mirror of
https://github.com/torvalds/linux.git
synced 2024-11-29 07:31:29 +00:00
948ffc66e5
CCM combines the counter (CTR) encryption mode with a MAC based on the same block cipher. This MAC construction is a bit clunky: it invokes the block cipher in a way that cannot be parallelized, resulting in poor CPU pipeline efficiency. The arm64 CCM code mitigates this by interleaving the encryption and MAC at the AES round level, resulting in a substantial speedup. But this approach does not apply to the additional authenticated data (AAD) which is not encrypted. This means the special asm routine dealing with the AAD is not any better than the MAC update routine used by the arm64 AES block encryption driver, so let's reuse that, and drop the special AES-CCM version. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1061 lines
29 KiB
C
1061 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
|
|
*
|
|
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <asm/neon.h>
|
|
#include <asm/hwcap.h>
|
|
#include <asm/simd.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/ctr.h>
|
|
#include <crypto/sha2.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/internal/simd.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <linux/module.h>
|
|
#include <linux/cpufeature.h>
|
|
#include <crypto/xts.h>
|
|
|
|
#include "aes-ce-setkey.h"
|
|
|
|
#ifdef USE_V8_CRYPTO_EXTENSIONS
|
|
#define MODE "ce"
|
|
#define PRIO 300
|
|
#define aes_expandkey ce_aes_expandkey
|
|
#define aes_ecb_encrypt ce_aes_ecb_encrypt
|
|
#define aes_ecb_decrypt ce_aes_ecb_decrypt
|
|
#define aes_cbc_encrypt ce_aes_cbc_encrypt
|
|
#define aes_cbc_decrypt ce_aes_cbc_decrypt
|
|
#define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
|
|
#define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
|
|
#define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt
|
|
#define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt
|
|
#define aes_ctr_encrypt ce_aes_ctr_encrypt
|
|
#define aes_xctr_encrypt ce_aes_xctr_encrypt
|
|
#define aes_xts_encrypt ce_aes_xts_encrypt
|
|
#define aes_xts_decrypt ce_aes_xts_decrypt
|
|
#define aes_mac_update ce_aes_mac_update
|
|
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 Crypto Extensions");
|
|
#else
|
|
#define MODE "neon"
|
|
#define PRIO 200
|
|
#define aes_ecb_encrypt neon_aes_ecb_encrypt
|
|
#define aes_ecb_decrypt neon_aes_ecb_decrypt
|
|
#define aes_cbc_encrypt neon_aes_cbc_encrypt
|
|
#define aes_cbc_decrypt neon_aes_cbc_decrypt
|
|
#define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
|
|
#define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
|
|
#define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt
|
|
#define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt
|
|
#define aes_ctr_encrypt neon_aes_ctr_encrypt
|
|
#define aes_xctr_encrypt neon_aes_xctr_encrypt
|
|
#define aes_xts_encrypt neon_aes_xts_encrypt
|
|
#define aes_xts_decrypt neon_aes_xts_decrypt
|
|
#define aes_mac_update neon_aes_mac_update
|
|
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS/XCTR using ARMv8 NEON");
|
|
#endif
|
|
#if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
|
|
MODULE_ALIAS_CRYPTO("ecb(aes)");
|
|
MODULE_ALIAS_CRYPTO("cbc(aes)");
|
|
MODULE_ALIAS_CRYPTO("ctr(aes)");
|
|
MODULE_ALIAS_CRYPTO("xts(aes)");
|
|
MODULE_ALIAS_CRYPTO("xctr(aes)");
|
|
#endif
|
|
MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
|
|
MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
|
|
MODULE_ALIAS_CRYPTO("cmac(aes)");
|
|
MODULE_ALIAS_CRYPTO("xcbc(aes)");
|
|
MODULE_ALIAS_CRYPTO("cbcmac(aes)");
|
|
|
|
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
/* defined in aes-modes.S */
|
|
asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks);
|
|
asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks);
|
|
|
|
asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks, u8 iv[]);
|
|
asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int blocks, u8 iv[]);
|
|
|
|
asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 const iv[]);
|
|
asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 const iv[]);
