mirror of
https://github.com/torvalds/linux.git
synced 2024-11-30 16:11:38 +00:00
ebe24cea95
This fix prevents nodes to wrongly create a 00:00:00:00:00:00 originator
which can potentially interfere with the rest of the neighbor statistics.
Fixes: d6f94d91f7
("batman-adv: ELP - adding basic infrastructure")
Signed-off-by: Marek Lindner <mareklindner@neomailbox.ch>
Signed-off-by: Antonio Quartulli <a@unstable.cc>
529 lines
16 KiB
C
529 lines
16 KiB
C
/* Copyright (C) 2011-2016 B.A.T.M.A.N. contributors:
|
|
*
|
|
* Linus Lüssing, Marek Lindner
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "bat_v_elp.h"
|
|
#include "main.h"
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/byteorder/generic.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kref.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/random.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/workqueue.h>
|
|
#include <net/cfg80211.h>
|
|
|
|
#include "bat_algo.h"
|
|
#include "bat_v_ogm.h"
|
|
#include "hard-interface.h"
|
|
#include "originator.h"
|
|
#include "packet.h"
|
|
#include "routing.h"
|
|
#include "send.h"
|
|
|
|
/**
|
|
* batadv_v_elp_start_timer - restart timer for ELP periodic work
|
|
* @hard_iface: the interface for which the timer has to be reset
|
|
*/
|
|
static void batadv_v_elp_start_timer(struct batadv_hard_iface *hard_iface)
|
|
{
|
|
unsigned int msecs;
|
|
|
|
msecs = atomic_read(&hard_iface->bat_v.elp_interval) - BATADV_JITTER;
|
|
msecs += prandom_u32() % (2 * BATADV_JITTER);
|
|
|
|
queue_delayed_work(batadv_event_workqueue, &hard_iface->bat_v.elp_wq,
|
|
msecs_to_jiffies(msecs));
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_get_throughput - get the throughput towards a neighbour
|
|
* @neigh: the neighbour for which the throughput has to be obtained
|
|
*
|
|
* Return: The throughput towards the given neighbour in multiples of 100kpbs
|
|
* (a value of '1' equals to 0.1Mbps, '10' equals 1Mbps, etc).
|
|
*/
|
|
static u32 batadv_v_elp_get_throughput(struct batadv_hardif_neigh_node *neigh)
|
|
{
|
|
struct batadv_hard_iface *hard_iface = neigh->if_incoming;
|
|
struct ethtool_link_ksettings link_settings;
|
|
struct station_info sinfo;
|
|
u32 throughput;
|
|
int ret;
|
|
|
|
/* if the user specified a customised value for this interface, then
|
|
* return it directly
|
|
*/
|
|
throughput = atomic_read(&hard_iface->bat_v.throughput_override);
|
|
if (throughput != 0)
|
|
return throughput;
|
|
|
|
/* if this is a wireless device, then ask its throughput through
|
|
* cfg80211 API
|
|
*/
|
|
if (batadv_is_wifi_netdev(hard_iface->net_dev)) {
|
|
if (hard_iface->net_dev->ieee80211_ptr) {
|
|
ret = cfg80211_get_station(hard_iface->net_dev,
|
|
neigh->addr, &sinfo);
|
|
if (ret == -ENOENT) {
|
|
/* Node is not associated anymore! It would be
|
|
* possible to delete this neighbor. For now set
|
|
* the throughput metric to 0.
