mirror of
https://github.com/torvalds/linux.git
synced 2024-11-25 21:51:40 +00:00
2f62701fa5
There are 2 defines for the number of PMU counters: ARMV8_PMU_MAX_COUNTERS and ARMPMU_MAX_HWEVENTS. Both are the same currently, but Armv9.4/8.9 increases the number of possible counters from 32 to 33. With this change, the maximum number of counters will differ for KVM's PMU emulation which is PMUv3.4. Give KVM PMU emulation its own define to decouple it from the rest of the kernel's number PMU counters. The VHE PMU code needs to match the PMU driver, so switch it to use ARMPMU_MAX_HWEVENTS instead. Acked-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Rob Herring (Arm) <robh@kernel.org> Tested-by: James Clark <james.clark@linaro.org> Link: https://lore.kernel.org/r/20240731-arm-pmu-3-9-icntr-v3-6-280a8d7ff465@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
1142 lines
28 KiB
C
1142 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2015 Linaro Ltd.
|
|
* Author: Shannon Zhao <shannon.zhao@linaro.org>
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/list.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/perf/arm_pmu.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <kvm/arm_pmu.h>
|
|
#include <kvm/arm_vgic.h>
|
|
|
|
#define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0)
|
|
|
|
DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available);
|
|
|
|
static LIST_HEAD(arm_pmus);
|
|
static DEFINE_MUTEX(arm_pmus_lock);
|
|
|
|
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc);
|
|
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc);
|
|
|
|
static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc)
|
|
{
|
|
return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]);
|
|
}
|
|
|
|
static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx)
|
|
{
|
|
return &vcpu->arch.pmu.pmc[cnt_idx];
|
|
}
|
|
|
|
static u32 __kvm_pmu_event_mask(unsigned int pmuver)
|
|
{
|
|
switch (pmuver) {
|
|
case ID_AA64DFR0_EL1_PMUVer_IMP:
|
|
return GENMASK(9, 0);
|
|
case ID_AA64DFR0_EL1_PMUVer_V3P1:
|
|
case ID_AA64DFR0_EL1_PMUVer_V3P4:
|
|
case ID_AA64DFR0_EL1_PMUVer_V3P5:
|
|
case ID_AA64DFR0_EL1_PMUVer_V3P7:
|
|
return GENMASK(15, 0);
|
|
default: /* Shouldn't be here, just for sanity */
|
|
WARN_ONCE(1, "Unknown PMU version %d\n", pmuver);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u32 kvm_pmu_event_mask(struct kvm *kvm)
|
|
{
|
|
u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1);
|
|
u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0);
|
|
|
|
return __kvm_pmu_event_mask(pmuver);
|
|
}
|
|
|
|
u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
|
|
{
|
|
u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 |
|
|
kvm_pmu_event_mask(kvm);
|
|
|
|
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP))
|
|
mask |= ARMV8_PMU_INCLUDE_EL2;
|
|
|
|
if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP))
|
|
mask |= ARMV8_PMU_EXCLUDE_NS_EL0 |
|
|
ARMV8_PMU_EXCLUDE_NS_EL1 |
|
|
ARMV8_PMU_EXCLUDE_EL3;
|
|
|
|
return mask;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmc_is_64bit - determine if counter is 64bit
|
|
* @pmc: counter context
|
|
*/
|
|
static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
|
|
return (pmc->idx == ARMV8_PMU_CYCLE_IDX ||
|
|
kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5));
|
|
}
|
|
|
|
static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
|
|
{
|
|
u64 val = kvm_vcpu_read_pmcr(kvm_pmc_to_vcpu(pmc));
|
|
|
|
return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
|
|
(pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
|
|
}
|
|
|
|
static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc)
|
|
{
|
|
return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX &&
|
|
!kvm_pmc_has_64bit_overflow(pmc));
|
|
}
|
|
|
|
static u32 counter_index_to_reg(u64 idx)
|
|
{
|
|
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx;
|
|
}
|
|
|
|
static u32 counter_index_to_evtreg(u64 idx)
|
|
{
|
|
return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx;
|
|
}
|
|
|
|
static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
u64 counter, reg, enabled, running;
|
|
|
|
reg = counter_index_to_reg(pmc->idx);
|
|
counter = __vcpu_sys_reg(vcpu, reg);
|
|
|
|
/*
|
|
* The real counter value is equal to the value of counter register plus
|
|
* the value perf event counts.