|
|
|
|
asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 ctr[]);
|
|
|
|
asmlinkage void aes_xctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
|
|
int rounds, int bytes, u8 ctr[], int byte_ctr);
|
|
|
|
asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int bytes, u32 const rk2[], u8 iv[],
|
|
int first);
|
|
asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int bytes, u32 const rk2[], u8 iv[],
|
|
int first);
|
|
|
|
asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int blocks, u8 iv[],
|
|
u32 const rk2[]);
|
|
asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
|
|
int rounds, int blocks, u8 iv[],
|
|
u32 const rk2[]);
|
|
|
|
asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds,
|
|
int blocks, u8 dg[], int enc_before,
|
|
int enc_after);
|
|
|
|
struct crypto_aes_xts_ctx {
|
|
struct crypto_aes_ctx key1;
|
|
struct crypto_aes_ctx __aligned(8) key2;
|
|
};
|
|
|
|
struct crypto_aes_essiv_cbc_ctx {
|
|
struct crypto_aes_ctx key1;
|
|
struct crypto_aes_ctx __aligned(8) key2;
|
|
struct crypto_shash *hash;
|
|
};
|
|
|
|
struct mac_tfm_ctx {
|
|
struct crypto_aes_ctx key;
|
|
u8 __aligned(8) consts[];
|
|
};
|
|
|
|
struct mac_desc_ctx {
|
|
unsigned int len;
|
|
u8 dg[AES_BLOCK_SIZE];
|
|
};
|
|
|
|
static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
return aes_expandkey(ctx, in_key, key_len);
|
|
}
|
|
|
|
static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
|
|
const u8 *in_key, unsigned int key_len)
|
|
{
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ret = xts_verify_key(tfm, in_key, key_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
|
|
if (!ret)
|
|
ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
|
|
key_len / 2);
|
|
return ret;
|
|
}
|
|
|
|
static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
|
|
const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
u8 digest[SHA256_DIGEST_SIZE];
|
|
int ret;
|
|
|
|
ret = aes_expandkey(&ctx->key1, in_key, key_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
|
|
|
|
return aes_expandkey(&ctx->key2, digest, sizeof(digest));
|
|
}
|
|
|
|
static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, rounds, blocks);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, rounds, blocks);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int cbc_encrypt_walk(struct skcipher_request *req,
|
|
struct skcipher_walk *walk)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err = 0, rounds = 6 + ctx->key_length / 4;
|
|
unsigned int blocks;
|
|
|
|
while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
|
|
ctx->key_enc, rounds, blocks, walk->iv);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
return cbc_encrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int cbc_decrypt_walk(struct skcipher_request *req,
|
|
struct skcipher_walk *walk)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err = 0, rounds = 6 + ctx->key_length / 4;
|
|
unsigned int blocks;
|
|
|
|
while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
|
|
kernel_neon_begin();
|
|
aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
|
|
ctx->key_dec, rounds, blocks, walk->iv);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct skcipher_walk walk;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
if (err)
|
|
return err;
|
|
return cbc_decrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int cts_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
struct scatterlist *src = req->src, *dst = req->dst;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
|
|
if (req->cryptlen <= AES_BLOCK_SIZE) {
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
cbc_blocks = 1;
|
|
}
|
|
|
|
if (cbc_blocks > 0) {
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false) ?:
|
|
cbc_encrypt_walk(&subreq, &walk);
|
|
if (err)
|
|
return err;
|
|
|
|
if (req->cryptlen == AES_BLOCK_SIZE)
|
|
return 0;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst,
|
|
subreq.cryptlen);
|
|
}
|
|
|
|
/* handle ciphertext stealing */
|
|
skcipher_request_set_crypt(&subreq, src, dst,
|
|
