linux/tools/power/x86/turbostat/turbostat.c
Len Brown 866d2d36b8 tools/power turbostat: version 2024.07.26
Release 2024.07.26:

Enable turbostat extensions to add both perf and PMT
(Intel Platform Monitoring Technology) counters from the cmdline.

Demonstrate PMT access with built-in support for Meteor Lake's Die%c6 counter.

This commit:

Clean up white-space nits introduced since version 2024.05.10

Signed-off-by: Len Brown <len.brown@intel.com>
2024-07-26 14:36:08 -04:00

9972 lines
263 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* turbostat -- show CPU frequency and C-state residency
* on modern Intel and AMD processors.
*
* Copyright (c) 2024 Intel Corporation.
* Len Brown <len.brown@intel.com>
*/
#define _GNU_SOURCE
#include MSRHEADER
// copied from arch/x86/include/asm/cpu_device_id.h
#define VFM_MODEL_BIT 0
#define VFM_FAMILY_BIT 8
#define VFM_VENDOR_BIT 16
#define VFM_RSVD_BIT 24
#define VFM_MODEL_MASK GENMASK(VFM_FAMILY_BIT - 1, VFM_MODEL_BIT)
#define VFM_FAMILY_MASK GENMASK(VFM_VENDOR_BIT - 1, VFM_FAMILY_BIT)
#define VFM_VENDOR_MASK GENMASK(VFM_RSVD_BIT - 1, VFM_VENDOR_BIT)
#define VFM_MODEL(vfm) (((vfm) & VFM_MODEL_MASK) >> VFM_MODEL_BIT)
#define VFM_FAMILY(vfm) (((vfm) & VFM_FAMILY_MASK) >> VFM_FAMILY_BIT)
#define VFM_VENDOR(vfm) (((vfm) & VFM_VENDOR_MASK) >> VFM_VENDOR_BIT)
#define VFM_MAKE(_vendor, _family, _model) ( \
((_model) << VFM_MODEL_BIT) | \
((_family) << VFM_FAMILY_BIT) | \
((_vendor) << VFM_VENDOR_BIT) \
)
// end copied section
#define X86_VENDOR_INTEL 0
#include INTEL_FAMILY_HEADER
#include BUILD_BUG_HEADER
#include <stdarg.h>
#include <stdio.h>
#include <err.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/select.h>
#include <sys/resource.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/time.h>
#include <stdlib.h>
#include <getopt.h>
#include <dirent.h>
#include <string.h>
#include <ctype.h>
#include <sched.h>
#include <time.h>
#include <cpuid.h>
#include <sys/capability.h>
#include <errno.h>
#include <math.h>
#include <linux/perf_event.h>
#include <asm/unistd.h>
#include <stdbool.h>
#include <assert.h>
#include <linux/kernel.h>
#define UNUSED(x) (void)(x)
/*
* This list matches the column headers, except
* 1. built-in only, the sysfs counters are not here -- we learn of those at run-time
* 2. Core and CPU are moved to the end, we can't have strings that contain them
* matching on them for --show and --hide.
*/
/*
* buffer size used by sscanf() for added column names
* Usually truncated to 7 characters, but also handles 18 columns for raw 64-bit counters
*/
#define NAME_BYTES 20
#define PATH_BYTES 128
#define PERF_NAME_BYTES 128
#define MAX_NOFILE 0x8000
#define COUNTER_KIND_PERF_PREFIX "perf/"
#define COUNTER_KIND_PERF_PREFIX_LEN strlen(COUNTER_KIND_PERF_PREFIX)
#define PERF_DEV_NAME_BYTES 32
#define PERF_EVT_NAME_BYTES 32
enum counter_scope { SCOPE_CPU, SCOPE_CORE, SCOPE_PACKAGE };
enum counter_type { COUNTER_ITEMS, COUNTER_CYCLES, COUNTER_SECONDS, COUNTER_USEC, COUNTER_K2M };
enum counter_format { FORMAT_RAW, FORMAT_DELTA, FORMAT_PERCENT, FORMAT_AVERAGE };
enum counter_source { COUNTER_SOURCE_NONE, COUNTER_SOURCE_PERF, COUNTER_SOURCE_MSR };
struct perf_counter_info {
struct perf_counter_info *next;
/* How to open the counter / What counter it is. */
char device[PERF_DEV_NAME_BYTES];
char event[PERF_EVT_NAME_BYTES];
/* How to show/format the counter. */
char name[PERF_NAME_BYTES];
unsigned int width;
enum counter_scope scope;
enum counter_type type;
enum counter_format format;
double scale;
/* For reading the counter. */
int *fd_perf_per_domain;
size_t num_domains;
};
struct sysfs_path {
char path[PATH_BYTES];
int id;
struct sysfs_path *next;
};
struct msr_counter {
unsigned int msr_num;
char name[NAME_BYTES];
struct sysfs_path *sp;
unsigned int width;
enum counter_type type;
enum counter_format format;
struct msr_counter *next;
unsigned int flags;
#define FLAGS_HIDE (1 << 0)
#define FLAGS_SHOW (1 << 1)
#define SYSFS_PERCPU (1 << 1)
};
struct msr_counter bic[] = {
{ 0x0, "usec", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Time_Of_Day_Seconds", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Package", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Node", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Avg_MHz", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Busy%", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Bzy_MHz", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "TSC_MHz", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "IRQ", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "SMI", NULL, 32, 0, FORMAT_DELTA, NULL, 0 },
{ 0x0, "sysfs", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CPU%c1", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CPU%c3", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CPU%c6", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CPU%c7", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "ThreadC", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CoreTmp", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CoreCnt", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "PkgTmp", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "GFX%rc6", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "GFXMHz", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Pkg%pc2", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Pkg%pc3", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Pkg%pc6", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Pkg%pc7", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Pkg%pc8", