"
|
|
|
|
#ifdef CONFIG_FS_DAX
|
|
static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
ssize_t ret;
|
|
|
|
if (!inode_trylock_shared(inode)) {
|
|
if (iocb->ki_flags & IOCB_NOWAIT)
|
|
return -EAGAIN;
|
|
inode_lock_shared(inode);
|
|
}
|
|
/*
|
|
* Recheck under inode lock - at this point we are sure it cannot
|
|
* change anymore
|
|
*/
|
|
if (!IS_DAX(inode)) {
|
|
inode_unlock_shared(inode);
|
|
/* Fallback to buffered IO in case we cannot support DAX */
|
|
return generic_file_read_iter(iocb, to);
|
|
}
|
|
ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
|
|
inode_unlock_shared(inode);
|
|
|
|
file_accessed(iocb->ki_filp);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
|
|
return -EIO;
|
|
|
|
if (!iov_iter_count(to))
|
|
return 0; /* skip atime */
|
|
|
|
#ifdef CONFIG_FS_DAX
|
|
if (IS_DAX(file_inode(iocb->ki_filp)))
|
|
return ext4_dax_read_iter(iocb, to);
|
|
#endif
|
|
return generic_file_read_iter(iocb, to);
|
|
}
|
|
|
|
/*
|
|
* Called when an inode is released. Note that this is different
|
|
* from ext4_file_open: open gets called at every open, but release
|
|
* gets called only when /all/ the files are closed.
|
|
*/
|
|
static int ext4_release_file(struct inode *inode, struct file *filp)
|
|
{
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
|
|
ext4_alloc_da_blocks(inode);
|
|
ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
|
|
}
|
|
/* if we are the last writer on the inode, drop the block reservation */
|
|
if ((filp->f_mode & FMODE_WRITE) &&
|
|
(atomic_read(&inode->i_writecount) == 1) &&
|
|
!EXT4_I(inode)->i_reserved_data_blocks)
|
|
{
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_discard_preallocations(inode);
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
}
|
|
if (is_dx(inode) && filp->private_data)
|
|
ext4_htree_free_dir_info(filp->private_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ext4_unwritten_wait(struct inode *inode)
|
|
{
|
|
wait_queue_head_t *wq = ext4_ioend_wq(inode);
|
|
|
|
wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
|
|
}
|
|
|
|
/*
|
|
* This tests whether the IO in question is block-aligned or not.
|
|
* Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
|
|
* are converted to written only after the IO is complete. Until they are
|
|
* mapped, these blocks appear as holes, so dio_zero_block() will assume that
|
|
* it needs to zero out portions of the start and/or end block. If 2 AIO
|
|
* threads are at work on the same unwritten block, they must be synchronized
|
|
* or one thread will zero the other's data, causing corruption.
|
|
*/
|
|
static int
|
|
ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
int blockmask = sb->s_blocksize - 1;
|
|
|
|
if (pos >= i_size_read(inode))
|
|
return 0;
|
|
|
|
if ((pos | iov_iter_alignment(from)) & blockmask)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Is IO overwriting allocated and initialized blocks? */
|
|
static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
|
|
{
|
|
struct ext4_map_blocks map;
|
|
unsigned int blkbits = inode->i_blkbits;
|
|
int err, blklen;
|
|
|
|
if (pos + len > i_size_read(inode))
|
|
return false;
|
|
|
|
map.m_lblk = pos >> blkbits;
|
|
map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
|
|
blklen = map.m_len;
|
|
|
|
err = ext4_map_blocks(NULL, inode, &map, 0);
|
|
/*
|
|
* 'err==len' means that all of the blocks have been preallocated,
|
|
* regardless of whether they have been initialized or not. To exclude
|
|
* unwritten extents, we need to check m_flags.
|
|
*/
|
|
return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
|
|
}
|
|
|
|
static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
ssize_t ret;
|
|
|
|
ret = generic_write_checks(iocb, from);
|
|
if (ret <= 0)
|
|
return ret;
|
|
/*
|
|
* If we have encountered a bitmap-format file, the size limit
|
|
* is smaller than s_maxbytes, which is for extent-mapped files.