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, rounds, walk.nbytes, walk.iv);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int cts_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
|
|
struct scatterlist *src = req->src, *dst = req->dst;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct skcipher_walk walk;
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
|
|
if (req->cryptlen <= AES_BLOCK_SIZE) {
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
cbc_blocks = 1;
|
|
}
|
|
|
|
if (cbc_blocks > 0) {
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false) ?:
|
|
cbc_decrypt_walk(&subreq, &walk);
|
|
if (err)
|
|
return err;
|
|
|
|
if (req->cryptlen == AES_BLOCK_SIZE)
|
|
return 0;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst,
|
|
subreq.cryptlen);
|
|
}
|
|
|
|
/* handle ciphertext stealing */
|
|
skcipher_request_set_crypt(&subreq, src, dst,
|
|
req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, rounds, walk.nbytes, walk.iv);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
|
|
{
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
ctx->hash = crypto_alloc_shash("sha256", 0, 0);
|
|
|
|
return PTR_ERR_OR_ZERO(ctx->hash);
|
|
}
|
|
|
|
static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
|
|
{
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
crypto_free_shash(ctx->hash);
|
|
}
|
|
|
|
static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key1.key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
blocks = walk.nbytes / AES_BLOCK_SIZE;
|
|
if (blocks) {
|
|
kernel_neon_begin();
|
|
aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_enc, rounds, blocks,
|
|
req->iv, ctx->key2.key_enc);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err ?: cbc_encrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key1.key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int blocks;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
blocks = walk.nbytes / AES_BLOCK_SIZE;
|
|
if (blocks) {
|
|
kernel_neon_begin();
|
|
aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_dec, rounds, blocks,
|
|
req->iv, ctx->key2.key_enc);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
|
|
}
|
|
return err ?: cbc_decrypt_walk(req, &walk);
|
|
}
|
|
|
|
static int __maybe_unused xctr_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
struct skcipher_walk walk;
|
|
unsigned int byte_ctr = 0;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while (walk.nbytes > 0) {
|
|
const u8 *src = walk.src.virt.addr;
|
|
unsigned int nbytes = walk.nbytes;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
|
|
/*
|
|
* If given less than 16 bytes, we must copy the partial block
|
|
* into a temporary buffer of 16 bytes to avoid out of bounds
|
|
* reads and writes. Furthermore, this code is somewhat unusual
|
|
* in that it expects the end of the data to be at the end of
|
|
* the temporary buffer, rather than the start of the data at
|
|
* the start of the temporary buffer.
|
|
*/
|
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
|
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
|
src, nbytes);
|
|
else if (nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
aes_xctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
|
|
walk.iv, byte_ctr);
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
|
memcpy(walk.dst.virt.addr,
|
|
buf + sizeof(buf) - nbytes, nbytes);
|
|
byte_ctr += nbytes;
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, rounds = 6 + ctx->key_length / 4;
|
|
struct skcipher_walk walk;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while (walk.nbytes > 0) {
|
|
const u8 *src = walk.src.virt.addr;
|
|
unsigned int nbytes = walk.nbytes;
|
|
u8 *dst = walk.dst.virt.addr;
|
|
u8 buf[AES_BLOCK_SIZE];
|
|
|
|
/*
|
|
* If given less than 16 bytes, we must copy the partial block
|
|
* into a temporary buffer of 16 bytes to avoid out of bounds
|
|
* reads and writes. Furthermore, this code is somewhat unusual
|
|
* in that it expects the end of the data to be at the end of
|
|
* the temporary buffer, rather than the start of the data at
|
|
* the start of the temporary buffer.