|
|
*/
|
|
if (pmc->perf_event)
|
|
counter += perf_event_read_value(pmc->perf_event, &enabled,
|
|
&running);
|
|
|
|
if (!kvm_pmc_is_64bit(pmc))
|
|
counter = lower_32_bits(counter);
|
|
|
|
return counter;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_get_counter_value - get PMU counter value
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The counter index
|
|
*/
|
|
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
|
|
{
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
|
|
return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx));
|
|
}
|
|
|
|
static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
u64 reg;
|
|
|
|
kvm_pmu_release_perf_event(pmc);
|
|
|
|
reg = counter_index_to_reg(pmc->idx);
|
|
|
|
if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX &&
|
|
!force) {
|
|
/*
|
|
* Even with PMUv3p5, AArch32 cannot write to the top
|
|
* 32bit of the counters. The only possible course of
|
|
* action is to use PMCR.P, which will reset them to
|
|
* 0 (the only use of the 'force' parameter).
|
|
*/
|
|
val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32);
|
|
val |= lower_32_bits(val);
|
|
}
|
|
|
|
__vcpu_sys_reg(vcpu, reg) = val;
|
|
|
|
/* Recreate the perf event to reflect the updated sample_period */
|
|
kvm_pmu_create_perf_event(pmc);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_set_counter_value - set PMU counter value
|
|
* @vcpu: The vcpu pointer
|
|
* @select_idx: The counter index
|
|
* @val: The counter value
|
|
*/
|
|
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
|
|
{
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_release_perf_event - remove the perf event
|
|
* @pmc: The PMU counter pointer
|
|
*/
|
|
static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc)
|
|
{
|
|
if (pmc->perf_event) {
|
|
perf_event_disable(pmc->perf_event);
|
|
perf_event_release_kernel(pmc->perf_event);
|
|
pmc->perf_event = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_stop_counter - stop PMU counter
|
|
* @pmc: The PMU counter pointer
|
|
*
|
|
* If this counter has been configured to monitor some event, release it here.
|
|
*/
|
|
static void kvm_pmu_stop_counter(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
u64 reg, val;
|
|
|
|
if (!pmc->perf_event)
|
|
return;
|
|
|
|
val = kvm_pmu_get_pmc_value(pmc);
|
|
|
|
reg = counter_index_to_reg(pmc->idx);
|
|
|
|
__vcpu_sys_reg(vcpu, reg) = val;
|
|
|
|
kvm_pmu_release_perf_event(pmc);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_init - assign pmu counter idx for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
|
|
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
|
|
pmu->pmc[i].idx = i;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_reset - reset pmu state for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
int i;
|
|
|
|
for_each_set_bit(i, &mask, 32)
|
|
kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i));
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
*/
|
|
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++)
|
|
kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i));
|
|
irq_work_sync(&vcpu->arch.pmu.overflow_work);
|
|
}
|
|
|
|
u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu));
|
|
|
|
if (val == 0)
|
|
return BIT(ARMV8_PMU_CYCLE_IDX);
|
|
else
|
|
return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_enable_counter_mask - enable selected PMU counters
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCNTENSET register
|
|
*
|
|
* Call perf_event_enable to start counting the perf event
|
|
*/
|
|
void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
|
|
return;
|
|
|
|
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
|
|
struct kvm_pmc *pmc;
|
|
|
|
if (!(val & BIT(i)))
|
|
continue;
|
|
|
|
pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
|
|
|
|
if (!pmc->perf_event) {
|
|
kvm_pmu_create_perf_event(pmc);
|
|
} else {
|
|
perf_event_enable(pmc->perf_event);
|
|
if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
|
|
kvm_debug("fail to enable perf event\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_disable_counter_mask - disable selected PMU counters
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCNTENCLR register
|
|
*
|
|
* Call perf_event_disable to stop counting the perf event
|
|
*/
|
|
void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu) || !val)
|
|
return;
|
|
|
|
for (i = 0; i < KVM_ARMV8_PMU_MAX_COUNTERS; i++) {
|
|