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Pkg%pc9", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Pk%pc10", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CPU%LPI", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "SYS%LPI", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "PkgWatt", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CorWatt", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "GFXWatt", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "PkgCnt", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "RAMWatt", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "PKG_%", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "RAM_%", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Pkg_J", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Cor_J", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "GFX_J", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "RAM_J", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Mod%c6", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Totl%C0", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Any%C0", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "GFX%C0", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CPUGFX%", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Core", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CPU", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "APIC", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "X2APIC", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Die", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "GFXAMHz", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "IPC", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "CoreThr", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "UncMHz", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "SAM%mc6", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "SAMMHz", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "SAMAMHz", NULL, 0, 0, 0, NULL, 0 },
{ 0x0, "Die%c6", NULL, 0, 0, 0, NULL, 0 },
};
#define MAX_BIC (sizeof(bic) / sizeof(struct msr_counter))
#define BIC_USEC (1ULL << 0)
#define BIC_TOD (1ULL << 1)
#define BIC_Package (1ULL << 2)
#define BIC_Node (1ULL << 3)
#define BIC_Avg_MHz (1ULL << 4)
#define BIC_Busy (1ULL << 5)
#define BIC_Bzy_MHz (1ULL << 6)
#define BIC_TSC_MHz (1ULL << 7)
#define BIC_IRQ (1ULL << 8)
#define BIC_SMI (1ULL << 9)
#define BIC_sysfs (1ULL << 10)
#define BIC_CPU_c1 (1ULL << 11)
#define BIC_CPU_c3 (1ULL << 12)
#define BIC_CPU_c6 (1ULL << 13)
#define BIC_CPU_c7 (1ULL << 14)
#define BIC_ThreadC (1ULL << 15)
#define BIC_CoreTmp (1ULL << 16)
#define BIC_CoreCnt (1ULL << 17)
#define BIC_PkgTmp (1ULL << 18)
#define BIC_GFX_rc6 (1ULL << 19)
#define BIC_GFXMHz (1ULL << 20)
#define BIC_Pkgpc2 (1ULL << 21)
#define BIC_Pkgpc3 (1ULL << 22)
#define BIC_Pkgpc6 (1ULL << 23)
#define BIC_Pkgpc7 (1ULL << 24)
#define BIC_Pkgpc8 (1ULL << 25)
#define BIC_Pkgpc9 (1ULL << 26)
#define BIC_Pkgpc10 (1ULL << 27)
#define BIC_CPU_LPI (1ULL << 28)
#define BIC_SYS_LPI (1ULL << 29)
#define BIC_PkgWatt (1ULL << 30)
#define BIC_CorWatt (1ULL << 31)
#define BIC_GFXWatt (1ULL << 32)
#define BIC_PkgCnt (1ULL << 33)
#define BIC_RAMWatt (1ULL << 34)
#define BIC_PKG__ (1ULL << 35)
#define BIC_RAM__ (1ULL << 36)
#define BIC_Pkg_J (1ULL << 37)
#define BIC_Cor_J (1ULL << 38)
#define BIC_GFX_J (1ULL << 39)
#define BIC_RAM_J (1ULL << 40)
#define BIC_Mod_c6 (1ULL << 41)
#define BIC_Totl_c0 (1ULL << 42)
#define BIC_Any_c0 (1ULL << 43)
#define BIC_GFX_c0 (1ULL << 44)
#define BIC_CPUGFX (1ULL << 45)
#define BIC_Core (1ULL << 46)
#define BIC_CPU (1ULL << 47)
#define BIC_APIC (1ULL << 48)
#define BIC_X2APIC (1ULL << 49)
#define BIC_Die (1ULL << 50)
#define BIC_GFXACTMHz (1ULL << 51)
#define BIC_IPC (1ULL << 52)
#define BIC_CORE_THROT_CNT (1ULL << 53)
#define BIC_UNCORE_MHZ (1ULL << 54)
#define BIC_SAM_mc6 (1ULL << 55)
#define BIC_SAMMHz (1ULL << 56)
#define BIC_SAMACTMHz (1ULL << 57)
#define BIC_Diec6 (1ULL << 58)
#define BIC_TOPOLOGY (BIC_Package | BIC_Node | BIC_CoreCnt | BIC_PkgCnt | BIC_Core | BIC_CPU | BIC_Die )
#define BIC_THERMAL_PWR ( BIC_CoreTmp | BIC_PkgTmp | BIC_PkgWatt | BIC_CorWatt | BIC_GFXWatt | BIC_RAMWatt | BIC_PKG__ | BIC_RAM__)
#define BIC_FREQUENCY (BIC_Avg_MHz | BIC_Busy | BIC_Bzy_MHz | BIC_TSC_MHz | BIC_GFXMHz | BIC_GFXACTMHz | BIC_SAMMHz | BIC_SAMACTMHz | BIC_UNCORE_MHZ)
#define BIC_IDLE (BIC_sysfs | BIC_CPU_c1 | BIC_CPU_c3 | BIC_CPU_c6 | BIC_CPU_c7 | BIC_GFX_rc6 | BIC_Pkgpc2 | BIC_Pkgpc3 | BIC_Pkgpc6 | BIC_Pkgpc7 | BIC_Pkgpc8 | BIC_Pkgpc9 | BIC_Pkgpc10 | BIC_CPU_LPI | BIC_SYS_LPI | BIC_Mod_c6 | BIC_Totl_c0 | BIC_Any_c0 | BIC_GFX_c0 | BIC_CPUGFX | BIC_SAM_mc6 | BIC_Diec6)
#define BIC_OTHER ( BIC_IRQ | BIC_SMI | BIC_ThreadC | BIC_CoreTmp | BIC_IPC)
#define BIC_DISABLED_BY_DEFAULT (BIC_USEC | BIC_TOD | BIC_APIC | BIC_X2APIC)
unsigned long long bic_enabled = (0xFFFFFFFFFFFFFFFFULL & ~BIC_DISABLED_BY_DEFAULT);
unsigned long long bic_present = BIC_USEC | BIC_TOD | BIC_sysfs | BIC_APIC | BIC_X2APIC;
#define DO_BIC(COUNTER_NAME) (bic_enabled & bic_present & COUNTER_NAME)
#define DO_BIC_READ(COUNTER_NAME) (bic_present & COUNTER_NAME)
#define ENABLE_BIC(COUNTER_NAME) (bic_enabled |= COUNTER_NAME)
#define BIC_PRESENT(COUNTER_BIT) (bic_present |= COUNTER_BIT)
#define BIC_NOT_PRESENT(COUNTER_BIT) (bic_present &= ~COUNTER_BIT)
#define BIC_IS_ENABLED(COUNTER_BIT) (bic_enabled & COUNTER_BIT)
/*
* MSR_PKG_CST_CONFIG_CONTROL decoding for pkg_cstate_limit:
* If you change the values, note they are used both in comparisons
* (>= PCL__7) and to index pkg_cstate_limit_strings[].