|
|
*/
|
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
|
src = dst = memcpy(buf + sizeof(buf) - nbytes,
|
|
src, nbytes);
|
|
else if (nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
aes_ctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
|
|
walk.iv);
|
|
kernel_neon_end();
|
|
|
|
if (unlikely(nbytes < AES_BLOCK_SIZE))
|
|
memcpy(walk.dst.virt.addr,
|
|
buf + sizeof(buf) - nbytes, nbytes);
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __maybe_unused xts_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, first, rounds = 6 + ctx->key1.key_length / 4;
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct scatterlist *src, *dst;
|
|
struct skcipher_walk walk;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
|
|
int xts_blocks = DIV_ROUND_UP(req->cryptlen,
|
|
AES_BLOCK_SIZE) - 2;
|
|
|
|
skcipher_walk_abort(&walk);
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq,
|
|
skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
xts_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
req = &subreq;
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
} else {
|
|
tail = 0;
|
|
}
|
|
|
|
for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
|
|
int nbytes = walk.nbytes;
|
|
|
|
if (walk.nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_enc, rounds, nbytes,
|
|
ctx->key2.key_enc, walk.iv, first);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
if (err || likely(!tail))
|
|
return err;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
|
|
|
|
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_enc, rounds, walk.nbytes,
|
|
ctx->key2.key_enc, walk.iv, first);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static int __maybe_unused xts_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err, first, rounds = 6 + ctx->key1.key_length / 4;
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
struct scatterlist sg_src[2], sg_dst[2];
|
|
struct skcipher_request subreq;
|
|
struct scatterlist *src, *dst;
|
|
struct skcipher_walk walk;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
|
|
int xts_blocks = DIV_ROUND_UP(req->cryptlen,
|
|
AES_BLOCK_SIZE) - 2;
|
|
|
|
skcipher_walk_abort(&walk);
|
|
|
|
skcipher_request_set_tfm(&subreq, tfm);
|
|
skcipher_request_set_callback(&subreq,
|
|
skcipher_request_flags(req),
|
|
NULL, NULL);
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
xts_blocks * AES_BLOCK_SIZE,
|
|
req->iv);
|
|
req = &subreq;
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
} else {
|
|
tail = 0;
|
|
}
|
|
|
|
for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
|
|
int nbytes = walk.nbytes;
|
|
|
|
if (walk.nbytes < walk.total)
|
|
nbytes &= ~(AES_BLOCK_SIZE - 1);
|
|
|
|
kernel_neon_begin();
|
|
aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_dec, rounds, nbytes,
|
|
ctx->key2.key_enc, walk.iv, first);
|
|
kernel_neon_end();
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
if (err || likely(!tail))
|
|
return err;
|
|
|
|
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
|
|
if (req->dst != req->src)
|
|
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
|
|
|
|
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
|
|
req->iv);
|
|
|
|
err = skcipher_walk_virt(&walk, &subreq, false);
|
|
if (err)
|
|
return err;
|
|
|
|
|
|
kernel_neon_begin();
|
|
aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key1.key_dec, rounds, walk.nbytes,
|
|
ctx->key2.key_enc, walk.iv, first);
|
|
kernel_neon_end();
|
|
|
|
return skcipher_walk_done(&walk, 0);
|
|
}
|
|
|
|
static struct skcipher_alg aes_algs[] = { {
|
|
#if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
|
|
.base = {
|
|
.cra_name = "ecb(aes)",
|
|
.cra_driver_name = "ecb-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = ecb_encrypt,
|
|