struct kvm_pmc *pmc;
|
|
|
|
if (!(val & BIT(i)))
|
|
continue;
|
|
|
|
pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
|
|
|
|
if (pmc->perf_event)
|
|
perf_event_disable(pmc->perf_event);
|
|
}
|
|
}
|
|
|
|
static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 reg = 0;
|
|
|
|
if ((kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E)) {
|
|
reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
|
|
reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
|
|
reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
|
|
}
|
|
|
|
return reg;
|
|
}
|
|
|
|
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
bool overflow;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
overflow = !!kvm_pmu_overflow_status(vcpu);
|
|
if (pmu->irq_level == overflow)
|
|
return;
|
|
|
|
pmu->irq_level = overflow;
|
|
|
|
if (likely(irqchip_in_kernel(vcpu->kvm))) {
|
|
int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu,
|
|
pmu->irq_num, overflow, pmu);
|
|
WARN_ON(ret);
|
|
}
|
|
}
|
|
|
|
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pmu *pmu = &vcpu->arch.pmu;
|
|
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
|
|
bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
|
|
|
|
if (likely(irqchip_in_kernel(vcpu->kvm)))
|
|
return false;
|
|
|
|
return pmu->irq_level != run_level;
|
|
}
|
|
|
|
/*
|
|
* Reflect the PMU overflow interrupt output level into the kvm_run structure
|
|
*/
|
|
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
|
|
|
|
/* Populate the timer bitmap for user space */
|
|
regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
|
|
if (vcpu->arch.pmu.irq_level)
|
|
regs->device_irq_level |= KVM_ARM_DEV_PMU;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_flush_hwstate - flush pmu state to cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
* Check if the PMU has overflowed while we were running in the host, and inject
|
|
* an interrupt if that was the case.
|
|
*/
|
|
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_update_state(vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_sync_hwstate - sync pmu state from cpu
|
|
* @vcpu: The vcpu pointer
|
|
*
|
|
* Check if the PMU has overflowed while we were running in the guest, and
|
|
* inject an interrupt if that was the case.
|
|
*/
|
|
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_pmu_update_state(vcpu);
|
|
}
|
|
|
|
/*
|
|
* When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding
|
|
* to the event.
|
|
* This is why we need a callback to do it once outside of the NMI context.
|
|
*/
|
|
static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work);
|
|
kvm_vcpu_kick(vcpu);
|
|
}
|
|
|
|
/*
|
|
* Perform an increment on any of the counters described in @mask,
|
|
* generating the overflow if required, and propagate it as a chained
|
|
* event if possible.
|
|
*/
|
|
static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
|
|
unsigned long mask, u32 event)
|
|
{
|
|
int i;
|
|
|
|
if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
|
|
return;
|
|
|
|
/* Weed out disabled counters */
|
|
mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
|
|
|
|
for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) {
|
|
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i);
|
|
u64 type, reg;
|
|
|
|
/* Filter on event type */
|
|
type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i));
|
|
type &= kvm_pmu_event_mask(vcpu->kvm);
|
|
if (type != event)
|
|
continue;
|
|
|
|
/* Increment this counter */
|
|
reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1;
|
|
if (!kvm_pmc_is_64bit(pmc))
|
|
reg = lower_32_bits(reg);
|
|
__vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg;
|
|
|
|
/* No overflow? move on */
|
|
if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg))
|
|
continue;
|
|
|
|
/* Mark overflow */
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i);
|
|
|
|
if (kvm_pmu_counter_can_chain(pmc))
|
|
kvm_pmu_counter_increment(vcpu, BIT(i + 1),
|
|
ARMV8_PMUV3_PERFCTR_CHAIN);
|
|
}
|
|
}
|
|
|
|
/* Compute the sample period for a given counter value */
|
|
static u64 compute_period(struct kvm_pmc *pmc, u64 counter)
|
|
{
|
|
u64 val;
|
|
|
|
if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc))
|
|
val = (-counter) & GENMASK(63, 0);
|
|
else
|
|
val = (-counter) & GENMASK(31, 0);
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* When the perf event overflows, set the overflow status and inform the vcpu.