|
|
*/
|
|
return 0;
|
|
}
|
|
if (!ret)
|
|
return sinfo.expected_throughput / 100;
|
|
}
|
|
|
|
/* unsupported WiFi driver version */
|
|
goto default_throughput;
|
|
}
|
|
|
|
/* if not a wifi interface, check if this device provides data via
|
|
* ethtool (e.g. an Ethernet adapter)
|
|
*/
|
|
memset(&link_settings, 0, sizeof(link_settings));
|
|
rtnl_lock();
|
|
ret = __ethtool_get_link_ksettings(hard_iface->net_dev, &link_settings);
|
|
rtnl_unlock();
|
|
if (ret == 0) {
|
|
/* link characteristics might change over time */
|
|
if (link_settings.base.duplex == DUPLEX_FULL)
|
|
hard_iface->bat_v.flags |= BATADV_FULL_DUPLEX;
|
|
else
|
|
hard_iface->bat_v.flags &= ~BATADV_FULL_DUPLEX;
|
|
|
|
throughput = link_settings.base.speed;
|
|
if (throughput && (throughput != SPEED_UNKNOWN))
|
|
return throughput * 10;
|
|
}
|
|
|
|
default_throughput:
|
|
if (!(hard_iface->bat_v.flags & BATADV_WARNING_DEFAULT)) {
|
|
batadv_info(hard_iface->soft_iface,
|
|
"WiFi driver or ethtool info does not provide information about link speeds on interface %s, therefore defaulting to hardcoded throughput values of %u.%1u Mbps. Consider overriding the throughput manually or checking your driver.\n",
|
|
hard_iface->net_dev->name,
|
|
BATADV_THROUGHPUT_DEFAULT_VALUE / 10,
|
|
BATADV_THROUGHPUT_DEFAULT_VALUE % 10);
|
|
hard_iface->bat_v.flags |= BATADV_WARNING_DEFAULT;
|
|
}
|
|
|
|
/* if none of the above cases apply, return the base_throughput */
|
|
return BATADV_THROUGHPUT_DEFAULT_VALUE;
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_throughput_metric_update - worker updating the throughput metric
|
|
* of a single hop neighbour
|
|
* @work: the work queue item
|
|
*/
|
|
void batadv_v_elp_throughput_metric_update(struct work_struct *work)
|
|
{
|
|
struct batadv_hardif_neigh_node_bat_v *neigh_bat_v;
|
|
struct batadv_hardif_neigh_node *neigh;
|
|
|
|
neigh_bat_v = container_of(work, struct batadv_hardif_neigh_node_bat_v,
|
|
metric_work);
|
|
neigh = container_of(neigh_bat_v, struct batadv_hardif_neigh_node,
|
|
bat_v);
|
|
|
|
ewma_throughput_add(&neigh->bat_v.throughput,
|
|
batadv_v_elp_get_throughput(neigh));
|
|
|
|
/* decrement refcounter to balance increment performed before scheduling
|
|
* this task
|
|
*/
|
|
batadv_hardif_neigh_put(neigh);
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_wifi_neigh_probe - send link probing packets to a neighbour
|
|
* @neigh: the neighbour to probe
|
|
*
|
|
* Sends a predefined number of unicast wifi packets to a given neighbour in
|
|
* order to trigger the throughput estimation on this link by the RC algorithm.
|
|
* Packets are sent only if there there is not enough payload unicast traffic
|
|
* towards this neighbour..
|
|
*
|
|
* Return: True on success and false in case of error during skb preparation.
|
|
*/
|
|
static bool
|
|
batadv_v_elp_wifi_neigh_probe(struct batadv_hardif_neigh_node *neigh)
|
|
{
|
|
struct batadv_hard_iface *hard_iface = neigh->if_incoming;
|
|
struct batadv_priv *bat_priv = netdev_priv(hard_iface->soft_iface);
|
|
unsigned long last_tx_diff;
|
|
struct sk_buff *skb;
|
|
int probe_len, i;
|
|
int elp_skb_len;
|
|
|
|
/* this probing routine is for Wifi neighbours only */
|
|
if (!batadv_is_wifi_netdev(hard_iface->net_dev))
|
|
return true;
|
|
|
|
/* probe the neighbor only if no unicast packets have been sent
|
|
* to it in the last 100 milliseconds: this is the rate control
|
|
* algorithm sampling interval (minstrel). In this way, if not
|
|
* enough traffic has been sent to the neighbor, batman-adv can
|
|
* generate 2 probe packets and push the RC algorithm to perform
|
|
* the sampling
|
|
*/
|
|
last_tx_diff = jiffies_to_msecs(jiffies - neigh->bat_v.last_unicast_tx);
|
|
if (last_tx_diff <= BATADV_ELP_PROBE_MAX_TX_DIFF)
|
|
return true;
|
|
|
|
probe_len = max_t(int, sizeof(struct batadv_elp_packet),
|
|
BATADV_ELP_MIN_PROBE_SIZE);
|
|
|
|
for (i = 0; i < BATADV_ELP_PROBES_PER_NODE; i++) {
|
|
elp_skb_len = hard_iface->bat_v.elp_skb->len;
|
|
skb = skb_copy_expand(hard_iface->bat_v.elp_skb, 0,
|
|
probe_len - elp_skb_len,
|
|
GFP_ATOMIC);
|
|
if (!skb)
|
|
return false;
|
|
|
|
/* Tell the skb to get as big as the allocated space (we want
|
|
* the packet to be exactly of that size to make the link
|
|
* throughput estimation effective.