*/
#define PCLUKN 0 /* Unknown */
#define PCLRSV 1 /* Reserved */
#define PCL__0 2 /* PC0 */
#define PCL__1 3 /* PC1 */
#define PCL__2 4 /* PC2 */
#define PCL__3 5 /* PC3 */
#define PCL__4 6 /* PC4 */
#define PCL__6 7 /* PC6 */
#define PCL_6N 8 /* PC6 No Retention */
#define PCL_6R 9 /* PC6 Retention */
#define PCL__7 10 /* PC7 */
#define PCL_7S 11 /* PC7 Shrink */
#define PCL__8 12 /* PC8 */
#define PCL__9 13 /* PC9 */
#define PCL_10 14 /* PC10 */
#define PCLUNL 15 /* Unlimited */
struct amperf_group_fd;
char *proc_stat = "/proc/stat";
FILE *outf;
int *fd_percpu;
int *fd_instr_count_percpu;
struct timeval interval_tv = { 5, 0 };
struct timespec interval_ts = { 5, 0 };
unsigned int num_iterations;
unsigned int header_iterations;
unsigned int debug;
unsigned int quiet;
unsigned int shown;
unsigned int sums_need_wide_columns;
unsigned int rapl_joules;
unsigned int summary_only;
unsigned int list_header_only;
unsigned int dump_only;
unsigned int has_aperf;
unsigned int has_aperf_access;
unsigned int has_epb;
unsigned int has_turbo;
unsigned int is_hybrid;
unsigned int units = 1000000; /* MHz etc */
unsigned int genuine_intel;
unsigned int authentic_amd;
unsigned int hygon_genuine;
unsigned int max_level, max_extended_level;
unsigned int has_invariant_tsc;
unsigned int aperf_mperf_multiplier = 1;
double bclk;
double base_hz;
unsigned int has_base_hz;
double tsc_tweak = 1.0;
unsigned int show_pkg_only;
unsigned int show_core_only;
char *output_buffer, *outp;
unsigned int do_dts;
unsigned int do_ptm;
unsigned int do_ipc;
unsigned long long cpuidle_cur_cpu_lpi_us;
unsigned long long cpuidle_cur_sys_lpi_us;
unsigned int tj_max;
unsigned int tj_max_override;
double rapl_power_units, rapl_time_units;
double rapl_dram_energy_units, rapl_energy_units;
double rapl_joule_counter_range;
unsigned int crystal_hz;
unsigned long long tsc_hz;
int base_cpu;
unsigned int has_hwp; /* IA32_PM_ENABLE, IA32_HWP_CAPABILITIES */
/* IA32_HWP_REQUEST, IA32_HWP_STATUS */
unsigned int has_hwp_notify; /* IA32_HWP_INTERRUPT */
unsigned int has_hwp_activity_window; /* IA32_HWP_REQUEST[bits 41:32] */
unsigned int has_hwp_epp; /* IA32_HWP_REQUEST[bits 31:24] */
unsigned int has_hwp_pkg; /* IA32_HWP_REQUEST_PKG */
unsigned int first_counter_read = 1;
int ignore_stdin;
bool no_msr;
bool no_perf;
enum gfx_sysfs_idx {
GFX_rc6,
GFX_MHz,
GFX_ACTMHz,
SAM_mc6,
SAM_MHz,
SAM_ACTMHz,
GFX_MAX
};
struct gfx_sysfs_info {
const char *path;
FILE *fp;
unsigned int val;
unsigned long long val_ull;
};
static struct gfx_sysfs_info gfx_info[GFX_MAX];
int get_msr(int cpu, off_t offset, unsigned long long *msr);
int add_counter(unsigned int msr_num, char *path, char *name,
unsigned int width, enum counter_scope scope,
enum counter_type type, enum counter_format format, int flags, int package_num);
/* Model specific support Start */
/* List of features that may diverge among different platforms */
struct platform_features {
bool has_msr_misc_feature_control; /* MSR_MISC_FEATURE_CONTROL */
bool has_msr_misc_pwr_mgmt; /* MSR_MISC_PWR_MGMT */
bool has_nhm_msrs; /* MSR_PLATFORM_INFO, MSR_IA32_TEMPERATURE_TARGET, MSR_SMI_COUNT, MSR_PKG_CST_CONFIG_CONTROL, MSR_IA32_POWER_CTL, TRL MSRs */
bool has_config_tdp; /* MSR_CONFIG_TDP_NOMINAL/LEVEL_1/LEVEL_2/CONTROL, MSR_TURBO_ACTIVATION_RATIO */
int bclk_freq; /* CPU base clock */
int crystal_freq; /* Crystal clock to use when not available from CPUID.15 */
int supported_cstates; /* Core cstates and Package cstates supported */
int cst_limit; /* MSR_PKG_CST_CONFIG_CONTROL */
bool has_cst_auto_convension; /* AUTOMATIC_CSTATE_CONVERSION bit in MSR_PKG_CST_CONFIG_CONTROL */
bool has_irtl_msrs; /* MSR_PKGC3/PKGC6/PKGC7/PKGC8/PKGC9/PKGC10_IRTL */
bool has_msr_core_c1_res; /* MSR_CORE_C1_RES */
bool has_msr_module_c6_res_ms; /* MSR_MODULE_C6_RES_MS */
bool has_msr_c6_demotion_policy_config; /* MSR_CC6_DEMOTION_POLICY_CONFIG/MSR_MC6_DEMOTION_POLICY_CONFIG */
bool has_msr_atom_pkg_c6_residency; /* MSR_ATOM_PKG_C6_RESIDENCY */
bool has_msr_knl_core_c6_residency; /* MSR_KNL_CORE_C6_RESIDENCY */
bool has_ext_cst_msrs; /* MSR_PKG_WEIGHTED_CORE_C0_RES/MSR_PKG_ANY_CORE_C0_RES/MSR_PKG_ANY_GFXE_C0_RES/MSR_PKG_BOTH_CORE_GFXE_C0_RES */
bool has_cst_prewake_bit; /* Cstate prewake bit in MSR_IA32_POWER_CTL */
int trl_msrs; /* MSR_TURBO_RATIO_LIMIT/LIMIT1/LIMIT2/SECONDARY, Atom TRL MSRs */
int plr_msrs; /* MSR_CORE/GFX/RING_PERF_LIMIT_REASONS */
int rapl_msrs; /* RAPL PKG/DRAM/CORE/GFX MSRs, AMD RAPL MSRs */
bool has_per_core_rapl; /* Indicates cores energy collection is per-core, not per-package. AMD specific for now */
bool has_rapl_divisor; /* Divisor for Energy unit raw value from MSR_RAPL_POWER_UNIT */
bool has_fixed_rapl_unit; /* Fixed Energy Unit used for DRAM RAPL Domain */
int rapl_quirk_tdp; /* Hardcoded TDP value when cannot be retrieved from hardware */
int tcc_offset_bits; /* TCC Offset bits in MSR_IA32_TEMPERATURE_TARGET */