|
|
*/
|
|
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
|
|
struct perf_sample_data *data,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
|
|
struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
int idx = pmc->idx;
|
|
u64 period;
|
|
|
|
cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE);
|
|
|
|
/*
|
|
* Reset the sample period to the architectural limit,
|
|
* i.e. the point where the counter overflows.
|
|
*/
|
|
period = compute_period(pmc, local64_read(&perf_event->count));
|
|
|
|
local64_set(&perf_event->hw.period_left, 0);
|
|
perf_event->attr.sample_period = period;
|
|
perf_event->hw.sample_period = period;
|
|
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx);
|
|
|
|
if (kvm_pmu_counter_can_chain(pmc))
|
|
kvm_pmu_counter_increment(vcpu, BIT(idx + 1),
|
|
ARMV8_PMUV3_PERFCTR_CHAIN);
|
|
|
|
if (kvm_pmu_overflow_status(vcpu)) {
|
|
kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
|
|
|
|
if (!in_nmi())
|
|
kvm_vcpu_kick(vcpu);
|
|
else
|
|
irq_work_queue(&vcpu->arch.pmu.overflow_work);
|
|
}
|
|
|
|
cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_software_increment - do software increment
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMSWINC register
|
|
*/
|
|
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR);
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_handle_pmcr - handle PMCR register
|
|
* @vcpu: The vcpu pointer
|
|
* @val: the value guest writes to PMCR register
|
|
*/
|
|
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
|
|
{
|
|
int i;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
/* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */
|
|
if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5))
|
|
val &= ~ARMV8_PMU_PMCR_LP;
|
|
|
|
/* The reset bits don't indicate any state, and shouldn't be saved. */
|
|
__vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P);
|
|
|
|
if (val & ARMV8_PMU_PMCR_E) {
|
|
kvm_pmu_enable_counter_mask(vcpu,
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
|
|
} else {
|
|
kvm_pmu_disable_counter_mask(vcpu,
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0));
|
|
}
|
|
|
|
if (val & ARMV8_PMU_PMCR_C)
|
|
kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
|
|
|
|
if (val & ARMV8_PMU_PMCR_P) {
|
|
unsigned long mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
mask &= ~BIT(ARMV8_PMU_CYCLE_IDX);
|
|
for_each_set_bit(i, &mask, 32)
|
|
kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true);
|
|
}
|
|
kvm_vcpu_pmu_restore_guest(vcpu);
|
|
}
|
|
|
|
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
return (kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) &&
|
|
(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_create_perf_event - create a perf event for a counter
|
|
* @pmc: Counter context
|
|
*/
|
|
static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc)
|
|
{
|
|
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
|
|
struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu;
|
|
struct perf_event *event;
|
|
struct perf_event_attr attr;
|
|
u64 eventsel, reg, data;
|
|
bool p, u, nsk, nsu;
|
|
|
|
reg = counter_index_to_evtreg(pmc->idx);
|
|
data = __vcpu_sys_reg(vcpu, reg);
|
|
|
|
kvm_pmu_stop_counter(pmc);
|
|
if (pmc->idx == ARMV8_PMU_CYCLE_IDX)
|
|
eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES;
|
|
else
|
|
eventsel = data & kvm_pmu_event_mask(vcpu->kvm);
|
|
|
|
/*
|
|
* Neither SW increment nor chained events need to be backed
|
|
* by a perf event.