|
|
*/
|
|
skb_put(skb, probe_len - hard_iface->bat_v.elp_skb->len);
|
|
|
|
batadv_dbg(BATADV_DBG_BATMAN, bat_priv,
|
|
"Sending unicast (probe) ELP packet on interface %s to %pM\n",
|
|
hard_iface->net_dev->name, neigh->addr);
|
|
|
|
batadv_send_skb_packet(skb, hard_iface, neigh->addr);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_periodic_work - ELP periodic task per interface
|
|
* @work: work queue item
|
|
*
|
|
* Emits broadcast ELP message in regular intervals.
|
|
*/
|
|
static void batadv_v_elp_periodic_work(struct work_struct *work)
|
|
{
|
|
struct batadv_hardif_neigh_node *hardif_neigh;
|
|
struct batadv_hard_iface *hard_iface;
|
|
struct batadv_hard_iface_bat_v *bat_v;
|
|
struct batadv_elp_packet *elp_packet;
|
|
struct batadv_priv *bat_priv;
|
|
struct sk_buff *skb;
|
|
u32 elp_interval;
|
|
|
|
bat_v = container_of(work, struct batadv_hard_iface_bat_v, elp_wq.work);
|
|
hard_iface = container_of(bat_v, struct batadv_hard_iface, bat_v);
|
|
bat_priv = netdev_priv(hard_iface->soft_iface);
|
|
|
|
if (atomic_read(&bat_priv->mesh_state) == BATADV_MESH_DEACTIVATING)
|
|
goto out;
|
|
|
|
/* we are in the process of shutting this interface down */
|
|
if ((hard_iface->if_status == BATADV_IF_NOT_IN_USE) ||
|
|
(hard_iface->if_status == BATADV_IF_TO_BE_REMOVED))
|
|
goto out;
|
|
|
|
/* the interface was enabled but may not be ready yet */
|
|
if (hard_iface->if_status != BATADV_IF_ACTIVE)
|
|
goto restart_timer;
|
|
|
|
skb = skb_copy(hard_iface->bat_v.elp_skb, GFP_ATOMIC);
|
|
if (!skb)
|
|
goto restart_timer;
|
|
|
|
elp_packet = (struct batadv_elp_packet *)skb->data;
|
|
elp_packet->seqno = htonl(atomic_read(&hard_iface->bat_v.elp_seqno));
|
|
elp_interval = atomic_read(&hard_iface->bat_v.elp_interval);
|
|
elp_packet->elp_interval = htonl(elp_interval);
|
|
|
|
batadv_dbg(BATADV_DBG_BATMAN, bat_priv,
|
|
"Sending broadcast ELP packet on interface %s, seqno %u\n",
|
|
hard_iface->net_dev->name,
|
|
atomic_read(&hard_iface->bat_v.elp_seqno));
|
|
|
|
batadv_send_broadcast_skb(skb, hard_iface);
|
|
|
|
atomic_inc(&hard_iface->bat_v.elp_seqno);
|
|
|
|
/* The throughput metric is updated on each sent packet. This way, if a
|
|
* node is dead and no longer sends packets, batman-adv is still able to
|
|
* react timely to its death.
|
|
*
|
|
* The throughput metric is updated by following these steps:
|
|
* 1) if the hard_iface is wifi => send a number of unicast ELPs for
|
|
* probing/sampling to each neighbor
|
|
* 2) update the throughput metric value of each neighbor (note that the
|
|
* value retrieved in this step might be 100ms old because the
|
|
* probing packets at point 1) could still be in the HW queue)
|
|
*/
|
|
rcu_read_lock();
|
|
hlist_for_each_entry_rcu(hardif_neigh, &hard_iface->neigh_list, list) {
|
|
if (!batadv_v_elp_wifi_neigh_probe(hardif_neigh))
|
|
/* if something goes wrong while probing, better to stop
|
|
* sending packets immediately and reschedule the task
|
|
*/
|
|
break;
|
|
|
|
if (!kref_get_unless_zero(&hardif_neigh->refcount))
|
|
continue;
|
|
|
|
/* Reading the estimated throughput from cfg80211 is a task that
|
|
* may sleep and that is not allowed in an rcu protected
|
|
* context. Therefore schedule a task for that.
|
|
*/
|
|
queue_work(batadv_event_workqueue,
|
|
&hardif_neigh->bat_v.metric_work);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
restart_timer:
|
|
batadv_v_elp_start_timer(hard_iface);
|
|
out:
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_iface_enable - setup the ELP interface private resources
|
|
* @hard_iface: interface for which the data has to be prepared
|
|
*
|
|
* Return: 0 on success or a -ENOMEM in case of failure.