bool enable_tsc_tweak; /* Use CPU Base freq instead of TSC freq for aperf/mperf counter */
bool need_perf_multiplier; /* mperf/aperf multiplier */
};
struct platform_data {
unsigned int vfm;
const struct platform_features *features;
};
/* For BCLK */
enum bclk_freq {
BCLK_100MHZ = 1,
BCLK_133MHZ,
BCLK_SLV,
};
#define SLM_BCLK_FREQS 5
double slm_freq_table[SLM_BCLK_FREQS] = { 83.3, 100.0, 133.3, 116.7, 80.0 };
double slm_bclk(void)
{
unsigned long long msr = 3;
unsigned int i;
double freq;
if (get_msr(base_cpu, MSR_FSB_FREQ, &msr))
fprintf(outf, "SLM BCLK: unknown\n");
i = msr & 0xf;
if (i >= SLM_BCLK_FREQS) {
fprintf(outf, "SLM BCLK[%d] invalid\n", i);
i = 3;
}
freq = slm_freq_table[i];
if (!quiet)
fprintf(outf, "SLM BCLK: %.1f Mhz\n", freq);
return freq;
}
/* For Package cstate limit */
enum package_cstate_limit {
CST_LIMIT_NHM = 1,
CST_LIMIT_SNB,
CST_LIMIT_HSW,
CST_LIMIT_SKX,
CST_LIMIT_ICX,
CST_LIMIT_SLV,
CST_LIMIT_AMT,
CST_LIMIT_KNL,
CST_LIMIT_GMT,
};
/* For Turbo Ratio Limit MSRs */
enum turbo_ratio_limit_msrs {
TRL_BASE = BIT(0),
TRL_LIMIT1 = BIT(1),
TRL_LIMIT2 = BIT(2),
TRL_ATOM = BIT(3),
TRL_KNL = BIT(4),
TRL_CORECOUNT = BIT(5),
};
/* For Perf Limit Reason MSRs */
enum perf_limit_reason_msrs {
PLR_CORE = BIT(0),
PLR_GFX = BIT(1),
PLR_RING = BIT(2),
};
/* For RAPL MSRs */
enum rapl_msrs {
RAPL_PKG_POWER_LIMIT = BIT(0), /* 0x610 MSR_PKG_POWER_LIMIT */
RAPL_PKG_ENERGY_STATUS = BIT(1), /* 0x611 MSR_PKG_ENERGY_STATUS */
RAPL_PKG_PERF_STATUS = BIT(2), /* 0x613 MSR_PKG_PERF_STATUS */
RAPL_PKG_POWER_INFO = BIT(3), /* 0x614 MSR_PKG_POWER_INFO */
RAPL_DRAM_POWER_LIMIT = BIT(4), /* 0x618 MSR_DRAM_POWER_LIMIT */
RAPL_DRAM_ENERGY_STATUS = BIT(5), /* 0x619 MSR_DRAM_ENERGY_STATUS */
RAPL_DRAM_PERF_STATUS = BIT(6), /* 0x61b MSR_DRAM_PERF_STATUS */
RAPL_DRAM_POWER_INFO = BIT(7), /* 0x61c MSR_DRAM_POWER_INFO */
RAPL_CORE_POWER_LIMIT = BIT(8), /* 0x638 MSR_PP0_POWER_LIMIT */
RAPL_CORE_ENERGY_STATUS = BIT(9), /* 0x639 MSR_PP0_ENERGY_STATUS */
RAPL_CORE_POLICY = BIT(10), /* 0x63a MSR_PP0_POLICY */
RAPL_GFX_POWER_LIMIT = BIT(11), /* 0x640 MSR_PP1_POWER_LIMIT */
RAPL_GFX_ENERGY_STATUS = BIT(12), /* 0x641 MSR_PP1_ENERGY_STATUS */
RAPL_GFX_POLICY = BIT(13), /* 0x642 MSR_PP1_POLICY */
RAPL_AMD_PWR_UNIT = BIT(14), /* 0xc0010299 MSR_AMD_RAPL_POWER_UNIT */
RAPL_AMD_CORE_ENERGY_STAT = BIT(15), /* 0xc001029a MSR_AMD_CORE_ENERGY_STATUS */
RAPL_AMD_PKG_ENERGY_STAT = BIT(16), /* 0xc001029b MSR_AMD_PKG_ENERGY_STATUS */
};
#define RAPL_PKG (RAPL_PKG_ENERGY_STATUS | RAPL_PKG_POWER_LIMIT)
#define RAPL_DRAM (RAPL_DRAM_ENERGY_STATUS | RAPL_DRAM_POWER_LIMIT)
#define RAPL_CORE (RAPL_CORE_ENERGY_STATUS | RAPL_CORE_POWER_LIMIT)
#define RAPL_GFX (RAPL_GFX_POWER_LIMIT | RAPL_GFX_ENERGY_STATUS)
#define RAPL_PKG_ALL (RAPL_PKG | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO)
#define RAPL_DRAM_ALL (RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_DRAM_POWER_INFO)
#define RAPL_CORE_ALL (RAPL_CORE | RAPL_CORE_POLICY)
#define RAPL_GFX_ALL (RAPL_GFX | RAPL_GFX_POLIGY)
#define RAPL_AMD_F17H (RAPL_AMD_PWR_UNIT | RAPL_AMD_CORE_ENERGY_STAT | RAPL_AMD_PKG_ENERGY_STAT)
/* For Cstates */
enum cstates {
CC1 = BIT(0),
CC3 = BIT(1),
CC6 = BIT(2),
CC7 = BIT(3),
PC2 = BIT(4),
PC3 = BIT(5),
PC6 = BIT(6),
PC7 = BIT(7),
PC8 = BIT(8),
PC9 = BIT(9),
PC10 = BIT(10),
};
static const struct platform_features nhm_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_133MHZ,
.supported_cstates = CC1 | CC3 | CC6 | PC3 | PC6,
.cst_limit = CST_LIMIT_NHM,
.trl_msrs = TRL_BASE,
};
static const struct platform_features nhx_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_133MHZ,
.supported_cstates = CC1 | CC3 | CC6 | PC3 | PC6,
.cst_limit = CST_LIMIT_NHM,
};
static const struct platform_features snb_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7,
.cst_limit = CST_LIMIT_SNB,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO,
};
static const struct platform_features snx_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7,
.cst_limit = CST_LIMIT_SNB,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM_ALL,
};
static const struct platform_features ivb_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7,
.cst_limit = CST_LIMIT_SNB,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO,
};
static const struct platform_features ivx_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7,
.cst_limit = CST_LIMIT_SNB,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE | TRL_LIMIT1,
.rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM_ALL,
};
static const struct platform_features hsw_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.plr_msrs = PLR_CORE | PLR_GFX | PLR_RING,
.rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO,
};
static const struct platform_features hsx_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE | TRL_LIMIT1 | TRL_LIMIT2,