|
|
*/
|
|
if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR ||
|
|
eventsel == ARMV8_PMUV3_PERFCTR_CHAIN)
|
|
return;
|
|
|
|
/*
|
|
* If we have a filter in place and that the event isn't allowed, do
|
|
* not install a perf event either.
|
|
*/
|
|
if (vcpu->kvm->arch.pmu_filter &&
|
|
!test_bit(eventsel, vcpu->kvm->arch.pmu_filter))
|
|
return;
|
|
|
|
p = data & ARMV8_PMU_EXCLUDE_EL1;
|
|
u = data & ARMV8_PMU_EXCLUDE_EL0;
|
|
nsk = data & ARMV8_PMU_EXCLUDE_NS_EL1;
|
|
nsu = data & ARMV8_PMU_EXCLUDE_NS_EL0;
|
|
|
|
memset(&attr, 0, sizeof(struct perf_event_attr));
|
|
attr.type = arm_pmu->pmu.type;
|
|
attr.size = sizeof(attr);
|
|
attr.pinned = 1;
|
|
attr.disabled = !kvm_pmu_counter_is_enabled(pmc);
|
|
attr.exclude_user = (u != nsu);
|
|
attr.exclude_kernel = (p != nsk);
|
|
attr.exclude_hv = 1; /* Don't count EL2 events */
|
|
attr.exclude_host = 1; /* Don't count host events */
|
|
attr.config = eventsel;
|
|
|
|
/*
|
|
* If counting with a 64bit counter, advertise it to the perf
|
|
* code, carefully dealing with the initial sample period
|
|
* which also depends on the overflow.
|
|
*/
|
|
if (kvm_pmc_is_64bit(pmc))
|
|
attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT;
|
|
|
|
attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc));
|
|
|
|
event = perf_event_create_kernel_counter(&attr, -1, current,
|
|
kvm_pmu_perf_overflow, pmc);
|
|
|
|
if (IS_ERR(event)) {
|
|
pr_err_once("kvm: pmu event creation failed %ld\n",
|
|
PTR_ERR(event));
|
|
return;
|
|
}
|
|
|
|
pmc->perf_event = event;
|
|
}
|
|
|
|
/**
|
|
* kvm_pmu_set_counter_event_type - set selected counter to monitor some event
|
|
* @vcpu: The vcpu pointer
|
|
* @data: The data guest writes to PMXEVTYPER_EL0
|
|
* @select_idx: The number of selected counter
|
|
*
|
|
* When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
|
|
* event with given hardware event number. Here we call perf_event API to
|
|
* emulate this action and create a kernel perf event for it.
|
|
*/
|
|
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
|
|
u64 select_idx)
|
|
{
|
|
struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx);
|
|
u64 reg;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return;
|
|
|
|
reg = counter_index_to_evtreg(pmc->idx);
|
|
__vcpu_sys_reg(vcpu, reg) = data & kvm_pmu_evtyper_mask(vcpu->kvm);
|
|
|
|
kvm_pmu_create_perf_event(pmc);
|
|
}
|
|
|
|
void kvm_host_pmu_init(struct arm_pmu *pmu)
|
|
{
|
|
struct arm_pmu_entry *entry;
|
|
|
|
/*
|
|
* Check the sanitised PMU version for the system, as KVM does not
|
|
* support implementations where PMUv3 exists on a subset of CPUs.