|
|
*/
|
|
int batadv_v_elp_iface_enable(struct batadv_hard_iface *hard_iface)
|
|
{
|
|
struct batadv_elp_packet *elp_packet;
|
|
unsigned char *elp_buff;
|
|
u32 random_seqno;
|
|
size_t size;
|
|
int res = -ENOMEM;
|
|
|
|
size = ETH_HLEN + NET_IP_ALIGN + BATADV_ELP_HLEN;
|
|
hard_iface->bat_v.elp_skb = dev_alloc_skb(size);
|
|
if (!hard_iface->bat_v.elp_skb)
|
|
goto out;
|
|
|
|
skb_reserve(hard_iface->bat_v.elp_skb, ETH_HLEN + NET_IP_ALIGN);
|
|
elp_buff = skb_push(hard_iface->bat_v.elp_skb, BATADV_ELP_HLEN);
|
|
elp_packet = (struct batadv_elp_packet *)elp_buff;
|
|
memset(elp_packet, 0, BATADV_ELP_HLEN);
|
|
|
|
elp_packet->packet_type = BATADV_ELP;
|
|
elp_packet->version = BATADV_COMPAT_VERSION;
|
|
|
|
/* randomize initial seqno to avoid collision */
|
|
get_random_bytes(&random_seqno, sizeof(random_seqno));
|
|
atomic_set(&hard_iface->bat_v.elp_seqno, random_seqno);
|
|
atomic_set(&hard_iface->bat_v.elp_interval, 500);
|
|
|
|
/* assume full-duplex by default */
|
|
hard_iface->bat_v.flags |= BATADV_FULL_DUPLEX;
|
|
|
|
/* warn the user (again) if there is no throughput data is available */
|
|
hard_iface->bat_v.flags &= ~BATADV_WARNING_DEFAULT;
|
|
|
|
if (batadv_is_wifi_netdev(hard_iface->net_dev))
|
|
hard_iface->bat_v.flags &= ~BATADV_FULL_DUPLEX;
|
|
|
|
INIT_DELAYED_WORK(&hard_iface->bat_v.elp_wq,
|
|
batadv_v_elp_periodic_work);
|
|
batadv_v_elp_start_timer(hard_iface);
|
|
res = 0;
|
|
|
|
out:
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_iface_disable - release ELP interface private resources
|
|
* @hard_iface: interface for which the resources have to be released
|
|
*/
|
|
void batadv_v_elp_iface_disable(struct batadv_hard_iface *hard_iface)
|
|
{
|
|
cancel_delayed_work_sync(&hard_iface->bat_v.elp_wq);
|
|
|
|
dev_kfree_skb(hard_iface->bat_v.elp_skb);
|
|
hard_iface->bat_v.elp_skb = NULL;
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_iface_activate - update the ELP buffer belonging to the given
|
|
* hard-interface
|
|
* @primary_iface: the new primary interface
|
|
* @hard_iface: interface holding the to-be-updated buffer
|
|
*/
|
|
void batadv_v_elp_iface_activate(struct batadv_hard_iface *primary_iface,
|
|
struct batadv_hard_iface *hard_iface)
|
|
{
|
|
struct batadv_elp_packet *elp_packet;
|
|
struct sk_buff *skb;
|
|
|
|
if (!hard_iface->bat_v.elp_skb)
|
|
return;
|
|
|
|
skb = hard_iface->bat_v.elp_skb;
|
|
elp_packet = (struct batadv_elp_packet *)skb->data;
|
|
ether_addr_copy(elp_packet->orig,
|
|
primary_iface->net_dev->dev_addr);
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_primary_iface_set - change internal data to reflect the new
|
|
* primary interface
|
|
* @primary_iface: the new primary interface
|
|
*/
|
|
void batadv_v_elp_primary_iface_set(struct batadv_hard_iface *primary_iface)
|
|
{
|
|
struct batadv_hard_iface *hard_iface;
|
|
|
|
/* update orig field of every elp iface belonging to this mesh */
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(hard_iface, &batadv_hardif_list, list) {
|
|
if (primary_iface->soft_iface != hard_iface->soft_iface)
|
|
continue;
|
|
|
|
batadv_v_elp_iface_activate(primary_iface, hard_iface);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_neigh_update - update an ELP neighbour node
|
|
* @bat_priv: the bat priv with all the soft interface information
|
|
* @neigh_addr: the neighbour interface address
|
|
* @if_incoming: the interface the packet was received through
|
|
* @elp_packet: the received ELP packet
|
|
*
|
|
* Updates the ELP neighbour node state with the data received within the new
|
|
* ELP packet.