.plr_msrs = PLR_CORE | PLR_RING,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL,
.has_fixed_rapl_unit = 1,
};
static const struct platform_features hswl_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.plr_msrs = PLR_CORE | PLR_GFX | PLR_RING,
.rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO,
};
static const struct platform_features hswg_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.plr_msrs = PLR_CORE | PLR_GFX | PLR_RING,
.rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO,
};
static const struct platform_features bdw_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO,
};
static const struct platform_features bdwg_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO,
};
static const struct platform_features bdx_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC3 | CC6 | PC2 | PC3 | PC6,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.has_cst_auto_convension = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL,
.has_fixed_rapl_unit = 1,
};
static const struct platform_features skl_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.crystal_freq = 24000000,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.has_ext_cst_msrs = 1,
.trl_msrs = TRL_BASE,
.tcc_offset_bits = 6,
.rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_GFX,
.enable_tsc_tweak = 1,
};
static const struct platform_features cnl_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.has_msr_core_c1_res = 1,
.has_ext_cst_msrs = 1,
.trl_msrs = TRL_BASE,
.tcc_offset_bits = 6,
.rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_GFX,
.enable_tsc_tweak = 1,
};
static const struct platform_features adl_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | CC7 | PC2 | PC3 | PC6 | PC8 | PC10,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.has_msr_core_c1_res = 1,
.has_ext_cst_msrs = 1,
.trl_msrs = TRL_BASE,
.tcc_offset_bits = 6,
.rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_GFX,
.enable_tsc_tweak = 1,
};
static const struct platform_features arl_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | CC7 | PC2 | PC3 | PC6 | PC10,
.cst_limit = CST_LIMIT_HSW,
.has_irtl_msrs = 1,
.has_msr_core_c1_res = 1,
.has_ext_cst_msrs = 1,
.trl_msrs = TRL_BASE,
.tcc_offset_bits = 6,
.rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_GFX,
.enable_tsc_tweak = 1,
};
static const struct platform_features skx_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | PC2 | PC6,
.cst_limit = CST_LIMIT_SKX,
.has_irtl_msrs = 1,
.has_cst_auto_convension = 1,
.trl_msrs = TRL_BASE | TRL_CORECOUNT,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL,
.has_fixed_rapl_unit = 1,
};
static const struct platform_features icx_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | PC2 | PC6,
.cst_limit = CST_LIMIT_ICX,
.has_msr_core_c1_res = 1,
.has_irtl_msrs = 1,
.has_cst_prewake_bit = 1,
.trl_msrs = TRL_BASE | TRL_CORECOUNT,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL,
.has_fixed_rapl_unit = 1,
};
static const struct platform_features spr_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | PC2 | PC6,
.cst_limit = CST_LIMIT_SKX,
.has_msr_core_c1_res = 1,
.has_irtl_msrs = 1,
.has_cst_prewake_bit = 1,
.trl_msrs = TRL_BASE | TRL_CORECOUNT,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL,
};
static const struct platform_features srf_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | PC2 | PC6,
.cst_limit = CST_LIMIT_SKX,
.has_msr_core_c1_res = 1,
.has_msr_module_c6_res_ms = 1,
.has_irtl_msrs = 1,
.has_cst_prewake_bit = 1,
.trl_msrs = TRL_BASE | TRL_CORECOUNT,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL,
};
static const struct platform_features grr_features = {
.has_msr_misc_feature_control = 1,
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6,
.cst_limit = CST_LIMIT_SKX,
.has_msr_core_c1_res = 1,
.has_msr_module_c6_res_ms = 1,
.has_irtl_msrs = 1,
.has_cst_prewake_bit = 1,
.trl_msrs = TRL_BASE | TRL_CORECOUNT,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL,
};
static const struct platform_features slv_features = {
.has_nhm_msrs = 1,
.bclk_freq = BCLK_SLV,
.supported_cstates = CC1 | CC6 | PC6,
.cst_limit = CST_LIMIT_SLV,
.has_msr_core_c1_res = 1,
.has_msr_module_c6_res_ms = 1,
.has_msr_c6_demotion_policy_config = 1,
.has_msr_atom_pkg_c6_residency = 1,
.trl_msrs = TRL_ATOM,
.rapl_msrs = RAPL_PKG | RAPL_CORE,
.has_rapl_divisor = 1,
.rapl_quirk_tdp = 30,
};
static const struct platform_features slvd_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_SLV,
.supported_cstates = CC1 | CC6 | PC3 | PC6,
.cst_limit = CST_LIMIT_SLV,
.has_msr_atom_pkg_c6_residency = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG | RAPL_CORE,
.rapl_quirk_tdp = 30,
};
static const struct platform_features amt_features = {
.has_nhm_msrs = 1,
.bclk_freq = BCLK_133MHZ,
.supported_cstates = CC1 | CC3 | CC6 | PC3 | PC6,
.cst_limit = CST_LIMIT_AMT,
.trl_msrs = TRL_BASE,