|
|
*/
|
|
if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit()))
|
|
return;
|
|
|
|
mutex_lock(&arm_pmus_lock);
|
|
|
|
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
goto out_unlock;
|
|
|
|
entry->arm_pmu = pmu;
|
|
list_add_tail(&entry->entry, &arm_pmus);
|
|
|
|
if (list_is_singular(&arm_pmus))
|
|
static_branch_enable(&kvm_arm_pmu_available);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&arm_pmus_lock);
|
|
}
|
|
|
|
static struct arm_pmu *kvm_pmu_probe_armpmu(void)
|
|
{
|
|
struct arm_pmu *tmp, *pmu = NULL;
|
|
struct arm_pmu_entry *entry;
|
|
int cpu;
|
|
|
|
mutex_lock(&arm_pmus_lock);
|
|
|
|
/*
|
|
* It is safe to use a stale cpu to iterate the list of PMUs so long as
|
|
* the same value is used for the entirety of the loop. Given this, and
|
|
* the fact that no percpu data is used for the lookup there is no need
|
|
* to disable preemption.
|
|
*
|
|
* It is still necessary to get a valid cpu, though, to probe for the
|
|
* default PMU instance as userspace is not required to specify a PMU
|
|
* type. In order to uphold the preexisting behavior KVM selects the
|
|
* PMU instance for the core during vcpu init. A dependent use
|
|
* case would be a user with disdain of all things big.LITTLE that
|
|
* affines the VMM to a particular cluster of cores.
|
|
*
|
|
* In any case, userspace should just do the sane thing and use the UAPI
|
|
* to select a PMU type directly. But, be wary of the baggage being
|
|
* carried here.
|
|
*/
|
|
cpu = raw_smp_processor_id();
|
|
list_for_each_entry(entry, &arm_pmus, entry) {
|
|
tmp = entry->arm_pmu;
|
|
|
|
if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) {
|
|
pmu = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&arm_pmus_lock);
|
|
|
|
return pmu;
|
|
}
|
|
|
|
u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
|
|
{
|
|
unsigned long *bmap = vcpu->kvm->arch.pmu_filter;
|
|
u64 val, mask = 0;
|
|
int base, i, nr_events;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
|
|
if (!pmceid1) {
|
|
val = read_sysreg(pmceid0_el0);
|
|
/* always support CHAIN */
|
|
val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN);
|
|
base = 0;
|
|
} else {
|
|
val = read_sysreg(pmceid1_el0);
|
|
/*
|
|
* Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled
|
|
* as RAZ
|
|
*/
|
|
val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) |
|
|
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) |
|
|
BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32));
|
|
base = 32;
|
|
}
|
|
|
|
if (!bmap)
|
|
return val;
|
|
|
|
nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1;
|
|
|
|
for (i = 0; i < 32; i += 8) {
|
|
u64 byte;
|
|
|
|
byte = bitmap_get_value8(bmap, base + i);
|
|
mask |= byte << i;
|
|
if (nr_events >= (0x4000 + base + 32)) {
|
|
byte = bitmap_get_value8(bmap, 0x4000 + base + i);
|
|
mask |= byte << (32 + i);
|
|
}
|
|
}
|
|
|
|
return val & mask;
|
|
}
|
|
|
|
void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
|
|
|
|
kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
|
|
|
|
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
|
|
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
|
|
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
|
|
if (!vcpu->arch.pmu.created)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* A valid interrupt configuration for the PMU is either to have a
|
|
* properly configured interrupt number and using an in-kernel
|
|
* irqchip, or to not have an in-kernel GIC and not set an IRQ.
|
|
*/
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
int irq = vcpu->arch.pmu.irq_num;
|
|
/*
|
|
* If we are using an in-kernel vgic, at this point we know
|
|
* the vgic will be initialized, so we can check the PMU irq
|
|
* number against the dimensions of the vgic and make sure
|
|
* it's valid.
|
|
*/
|
|
if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq))
|
|
return -EINVAL;
|
|
} else if (kvm_arm_pmu_irq_initialized(vcpu)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* One-off reload of the PMU on first run */
|
|
kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
if (irqchip_in_kernel(vcpu->kvm)) {
|
|
int ret;
|
|
|
|
/*
|
|
* If using the PMU with an in-kernel virtual GIC
|
|
* implementation, we require the GIC to be already
|
|
* initialized when initializing the PMU.