|
|
*/
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
|
|
if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
|
|
return -EFBIG;
|
|
iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
|
|
}
|
|
return iov_iter_count(from);
|
|
}
|
|
|
|
#ifdef CONFIG_FS_DAX
|
|
static ssize_t
|
|
ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
ssize_t ret;
|
|
|
|
if (!inode_trylock(inode)) {
|
|
if (iocb->ki_flags & IOCB_NOWAIT)
|
|
return -EAGAIN;
|
|
inode_lock(inode);
|
|
}
|
|
ret = ext4_write_checks(iocb, from);
|
|
if (ret <= 0)
|
|
goto out;
|
|
ret = file_remove_privs(iocb->ki_filp);
|
|
if (ret)
|
|
goto out;
|
|
ret = file_update_time(iocb->ki_filp);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
|
|
out:
|
|
inode_unlock(inode);
|
|
if (ret > 0)
|
|
ret = generic_write_sync(iocb, ret);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static ssize_t
|
|
ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
int o_direct = iocb->ki_flags & IOCB_DIRECT;
|
|
int unaligned_aio = 0;
|
|
int overwrite = 0;
|
|
ssize_t ret;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
#ifdef CONFIG_FS_DAX
|
|
if (IS_DAX(inode))
|
|
return ext4_dax_write_iter(iocb, from);
|
|
#endif
|
|
if (!o_direct && (iocb->ki_flags & IOCB_NOWAIT))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!inode_trylock(inode)) {
|
|
if (iocb->ki_flags & IOCB_NOWAIT)
|
|
return -EAGAIN;
|
|
inode_lock(inode);
|
|
}
|
|
|
|
ret = ext4_write_checks(iocb, from);
|
|
if (ret <= 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Unaligned direct AIO must be serialized among each other as zeroing
|
|
* of partial blocks of two competing unaligned AIOs can result in data
|
|
* corruption.
|
|
*/
|
|
if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
|
|
!is_sync_kiocb(iocb) &&
|
|
ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
|
|
unaligned_aio = 1;
|
|
ext4_unwritten_wait(inode);
|
|
}
|
|
|
|
iocb->private = &overwrite;
|
|
/* Check whether we do a DIO overwrite or not */
|
|
if (o_direct && !unaligned_aio) {
|
|
if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
|
|
if (ext4_should_dioread_nolock(inode))
|
|
overwrite = 1;
|
|
} else if (iocb->ki_flags & IOCB_NOWAIT) {
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = __generic_file_write_iter(iocb, from);
|
|
inode_unlock(inode);
|
|
|
|
if (ret > 0)
|
|
ret = generic_write_sync(iocb, ret);
|
|
|
|
return ret;
|
|
|
|
out:
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_FS_DAX
|
|
static int ext4_dax_huge_fault(struct vm_fault *vmf,
|
|
enum page_entry_size pe_size)
|
|
{
|
|
int result;
|
|
handle_t *handle = NULL;
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
/*
|
|
* We have to distinguish real writes from writes which will result in a
|
|
* COW page; COW writes should *not* poke the journal (the file will not
|
|
* be changed). Doing so would cause unintended failures when mounted
|
|
* read-only.
|
|
*
|
|
* We check for VM_SHARED rather than vmf->cow_page since the latter is
|
|
* unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
|
|
* other sizes, dax_iomap_fault will handle splitting / fallback so that
|
|
* we eventually come back with a COW page.