};
static const struct platform_features gmt_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_100MHZ,
.crystal_freq = 19200000,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10,
.cst_limit = CST_LIMIT_GMT,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE | TRL_CORECOUNT,
.rapl_msrs = RAPL_PKG | RAPL_PKG_POWER_INFO,
};
static const struct platform_features gmtd_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_100MHZ,
.crystal_freq = 25000000,
.supported_cstates = CC1 | CC6 | PC2 | PC6,
.cst_limit = CST_LIMIT_GMT,
.has_irtl_msrs = 1,
.has_msr_core_c1_res = 1,
.trl_msrs = TRL_BASE | TRL_CORECOUNT,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL | RAPL_CORE_ENERGY_STATUS,
};
static const struct platform_features gmtp_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_100MHZ,
.crystal_freq = 19200000,
.supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10,
.cst_limit = CST_LIMIT_GMT,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG | RAPL_PKG_POWER_INFO,
};
static const struct platform_features tmt_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10,
.cst_limit = CST_LIMIT_GMT,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE,
.rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_GFX,
.enable_tsc_tweak = 1,
};
static const struct platform_features tmtd_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6,
.cst_limit = CST_LIMIT_GMT,
.has_irtl_msrs = 1,
.trl_msrs = TRL_BASE | TRL_CORECOUNT,
.rapl_msrs = RAPL_PKG_ALL,
};
static const struct platform_features knl_features = {
.has_msr_misc_pwr_mgmt = 1,
.has_nhm_msrs = 1,
.has_config_tdp = 1,
.bclk_freq = BCLK_100MHZ,
.supported_cstates = CC1 | CC6 | PC3 | PC6,
.cst_limit = CST_LIMIT_KNL,
.has_msr_knl_core_c6_residency = 1,
.trl_msrs = TRL_KNL,
.rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL,
.has_fixed_rapl_unit = 1,
.need_perf_multiplier = 1,
};
static const struct platform_features default_features = {
};
static const struct platform_features amd_features_with_rapl = {
.rapl_msrs = RAPL_AMD_F17H,
.has_per_core_rapl = 1,
.rapl_quirk_tdp = 280, /* This is the max stock TDP of HEDT/Server Fam17h+ chips */
};
static const struct platform_data turbostat_pdata[] = {
{ INTEL_NEHALEM, &nhm_features },
{ INTEL_NEHALEM_G, &nhm_features },
{ INTEL_NEHALEM_EP, &nhm_features },
{ INTEL_NEHALEM_EX, &nhx_features },
{ INTEL_WESTMERE, &nhm_features },
{ INTEL_WESTMERE_EP, &nhm_features },
{ INTEL_WESTMERE_EX, &nhx_features },
{ INTEL_SANDYBRIDGE, &snb_features },
{ INTEL_SANDYBRIDGE_X, &snx_features },
{ INTEL_IVYBRIDGE, &ivb_features },
{ INTEL_IVYBRIDGE_X, &ivx_features },
{ INTEL_HASWELL, &hsw_features },
{ INTEL_HASWELL_X, &hsx_features },
{ INTEL_HASWELL_L, &hswl_features },
{ INTEL_HASWELL_G, &hswg_features },
{ INTEL_BROADWELL, &bdw_features },
{ INTEL_BROADWELL_G, &bdwg_features },
{ INTEL_BROADWELL_X, &bdx_features },
{ INTEL_BROADWELL_D, &bdx_features },
{ INTEL_SKYLAKE_L, &skl_features },
{ INTEL_SKYLAKE, &skl_features },
{ INTEL_SKYLAKE_X, &skx_features },
{ INTEL_KABYLAKE_L, &skl_features },
{ INTEL_KABYLAKE, &skl_features },
{ INTEL_COMETLAKE, &skl_features },
{ INTEL_COMETLAKE_L, &skl_features },
{ INTEL_CANNONLAKE_L, &cnl_features },
{ INTEL_ICELAKE_X, &icx_features },
{ INTEL_ICELAKE_D, &icx_features },
{ INTEL_ICELAKE_L, &cnl_features },
{ INTEL_ICELAKE_NNPI, &cnl_features },
{ INTEL_ROCKETLAKE, &cnl_features },
{ INTEL_TIGERLAKE_L, &cnl_features },
{ INTEL_TIGERLAKE, &cnl_features },
{ INTEL_SAPPHIRERAPIDS_X, &spr_features },
{ INTEL_EMERALDRAPIDS_X, &spr_features },
{ INTEL_GRANITERAPIDS_X, &spr_features },
{ INTEL_LAKEFIELD, &cnl_features },
{ INTEL_ALDERLAKE, &adl_features },
{ INTEL_ALDERLAKE_L, &adl_features },
{ INTEL_RAPTORLAKE, &adl_features },
{ INTEL_RAPTORLAKE_P, &adl_features },
{ INTEL_RAPTORLAKE_S, &adl_features },
{ INTEL_METEORLAKE, &cnl_features },
{ INTEL_METEORLAKE_L, &cnl_features },
{ INTEL_ARROWLAKE_H, &arl_features },
{ INTEL_ARROWLAKE_U, &arl_features },
{ INTEL_ARROWLAKE, &arl_features },
{ INTEL_LUNARLAKE_M, &arl_features },
{ INTEL_ATOM_SILVERMONT, &slv_features },
{ INTEL_ATOM_SILVERMONT_D, &slvd_features },
{ INTEL_ATOM_AIRMONT, &amt_features },
{ INTEL_ATOM_GOLDMONT, &gmt_features },
{ INTEL_ATOM_GOLDMONT_D, &gmtd_features },
{ INTEL_ATOM_GOLDMONT_PLUS, &gmtp_features },
{ INTEL_ATOM_TREMONT_D, &tmtd_features },
{ INTEL_ATOM_TREMONT, &tmt_features },
{ INTEL_ATOM_TREMONT_L, &tmt_features },
{ INTEL_ATOM_GRACEMONT, &adl_features },
{ INTEL_ATOM_CRESTMONT_X, &srf_features },
{ INTEL_ATOM_CRESTMONT, &grr_features },
{ INTEL_XEON_PHI_KNL, &knl_features },
{ INTEL_XEON_PHI_KNM, &knl_features },
/*
* Missing support for
* INTEL_ICELAKE
* INTEL_ATOM_SILVERMONT_MID
* INTEL_ATOM_AIRMONT_MID
* INTEL_ATOM_AIRMONT_NP
*/
{ 0, NULL },
};
static const struct platform_features *platform;
void probe_platform_features(unsigned int family, unsigned int model)