.decrypt = ecb_decrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "cbc(aes)",
|
|
.cra_driver_name = "cbc-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = cbc_encrypt,
|
|
.decrypt = cbc_decrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "ctr(aes)",
|
|
.cra_driver_name = "ctr-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = ctr_encrypt,
|
|
.decrypt = ctr_encrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "xctr(aes)",
|
|
.cra_driver_name = "xctr-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = xctr_encrypt,
|
|
.decrypt = xctr_encrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "xts(aes)",
|
|
.cra_driver_name = "xts-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = 2 * AES_MIN_KEY_SIZE,
|
|
.max_keysize = 2 * AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.walksize = 2 * AES_BLOCK_SIZE,
|
|
.setkey = xts_set_key,
|
|
.encrypt = xts_encrypt,
|
|
.decrypt = xts_decrypt,
|
|
}, {
|
|
#endif
|
|
.base = {
|
|
.cra_name = "cts(cbc(aes))",
|
|
.cra_driver_name = "cts-cbc-aes-" MODE,
|
|
.cra_priority = PRIO,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.walksize = 2 * AES_BLOCK_SIZE,
|
|
.setkey = skcipher_aes_setkey,
|
|
.encrypt = cts_cbc_encrypt,
|
|
.decrypt = cts_cbc_decrypt,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "essiv(cbc(aes),sha256)",
|
|
.cra_driver_name = "essiv-cbc-aes-sha256-" MODE,
|
|
.cra_priority = PRIO + 1,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct crypto_aes_essiv_cbc_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = essiv_cbc_set_key,
|
|
.encrypt = essiv_cbc_encrypt,
|
|
.decrypt = essiv_cbc_decrypt,
|
|
.init = essiv_cbc_init_tfm,
|
|
.exit = essiv_cbc_exit_tfm,
|
|
} };
|
|
|
|
static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
|
|
|
|
return aes_expandkey(&ctx->key, in_key, key_len);
|
|
}
|
|
|
|
static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
|
|
{
|
|
u64 a = be64_to_cpu(x->a);
|
|
u64 b = be64_to_cpu(x->b);
|
|
|
|
y->a = cpu_to_be64((a << 1) | (b >> 63));
|
|
y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
|
|
}
|
|
|
|
static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
|
|
be128 *consts = (be128 *)ctx->consts;
|
|
int rounds = 6 + key_len / 4;
|
|
int err;
|
|
|
|
err = cbcmac_setkey(tfm, in_key, key_len);
|
|
if (err)
|
|
return err;
|
|
|
|
/* encrypt the zero vector */
|
|
kernel_neon_begin();
|
|
aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
|
|
rounds, 1);
|
|
kernel_neon_end();
|
|
|
|
cmac_gf128_mul_by_x(consts, consts);
|
|
cmac_gf128_mul_by_x(consts + 1, consts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
static u8 const ks[3][AES_BLOCK_SIZE] = {
|
|
{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
|
|
{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
|
|
{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
|
|
};
|
|
|
|
struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
|
|
int rounds = 6 + key_len / 4;
|
|
u8 key[AES_BLOCK_SIZE];
|
|
int err;
|
|
|
|
err = cbcmac_setkey(tfm, in_key, key_len);
|
|
if (err)
|
|
return err;
|
|
|
|
kernel_neon_begin();
|
|
aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
|
|
aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
|
|
kernel_neon_end();
|
|
|
|
return cbcmac_setkey(tfm, key, sizeof(key));
|
|
}
|
|
|
|
static int mac_init(struct shash_desc *desc)
|
|
{
|
|
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
memset(ctx->dg, 0, AES_BLOCK_SIZE);
|
|
ctx->len = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
|
|
u8 dg[], int enc_before, int enc_after)
|
|
{
|
|
int rounds = 6 + ctx->key_length / 4;
|
|
|
|
if (crypto_simd_usable()) {
|
|
int rem;
|
|
|
|
do {
|
|
kernel_neon_begin();
|
|
rem = aes_mac_update(in, ctx->key_enc, rounds, blocks,
|
|
dg, enc_before, enc_after);
|
|
kernel_neon_end();
|
|