|
|
*/
|
|
static void batadv_v_elp_neigh_update(struct batadv_priv *bat_priv,
|
|
u8 *neigh_addr,
|
|
struct batadv_hard_iface *if_incoming,
|
|
struct batadv_elp_packet *elp_packet)
|
|
|
|
{
|
|
struct batadv_neigh_node *neigh;
|
|
struct batadv_orig_node *orig_neigh;
|
|
struct batadv_hardif_neigh_node *hardif_neigh;
|
|
s32 seqno_diff;
|
|
s32 elp_latest_seqno;
|
|
|
|
orig_neigh = batadv_v_ogm_orig_get(bat_priv, elp_packet->orig);
|
|
if (!orig_neigh)
|
|
return;
|
|
|
|
neigh = batadv_neigh_node_new(orig_neigh, if_incoming, neigh_addr);
|
|
if (!neigh)
|
|
goto orig_free;
|
|
|
|
hardif_neigh = batadv_hardif_neigh_get(if_incoming, neigh_addr);
|
|
if (!hardif_neigh)
|
|
goto neigh_free;
|
|
|
|
elp_latest_seqno = hardif_neigh->bat_v.elp_latest_seqno;
|
|
seqno_diff = ntohl(elp_packet->seqno) - elp_latest_seqno;
|
|
|
|
/* known or older sequence numbers are ignored. However always adopt
|
|
* if the router seems to have been restarted.
|
|
*/
|
|
if (seqno_diff < 1 && seqno_diff > -BATADV_ELP_MAX_AGE)
|
|
goto hardif_free;
|
|
|
|
neigh->last_seen = jiffies;
|
|
hardif_neigh->last_seen = jiffies;
|
|
hardif_neigh->bat_v.elp_latest_seqno = ntohl(elp_packet->seqno);
|
|
hardif_neigh->bat_v.elp_interval = ntohl(elp_packet->elp_interval);
|
|
|
|
hardif_free:
|
|
if (hardif_neigh)
|
|
batadv_hardif_neigh_put(hardif_neigh);
|
|
neigh_free:
|
|
if (neigh)
|
|
batadv_neigh_node_put(neigh);
|
|
orig_free:
|
|
if (orig_neigh)
|
|
batadv_orig_node_put(orig_neigh);
|
|
}
|
|
|
|
/**
|
|
* batadv_v_elp_packet_recv - main ELP packet handler
|
|
* @skb: the received packet
|
|
* @if_incoming: the interface this packet was received through
|
|
*
|
|
* Return: NET_RX_SUCCESS and consumes the skb if the packet was peoperly
|
|
* processed or NET_RX_DROP in case of failure.
|
|
*/
|
|
int batadv_v_elp_packet_recv(struct sk_buff *skb,
|
|
struct batadv_hard_iface *if_incoming)
|
|
{
|
|
struct batadv_priv *bat_priv = netdev_priv(if_incoming->soft_iface);
|
|
struct batadv_elp_packet *elp_packet;
|
|
struct batadv_hard_iface *primary_if;
|
|
struct ethhdr *ethhdr = (struct ethhdr *)skb_mac_header(skb);
|
|
bool ret;
|
|
|
|
ret = batadv_check_management_packet(skb, if_incoming, BATADV_ELP_HLEN);
|
|
if (!ret)
|
|
return NET_RX_DROP;
|
|
|
|
if (batadv_is_my_mac(bat_priv, ethhdr->h_source))
|
|
return NET_RX_DROP;
|
|
|
|
/* did we receive a B.A.T.M.A.N. V ELP packet on an interface
|
|
* that does not have B.A.T.M.A.N. V ELP enabled ?
|
|
*/
|
|
if (strcmp(bat_priv->bat_algo_ops->name, "BATMAN_V") != 0)
|
|
return NET_RX_DROP;
|
|
|
|
elp_packet = (struct batadv_elp_packet *)skb->data;
|
|
|
|
batadv_dbg(BATADV_DBG_BATMAN, bat_priv,
|
|
"Received ELP packet from %pM seqno %u ORIG: %pM\n",
|
|
ethhdr->h_source, ntohl(elp_packet->seqno),
|
|
elp_packet->orig);
|
|
|
|
primary_if = batadv_primary_if_get_selected(bat_priv);
|
|
if (!primary_if)
|
|
goto out;
|
|
|
|
batadv_v_elp_neigh_update(bat_priv, ethhdr->h_source, if_incoming,
|
|
elp_packet);
|
|
|
|
out:
|
|
if (primary_if)
|
|
batadv_hardif_put(primary_if);
|
|
consume_skb(skb);
|
|
return NET_RX_SUCCESS;
|
|
}
|