{
int i;
platform = &default_features;
if (authentic_amd || hygon_genuine) {
if (max_extended_level >= 0x80000007) {
unsigned int eax, ebx, ecx, edx;
__cpuid(0x80000007, eax, ebx, ecx, edx);
/* RAPL (Fam 17h+) */
if ((edx & (1 << 14)) && family >= 0x17)
platform = &amd_features_with_rapl;
}
return;
}
if (!genuine_intel)
return;
for (i = 0; turbostat_pdata[i].features; i++) {
if (VFM_FAMILY(turbostat_pdata[i].vfm) == family && VFM_MODEL(turbostat_pdata[i].vfm) == model) {
platform = turbostat_pdata[i].features;
return;
}
}
}
/* Model specific support End */
#define TJMAX_DEFAULT 100
/* MSRs that are not yet in the kernel-provided header. */
#define MSR_RAPL_PWR_UNIT 0xc0010299
#define MSR_CORE_ENERGY_STAT 0xc001029a
#define MSR_PKG_ENERGY_STAT 0xc001029b
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int backwards_count;
char *progname;
#define CPU_SUBSET_MAXCPUS 1024 /* need to use before probe... */
cpu_set_t *cpu_present_set, *cpu_effective_set, *cpu_allowed_set, *cpu_affinity_set, *cpu_subset;
size_t cpu_present_setsize, cpu_effective_setsize, cpu_allowed_setsize, cpu_affinity_setsize, cpu_subset_size;
#define MAX_ADDED_THREAD_COUNTERS 24
#define MAX_ADDED_CORE_COUNTERS 8
#define MAX_ADDED_PACKAGE_COUNTERS 16
#define PMT_MAX_ADDED_THREAD_COUNTERS 24
#define PMT_MAX_ADDED_CORE_COUNTERS 8
#define PMT_MAX_ADDED_PACKAGE_COUNTERS 16
#define BITMASK_SIZE 32
#define ZERO_ARRAY(arr) (memset(arr, 0, sizeof(arr)) + __must_be_array(arr))
/* Indexes used to map data read from perf and MSRs into global variables */
enum rapl_rci_index {
RAPL_RCI_INDEX_ENERGY_PKG = 0,
RAPL_RCI_INDEX_ENERGY_CORES = 1,
RAPL_RCI_INDEX_DRAM = 2,
RAPL_RCI_INDEX_GFX = 3,
RAPL_RCI_INDEX_PKG_PERF_STATUS = 4,
RAPL_RCI_INDEX_DRAM_PERF_STATUS = 5,
RAPL_RCI_INDEX_CORE_ENERGY = 6,
NUM_RAPL_COUNTERS,
};
enum rapl_unit {
RAPL_UNIT_INVALID,
RAPL_UNIT_JOULES,
RAPL_UNIT_WATTS,
};
struct rapl_counter_info_t {
unsigned long long data[NUM_RAPL_COUNTERS];
enum counter_source source[NUM_RAPL_COUNTERS];
unsigned long long flags[NUM_RAPL_COUNTERS];
double scale[NUM_RAPL_COUNTERS];
enum rapl_unit unit[NUM_RAPL_COUNTERS];
unsigned long long msr[NUM_RAPL_COUNTERS];
unsigned long long msr_mask[NUM_RAPL_COUNTERS];
int msr_shift[NUM_RAPL_COUNTERS];
int fd_perf;
};
/* struct rapl_counter_info_t for each RAPL domain */
struct rapl_counter_info_t *rapl_counter_info_perdomain;
unsigned int rapl_counter_info_perdomain_size;
#define RAPL_COUNTER_FLAG_USE_MSR_SUM (1u << 1)
struct rapl_counter_arch_info {
int feature_mask; /* Mask for testing if the counter is supported on host */
const char *perf_subsys;
const char *perf_name;
unsigned long long msr;
unsigned long long msr_mask;
int msr_shift; /* Positive mean shift right, negative mean shift left */
double *platform_rapl_msr_scale; /* Scale applied to values read by MSR (platform dependent, filled at runtime) */
unsigned int rci_index; /* Maps data from perf counters to global variables */
unsigned long long bic;
double compat_scale; /* Some counters require constant scaling to be in the same range as other, similar ones */
unsigned long long flags;
};
static const struct rapl_counter_arch_info rapl_counter_arch_infos[] = {
{
.feature_mask = RAPL_PKG,
.perf_subsys = "power",
.perf_name = "energy-pkg",
.msr = MSR_PKG_ENERGY_STATUS,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.msr_shift = 0,
.platform_rapl_msr_scale = &rapl_energy_units,
.rci_index = RAPL_RCI_INDEX_ENERGY_PKG,
.bic = BIC_PkgWatt | BIC_Pkg_J,
.compat_scale = 1.0,
.flags = RAPL_COUNTER_FLAG_USE_MSR_SUM,
},
{
.feature_mask = RAPL_AMD_F17H,
.perf_subsys = "power",
.perf_name = "energy-pkg",
.msr = MSR_PKG_ENERGY_STAT,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.msr_shift = 0,
.platform_rapl_msr_scale = &rapl_energy_units,
.rci_index = RAPL_RCI_INDEX_ENERGY_PKG,
.bic = BIC_PkgWatt | BIC_Pkg_J,
.compat_scale = 1.0,
.flags = RAPL_COUNTER_FLAG_USE_MSR_SUM,
},
{
.feature_mask = RAPL_CORE_ENERGY_STATUS,
.perf_subsys = "power",
.perf_name = "energy-cores",
.msr = MSR_PP0_ENERGY_STATUS,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.msr_shift = 0,
.platform_rapl_msr_scale = &rapl_energy_units,
.rci_index = RAPL_RCI_INDEX_ENERGY_CORES,
.bic = BIC_CorWatt | BIC_Cor_J,
.compat_scale = 1.0,
.flags = RAPL_COUNTER_FLAG_USE_MSR_SUM,
},
{
.feature_mask = RAPL_DRAM,
.perf_subsys = "power",
.perf_name = "energy-ram",
.msr = MSR_DRAM_ENERGY_STATUS,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.msr_shift = 0,
.platform_rapl_msr_scale = &rapl_dram_energy_units,
.rci_index = RAPL_RCI_INDEX_DRAM,
.bic = BIC_RAMWatt | BIC_RAM_J,
.compat_scale = 1.0,
.flags = RAPL_COUNTER_FLAG_USE_MSR_SUM,
},
{
.feature_mask = RAPL_GFX,
.perf_subsys = "power",
.perf_name = "energy-gpu",
.msr = MSR_PP1_ENERGY_STATUS,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.msr_shift = 0,