|
|
*/
|
|
if (!vgic_initialized(vcpu->kvm))
|
|
return -ENODEV;
|
|
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -ENXIO;
|
|
|
|
ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num,
|
|
&vcpu->arch.pmu);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
init_irq_work(&vcpu->arch.pmu.overflow_work,
|
|
kvm_pmu_perf_overflow_notify_vcpu);
|
|
|
|
vcpu->arch.pmu.created = true;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For one VM the interrupt type must be same for each vcpu.
|
|
* As a PPI, the interrupt number is the same for all vcpus,
|
|
* while as an SPI it must be a separate number per vcpu.
|
|
*/
|
|
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
|
|
{
|
|
unsigned long i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
continue;
|
|
|
|
if (irq_is_ppi(irq)) {
|
|
if (vcpu->arch.pmu.irq_num != irq)
|
|
return false;
|
|
} else {
|
|
if (vcpu->arch.pmu.irq_num == irq)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
|
|
* @kvm: The kvm pointer
|
|
*/
|
|
u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
|
|
{
|
|
struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
|
|
|
|
/*
|
|
* The arm_pmu->cntr_mask considers the fixed counter(s) as well.
|
|
* Ignore those and return only the general-purpose counters.
|
|
*/
|
|
return bitmap_weight(arm_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS);
|
|
}
|
|
|
|
static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
|
|
{
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
|
|
kvm->arch.arm_pmu = arm_pmu;
|
|
kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm);
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_set_default_pmu - No PMU set, get the default one.
|
|
* @kvm: The kvm pointer
|
|
*
|
|
* The observant among you will notice that the supported_cpus
|
|
* mask does not get updated for the default PMU even though it
|
|
* is quite possible the selected instance supports only a
|
|
* subset of cores in the system. This is intentional, and
|
|
* upholds the preexisting behavior on heterogeneous systems
|
|
* where vCPUs can be scheduled on any core but the guest
|
|
* counters could stop working.
|
|
*/
|
|
int kvm_arm_set_default_pmu(struct kvm *kvm)
|
|
{
|
|
struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
|
|
|
|
if (!arm_pmu)
|
|
return -ENODEV;
|
|
|
|
kvm_arm_set_pmu(kvm, arm_pmu);
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct arm_pmu_entry *entry;
|
|
struct arm_pmu *arm_pmu;
|
|
int ret = -ENXIO;
|
|
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
mutex_lock(&arm_pmus_lock);
|
|
|
|
list_for_each_entry(entry, &arm_pmus, entry) {
|
|
arm_pmu = entry->arm_pmu;
|
|
if (arm_pmu->pmu.type == pmu_id) {
|
|
if (kvm_vm_has_ran_once(kvm) ||
|
|
(kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
|
|
kvm_arm_set_pmu(kvm, arm_pmu);
|
|
cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&arm_pmus_lock);
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
|
|
lockdep_assert_held(&kvm->arch.config_lock);
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return -ENODEV;
|
|
|
|
if (vcpu->arch.pmu.created)
|
|
return -EBUSY;
|
|
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ: {
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int irq;
|
|
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -EINVAL;
|
|
|
|
if (get_user(irq, uaddr))
|
|
return -EFAULT;
|
|
|
|
/* The PMU overflow interrupt can be a PPI or a valid SPI. */
|
|
if (!(irq_is_ppi(irq) || irq_is_spi(irq)))
|
|
return -EINVAL;
|
|
|
|
if (!pmu_irq_is_valid(kvm, irq))
|
|
return -EINVAL;
|
|
|
|
if (kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -EBUSY;
|
|
|
|
kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
|
|
vcpu->arch.pmu.irq_num = irq;
|
|
return 0;
|
|
}
|
|
case KVM_ARM_VCPU_PMU_V3_FILTER: {
|
|
u8 pmuver = kvm_arm_pmu_get_pmuver_limit();
|
|
struct kvm_pmu_event_filter __user *uaddr;
|
|
struct kvm_pmu_event_filter filter;
|
|
int nr_events;
|
|
|
|
/*
|
|
* Allow userspace to specify an event filter for the entire
|
|
* event range supported by PMUVer of the hardware, rather
|
|
* than the guest's PMUVer for KVM backward compatibility.