in += (blocks - rem) * AES_BLOCK_SIZE;
|
|
blocks = rem;
|
|
enc_before = 0;
|
|
} while (blocks);
|
|
} else {
|
|
if (enc_before)
|
|
aes_encrypt(ctx, dg, dg);
|
|
|
|
while (blocks--) {
|
|
crypto_xor(dg, in, AES_BLOCK_SIZE);
|
|
in += AES_BLOCK_SIZE;
|
|
|
|
if (blocks || enc_after)
|
|
aes_encrypt(ctx, dg, dg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
|
|
{
|
|
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
while (len > 0) {
|
|
unsigned int l;
|
|
|
|
if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
|
|
(ctx->len + len) > AES_BLOCK_SIZE) {
|
|
|
|
int blocks = len / AES_BLOCK_SIZE;
|
|
|
|
len %= AES_BLOCK_SIZE;
|
|
|
|
mac_do_update(&tctx->key, p, blocks, ctx->dg,
|
|
(ctx->len != 0), (len != 0));
|
|
|
|
p += blocks * AES_BLOCK_SIZE;
|
|
|
|
if (!len) {
|
|
ctx->len = AES_BLOCK_SIZE;
|
|
break;
|
|
}
|
|
ctx->len = 0;
|
|
}
|
|
|
|
l = min(len, AES_BLOCK_SIZE - ctx->len);
|
|
|
|
if (l <= AES_BLOCK_SIZE) {
|
|
crypto_xor(ctx->dg + ctx->len, p, l);
|
|
ctx->len += l;
|
|
len -= l;
|
|
p += l;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cbcmac_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
|
|
mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
|
|
|
|
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cmac_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
|
|
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
|
|
u8 *consts = tctx->consts;
|
|
|
|
if (ctx->len != AES_BLOCK_SIZE) {
|
|
ctx->dg[ctx->len] ^= 0x80;
|
|
consts += AES_BLOCK_SIZE;
|
|
}
|
|
|
|
mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
|
|
|
|
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct shash_alg mac_algs[] = { {
|
|
.base.cra_name = "cmac(aes)",
|
|
.base.cra_driver_name = "cmac-aes-" MODE,
|
|
.base.cra_priority = PRIO,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
|
|
2 * AES_BLOCK_SIZE,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.init = mac_init,
|
|
.update = mac_update,
|
|
.final = cmac_final,
|
|
.setkey = cmac_setkey,
|
|
.descsize = sizeof(struct mac_desc_ctx),
|
|
}, {
|
|
.base.cra_name = "xcbc(aes)",
|
|
.base.cra_driver_name = "xcbc-aes-" MODE,
|
|
.base.cra_priority = PRIO,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
|
|
2 * AES_BLOCK_SIZE,
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.init = mac_init,
|
|
.update = mac_update,
|
|
.final = cmac_final,
|
|
.setkey = xcbc_setkey,
|
|
.descsize = sizeof(struct mac_desc_ctx),
|
|
}, {
|
|
.base.cra_name = "cbcmac(aes)",
|
|
.base.cra_driver_name = "cbcmac-aes-" MODE,
|
|
.base.cra_priority = PRIO,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
.digestsize = AES_BLOCK_SIZE,
|
|
.init = mac_init,
|
|
.update = mac_update,
|
|
.final = cbcmac_final,
|
|
.setkey = cbcmac_setkey,
|
|
.descsize = sizeof(struct mac_desc_ctx),
|
|
} };
|
|
|
|
static void aes_exit(void)
|
|
{
|
|
crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
|
|
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
|
|
}
|
|
|
|
static int __init aes_init(void)
|
|
{
|
|
int err;
|
|
|
|
err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
|
|
if (err)
|
|
return err;
|
|
|
|
err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
|
|
if (err)
|
|
goto unregister_ciphers;
|
|
|
|
return 0;
|
|
|
|
unregister_ciphers:
|
|
crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
|
|
return err;
|
|
}
|
|
|
|
#ifdef USE_V8_CRYPTO_EXTENSIONS
|
|
module_cpu_feature_match(AES, aes_init);
|
|
EXPORT_SYMBOL_NS(ce_aes_mac_update, CRYPTO_INTERNAL);
|
|
#else
|
|
module_init(aes_init);
|
|
EXPORT_SYMBOL(neon_aes_ecb_encrypt);
|
|
EXPORT_SYMBOL(neon_aes_cbc_encrypt);
|
|
EXPORT_SYMBOL(neon_aes_ctr_encrypt);
|
|
EXPORT_SYMBOL(neon_aes_xts_encrypt);
|
|
EXPORT_SYMBOL(neon_aes_xts_decrypt);
|
|
#endif
|
|
module_exit(aes_exit);
|