|
|
*/
|
|
bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
|
|
(vmf->vma->vm_flags & VM_SHARED);
|
|
|
|
if (write) {
|
|
sb_start_pagefault(sb);
|
|
file_update_time(vmf->vma->vm_file);
|
|
down_read(&EXT4_I(inode)->i_mmap_sem);
|
|
handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
|
|
EXT4_DATA_TRANS_BLOCKS(sb));
|
|
} else {
|
|
down_read(&EXT4_I(inode)->i_mmap_sem);
|
|
}
|
|
if (!IS_ERR(handle))
|
|
result = dax_iomap_fault(vmf, pe_size, &ext4_iomap_ops);
|
|
else
|
|
result = VM_FAULT_SIGBUS;
|
|
if (write) {
|
|
if (!IS_ERR(handle))
|
|
ext4_journal_stop(handle);
|
|
up_read(&EXT4_I(inode)->i_mmap_sem);
|
|
sb_end_pagefault(sb);
|
|
} else {
|
|
up_read(&EXT4_I(inode)->i_mmap_sem);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static int ext4_dax_fault(struct vm_fault *vmf)
|
|
{
|
|
return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
|
|
}
|
|
|
|
static const struct vm_operations_struct ext4_dax_vm_ops = {
|
|
.fault = ext4_dax_fault,
|
|
.huge_fault = ext4_dax_huge_fault,
|
|
.page_mkwrite = ext4_dax_fault,
|
|
.pfn_mkwrite = ext4_dax_fault,
|
|
};
|
|
#else
|
|
#define ext4_dax_vm_ops ext4_file_vm_ops
|
|
#endif
|
|
|
|
static const struct vm_operations_struct ext4_file_vm_ops = {
|
|
.fault = ext4_filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = ext4_page_mkwrite,
|
|
};
|
|
|
|
static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
file_accessed(file);
|
|
if (IS_DAX(file_inode(file))) {
|
|
vma->vm_ops = &ext4_dax_vm_ops;
|
|
vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
|
|
} else {
|
|
vma->vm_ops = &ext4_file_vm_ops;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ext4_file_open(struct inode * inode, struct file * filp)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct vfsmount *mnt = filp->f_path.mnt;
|
|
struct dentry *dir;
|
|
struct path path;
|
|
char buf[64], *cp;
|
|
int ret;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
|
|
!sb_rdonly(sb))) {
|
|
sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
|
|
/*
|
|
* Sample where the filesystem has been mounted and
|
|
* store it in the superblock for sysadmin convenience
|
|
* when trying to sort through large numbers of block
|
|
* devices or filesystem images.
|
|
*/
|
|
memset(buf, 0, sizeof(buf));
|
|
path.mnt = mnt;
|
|
path.dentry = mnt->mnt_root;
|
|
cp = d_path(&path, buf, sizeof(buf));
|
|
if (!IS_ERR(cp)) {
|
|
handle_t *handle;
|
|
int err;
|
|
|
|
handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
BUFFER_TRACE(sbi->s_sbh, "get_write_access");
|
|
err = ext4_journal_get_write_access(handle, sbi->s_sbh);
|
|
if (err) {
|
|
ext4_journal_stop(handle);
|
|
return err;
|
|
}
|
|
strlcpy(sbi->s_es->s_last_mounted, cp,
|
|
sizeof(sbi->s_es->s_last_mounted));
|
|
ext4_handle_dirty_super(handle, sb);
|
|
ext4_journal_stop(handle);
|
|
}
|
|
}
|
|
if (ext4_encrypted_inode(inode)) {
|
|
ret = fscrypt_get_encryption_info(inode);
|
|
if (ret)
|
|
return -EACCES;
|
|
if (!fscrypt_has_encryption_key(inode))
|
|
return -ENOKEY;
|
|
}
|
|
|
|
dir = dget_parent(file_dentry(filp));
|
|
if (ext4_encrypted_inode(d_inode(dir)) &&
|
|
!fscrypt_has_permitted_context(d_inode(dir), inode)) {
|
|
ext4_warning(inode->i_sb,
|
|
"Inconsistent encryption contexts: %lu/%lu",
|
|
(unsigned long) d_inode(dir)->i_ino,
|
|
(unsigned long) inode->i_ino);
|
|
dput(dir);
|
|
return -EPERM;
|
|
}
|
|
dput(dir);
|
|
/*
|
|
* Set up the jbd2_inode if we are opening the inode for
|
|
* writing and the journal is present
|
|
*/
|
|
if (filp->f_mode & FMODE_WRITE) {
|
|
ret = ext4_inode_attach_jinode(inode);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
filp->f_mode |= FMODE_NOWAIT;
|
|
return dquot_file_open(inode, filp);
|
|
}
|
|
|
|
/*
|
|
* Here we use ext4_map_blocks() to get a block mapping for a extent-based
|
|
* file rather than ext4_ext_walk_space() because we can introduce
|
|
* SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
|
|
* function. When extent status tree has been fully implemented, it will
|
|
* track all extent status for a file and we can directly use it to
|
|
* retrieve the offset for SEEK_DATA/SEEK_HOLE.