|
|
*/
|
|
nr_events = __kvm_pmu_event_mask(pmuver) + 1;
|
|
|
|
uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr;
|
|
|
|
if (copy_from_user(&filter, uaddr, sizeof(filter)))
|
|
return -EFAULT;
|
|
|
|
if (((u32)filter.base_event + filter.nevents) > nr_events ||
|
|
(filter.action != KVM_PMU_EVENT_ALLOW &&
|
|
filter.action != KVM_PMU_EVENT_DENY))
|
|
return -EINVAL;
|
|
|
|
if (kvm_vm_has_ran_once(kvm))
|
|
return -EBUSY;
|
|
|
|
if (!kvm->arch.pmu_filter) {
|
|
kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT);
|
|
if (!kvm->arch.pmu_filter)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* The default depends on the first applied filter.
|
|
* If it allows events, the default is to deny.
|
|
* Conversely, if the first filter denies a set of
|
|
* events, the default is to allow.
|
|
*/
|
|
if (filter.action == KVM_PMU_EVENT_ALLOW)
|
|
bitmap_zero(kvm->arch.pmu_filter, nr_events);
|
|
else
|
|
bitmap_fill(kvm->arch.pmu_filter, nr_events);
|
|
}
|
|
|
|
if (filter.action == KVM_PMU_EVENT_ALLOW)
|
|
bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
|
|
else
|
|
bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents);
|
|
|
|
return 0;
|
|
}
|
|
case KVM_ARM_VCPU_PMU_V3_SET_PMU: {
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int pmu_id;
|
|
|
|
if (get_user(pmu_id, uaddr))
|
|
return -EFAULT;
|
|
|
|
return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id);
|
|
}
|
|
case KVM_ARM_VCPU_PMU_V3_INIT:
|
|
return kvm_arm_pmu_v3_init(vcpu);
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ: {
|
|
int __user *uaddr = (int __user *)(long)attr->addr;
|
|
int irq;
|
|
|
|
if (!irqchip_in_kernel(vcpu->kvm))
|
|
return -EINVAL;
|
|
|
|
if (!kvm_vcpu_has_pmu(vcpu))
|
|
return -ENODEV;
|
|
|
|
if (!kvm_arm_pmu_irq_initialized(vcpu))
|
|
return -ENXIO;
|
|
|
|
irq = vcpu->arch.pmu.irq_num;
|
|
return put_user(irq, uaddr);
|
|
}
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
|
|
{
|
|
switch (attr->attr) {
|
|
case KVM_ARM_VCPU_PMU_V3_IRQ:
|
|
case KVM_ARM_VCPU_PMU_V3_INIT:
|
|
case KVM_ARM_VCPU_PMU_V3_FILTER:
|
|
case KVM_ARM_VCPU_PMU_V3_SET_PMU:
|
|
if (kvm_vcpu_has_pmu(vcpu))
|
|
return 0;
|
|
}
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
u8 kvm_arm_pmu_get_pmuver_limit(void)
|
|
{
|
|
u64 tmp;
|
|
|
|
tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
|
|
tmp = cpuid_feature_cap_perfmon_field(tmp,
|
|
ID_AA64DFR0_EL1_PMUVer_SHIFT,
|
|
ID_AA64DFR0_EL1_PMUVer_V3P5);
|
|
return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
|
|
}
|
|
|
|
/**
|
|
* kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
|
|
* @vcpu: The vcpu pointer
|
|
*/
|
|
u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
|
|
{
|
|
u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
|
|
|
|
return u64_replace_bits(pmcr, vcpu->kvm->arch.pmcr_n, ARMV8_PMU_PMCR_N);
|
|
}
|