|
|
*/
|
|
|
|
/*
|
|
* When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
|
|
* lookup page cache to check whether or not there has some data between
|
|
* [startoff, endoff] because, if this range contains an unwritten extent,
|
|
* we determine this extent as a data or a hole according to whether the
|
|
* page cache has data or not.
|
|
*/
|
|
static int ext4_find_unwritten_pgoff(struct inode *inode,
|
|
int whence,
|
|
ext4_lblk_t end_blk,
|
|
loff_t *offset)
|
|
{
|
|
struct pagevec pvec;
|
|
unsigned int blkbits;
|
|
pgoff_t index;
|
|
pgoff_t end;
|
|
loff_t endoff;
|
|
loff_t startoff;
|
|
loff_t lastoff;
|
|
int found = 0;
|
|
|
|
blkbits = inode->i_sb->s_blocksize_bits;
|
|
startoff = *offset;
|
|
lastoff = startoff;
|
|
endoff = (loff_t)end_blk << blkbits;
|
|
|
|
index = startoff >> PAGE_SHIFT;
|
|
end = (endoff - 1) >> PAGE_SHIFT;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
do {
|
|
int i;
|
|
unsigned long nr_pages;
|
|
|
|
nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
|
|
&index, end);
|
|
if (nr_pages == 0)
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
struct buffer_head *bh, *head;
|
|
|
|
/*
|
|
* If current offset is smaller than the page offset,
|
|
* there is a hole at this offset.
|
|
*/
|
|
if (whence == SEEK_HOLE && lastoff < endoff &&
|
|
lastoff < page_offset(pvec.pages[i])) {
|
|
found = 1;
|
|
*offset = lastoff;
|
|
goto out;
|
|
}
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != inode->i_mapping)) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!page_has_buffers(page)) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (page_has_buffers(page)) {
|
|
lastoff = page_offset(page);
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (lastoff + bh->b_size <= startoff)
|
|
goto next;
|
|
if (buffer_uptodate(bh) ||
|
|
buffer_unwritten(bh)) {
|
|
if (whence == SEEK_DATA)
|
|
found = 1;
|
|
} else {
|
|
if (whence == SEEK_HOLE)
|
|
found = 1;
|
|
}
|
|
if (found) {
|
|
*offset = max_t(loff_t,
|
|
startoff, lastoff);
|
|
unlock_page(page);
|
|
goto out;
|
|
}
|
|
next:
|
|
lastoff += bh->b_size;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
|
|
lastoff = page_offset(page) + PAGE_SIZE;
|
|
unlock_page(page);
|
|
}
|
|
|
|
pagevec_release(&pvec);
|
|
} while (index <= end);
|
|
|
|
/* There are no pages upto endoff - that would be a hole in there. */
|
|
if (whence == SEEK_HOLE && lastoff < endoff) {
|
|
found = 1;
|
|
*offset = lastoff;
|
|
}
|
|
out:
|
|
pagevec_release(&pvec);
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* ext4_seek_data() retrieves the offset for SEEK_DATA.
|
|
*/
|
|
static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct extent_status es;
|
|
ext4_lblk_t start, last, end;
|
|
loff_t dataoff, isize;
|
|
int blkbits;
|
|
int ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
isize = i_size_read(inode);
|
|
if (offset < 0 || offset >= isize) {
|
|
inode_unlock(inode);
|
|
return -ENXIO;
|
|
}
|
|
|
|
blkbits = inode->i_sb->s_blocksize_bits;
|
|
start = offset >> blkbits;
|
|
last = start;
|
|
end = isize >> blkbits;
|
|
dataoff = offset;
|
|
|
|
do {
|
|
ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
|
|
if (ret <= 0) {
|
|
/* No extent found -> no data */
|
|
if (ret == 0)
|
|
ret = -ENXIO;
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
last = es.es_lblk;
|
|
if (last != start)
|
|
dataoff = (loff_t)last << blkbits;
|
|
if (!ext4_es_is_unwritten(&es))
|
|
break;
|
|
|
|
/*
|
|
* If there is a unwritten extent at this offset,
|
|
* it will be as a data or a hole according to page
|
|
* cache that has data or not.
|
|
*/
|
|
if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
|
|
es.es_lblk + es.es_len, &dataoff))
|
|
break;
|
|
last += es.es_len;
|
|
dataoff = (loff_t)last << blkbits;
|
|
cond_resched();
|
|
} while (last <= end);
|
|
|
|
inode_unlock(inode);
|
|
|
|
if (dataoff > isize)
|
|
return -ENXIO;
|
|
|
|
return vfs_setpos(file, dataoff, maxsize);
|
|
}
|
|
|
|
/*
|
|
* ext4_seek_hole() retrieves the offset for SEEK_HOLE.
|
|
*/
|
|
static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct extent_status es;
|
|
ext4_lblk_t start, last, end;
|
|
loff_t holeoff, isize;
|
|
int blkbits;
|
|
int ret;
|
|
|
|
inode_lock(inode);
|
|
|
|
isize = i_size_read(inode);
|
|
if (offset < 0 || offset >= isize) {
|
|
inode_unlock(inode);
|
|
return -ENXIO;
|
|
}
|
|
|
|
blkbits = inode->i_sb->s_blocksize_bits;
|
|
start = offset >> blkbits;
|
|
last = start;
|
|
end = isize >> blkbits;
|
|
holeoff = offset;
|
|
|
|
do {
|
|
ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
|
|
if (ret < 0) {
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
/* Found a hole? */
|
|
if (ret == 0 || es.es_lblk > last) {
|
|
if (last != start)
|
|
holeoff = (loff_t)last << blkbits;
|
|
break;
|
|
}
|
|
/*
|
|
* If there is a unwritten extent at this offset,
|
|
* it will be as a data or a hole according to page
|
|
* cache that has data or not.
|
|
*/
|
|
if (ext4_es_is_unwritten(&es) &&
|
|
ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
|
|
last + es.es_len, &holeoff))
|
|
break;
|
|
|
|
last += es.es_len;
|
|
holeoff = (loff_t)last << blkbits;
|
|
cond_resched();
|
|
} while (last <= end);
|
|
|
|
inode_unlock(inode);
|
|
|
|
if (holeoff > isize)
|
|
holeoff = isize;
|
|
|
|
return vfs_setpos(file, holeoff, maxsize);
|
|
}
|
|
|
|
/*
|
|
* ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
|
|
* by calling generic_file_llseek_size() with the appropriate maxbytes
|
|
* value for each.
|
|
*/
|
|
loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
loff_t maxbytes;
|
|
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
|
|
maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
|
|
else
|
|
maxbytes = inode->i_sb->s_maxbytes;
|
|
|
|
switch (whence) {
|
|
case SEEK_SET:
|
|
case SEEK_CUR:
|
|
case SEEK_END:
|
|
return generic_file_llseek_size(file, offset, whence,
|
|
maxbytes, i_size_read(inode));
|
|
case SEEK_DATA:
|
|
return ext4_seek_data(file, offset, maxbytes);
|
|
case SEEK_HOLE:
|
|
return ext4_seek_hole(file, offset, maxbytes);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
const struct file_operations ext4_file_operations = {
|
|
.llseek = ext4_llseek,
|
|
.read_iter = ext4_file_read_iter,
|
|
.write_iter = ext4_file_write_iter,
|
|
.unlocked_ioctl = ext4_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = ext4_compat_ioctl,
|
|
#endif
|
|
.mmap = ext4_file_mmap,
|
|
.open = ext4_file_open,
|
|
.release = ext4_release_file,
|
|
.fsync = ext4_sync_file,
|
|
.get_unmapped_area = thp_get_unmapped_area,
|
|
.splice_read = generic_file_splice_read,
|
|
.splice_write = iter_file_splice_write,
|
|
.fallocate = ext4_fallocate,
|
|
};
|
|
|
|
const struct inode_operations ext4_file_inode_operations = {
|
|
.setattr = ext4_setattr,
|
|
.getattr = ext4_file_getattr,
|
|
.listxattr = ext4_listxattr,
|
|
.get_acl = ext4_get_acl,
|
|
.set_acl = ext4_set_acl,
|
|
.fiemap = ext4_fiemap,
|
|
};
|
|
|