.platform_rapl_msr_scale = &rapl_energy_units,
.rci_index = RAPL_RCI_INDEX_GFX,
.bic = BIC_GFXWatt | BIC_GFX_J,
.compat_scale = 1.0,
.flags = RAPL_COUNTER_FLAG_USE_MSR_SUM,
},
{
.feature_mask = RAPL_PKG_PERF_STATUS,
.perf_subsys = NULL,
.perf_name = NULL,
.msr = MSR_PKG_PERF_STATUS,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.msr_shift = 0,
.platform_rapl_msr_scale = &rapl_time_units,
.rci_index = RAPL_RCI_INDEX_PKG_PERF_STATUS,
.bic = BIC_PKG__,
.compat_scale = 100.0,
.flags = RAPL_COUNTER_FLAG_USE_MSR_SUM,
},
{
.feature_mask = RAPL_DRAM_PERF_STATUS,
.perf_subsys = NULL,
.perf_name = NULL,
.msr = MSR_DRAM_PERF_STATUS,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.msr_shift = 0,
.platform_rapl_msr_scale = &rapl_time_units,
.rci_index = RAPL_RCI_INDEX_DRAM_PERF_STATUS,
.bic = BIC_RAM__,
.compat_scale = 100.0,
.flags = RAPL_COUNTER_FLAG_USE_MSR_SUM,
},
{
.feature_mask = RAPL_AMD_F17H,
.perf_subsys = NULL,
.perf_name = NULL,
.msr = MSR_CORE_ENERGY_STAT,
.msr_mask = 0xFFFFFFFF,
.msr_shift = 0,
.platform_rapl_msr_scale = &rapl_energy_units,
.rci_index = RAPL_RCI_INDEX_CORE_ENERGY,
.bic = BIC_CorWatt | BIC_Cor_J,
.compat_scale = 1.0,
.flags = 0,
},
};
struct rapl_counter {
unsigned long long raw_value;
enum rapl_unit unit;
double scale;
};
/* Indexes used to map data read from perf and MSRs into global variables */
enum ccstate_rci_index {
CCSTATE_RCI_INDEX_C1_RESIDENCY = 0,
CCSTATE_RCI_INDEX_C3_RESIDENCY = 1,
CCSTATE_RCI_INDEX_C6_RESIDENCY = 2,
CCSTATE_RCI_INDEX_C7_RESIDENCY = 3,
PCSTATE_RCI_INDEX_C2_RESIDENCY = 4,
PCSTATE_RCI_INDEX_C3_RESIDENCY = 5,
PCSTATE_RCI_INDEX_C6_RESIDENCY = 6,
PCSTATE_RCI_INDEX_C7_RESIDENCY = 7,
PCSTATE_RCI_INDEX_C8_RESIDENCY = 8,
PCSTATE_RCI_INDEX_C9_RESIDENCY = 9,
PCSTATE_RCI_INDEX_C10_RESIDENCY = 10,
NUM_CSTATE_COUNTERS,
};
struct cstate_counter_info_t {
unsigned long long data[NUM_CSTATE_COUNTERS];
enum counter_source source[NUM_CSTATE_COUNTERS];
unsigned long long msr[NUM_CSTATE_COUNTERS];
int fd_perf_core;
int fd_perf_pkg;
};
struct cstate_counter_info_t *ccstate_counter_info;
unsigned int ccstate_counter_info_size;
#define CSTATE_COUNTER_FLAG_COLLECT_PER_CORE (1u << 0)
#define CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD ((1u << 1) | CSTATE_COUNTER_FLAG_COLLECT_PER_CORE)
#define CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY (1u << 2)
struct cstate_counter_arch_info {
int feature_mask; /* Mask for testing if the counter is supported on host */
const char *perf_subsys;
const char *perf_name;
unsigned long long msr;
unsigned int rci_index; /* Maps data from perf counters to global variables */
unsigned long long bic;
unsigned long long flags;
int pkg_cstate_limit;
};
static struct cstate_counter_arch_info ccstate_counter_arch_infos[] = {
{
.feature_mask = CC1,
.perf_subsys = "cstate_core",
.perf_name = "c1-residency",
.msr = MSR_CORE_C1_RES,
.rci_index = CCSTATE_RCI_INDEX_C1_RESIDENCY,
.bic = BIC_CPU_c1,
.flags = CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD,
.pkg_cstate_limit = 0,
},
{
.feature_mask = CC3,
.perf_subsys = "cstate_core",
.perf_name = "c3-residency",
.msr = MSR_CORE_C3_RESIDENCY,
.rci_index = CCSTATE_RCI_INDEX_C3_RESIDENCY,
.bic = BIC_CPU_c3,
.flags = CSTATE_COUNTER_FLAG_COLLECT_PER_CORE | CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY,
.pkg_cstate_limit = 0,
},
{
.feature_mask = CC6,
.perf_subsys = "cstate_core",
.perf_name = "c6-residency",
.msr = MSR_CORE_C6_RESIDENCY,
.rci_index = CCSTATE_RCI_INDEX_C6_RESIDENCY,
.bic = BIC_CPU_c6,
.flags = CSTATE_COUNTER_FLAG_COLLECT_PER_CORE | CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY,
.pkg_cstate_limit = 0,
},
{
.feature_mask = CC7,
.perf_subsys = "cstate_core",
.perf_name = "c7-residency",
.msr = MSR_CORE_C7_RESIDENCY,
.rci_index = CCSTATE_RCI_INDEX_C7_RESIDENCY,
.bic = BIC_CPU_c7,
.flags = CSTATE_COUNTER_FLAG_COLLECT_PER_CORE | CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY,
.pkg_cstate_limit = 0,
},
{
.feature_mask = PC2,
.perf_subsys = "cstate_pkg",
.perf_name = "c2-residency",
.msr = MSR_PKG_C2_RESIDENCY,
.rci_index = PCSTATE_RCI_INDEX_C2_RESIDENCY,
.bic = BIC_Pkgpc2,
.flags = 0,
.pkg_cstate_limit = PCL__2,
},
{
.feature_mask = PC3,
.perf_subsys = "cstate_pkg",
.perf_name = "c3-residency",
.msr = MSR_PKG_C3_RESIDENCY,
.rci_index = PCSTATE_RCI_INDEX_C3_RESIDENCY,
.bic = BIC_Pkgpc3,
.flags = 0,
.pkg_cstate_limit = PCL__3,
},
{
.feature_mask = PC6,
.perf_subsys = "cstate_pkg",
.perf_name = "c6-residency",
.msr = MSR_PKG_C6_RESIDENCY,
.rci_index = PCSTATE_RCI_INDEX_C6_RESIDENCY,
.bic = BIC_Pkgpc6,
.flags = 0,
.pkg_cstate_limit = PCL__6,
},
{
.feature_mask = PC7,
.perf_subsys = "cstate_pkg",
.perf_name = "c7-residency",
.msr = MSR_PKG_C7_RESIDENCY,
.rci_index = PCSTATE_RCI_INDEX_C7_RESIDENCY,
.bic = BIC_Pkgpc7,
.flags = 0,
.pkg_cstate_limit = PCL__7,
},
{
.feature_mask = PC8,
.perf_subsys = "cstate_pkg",
.perf_name = "c8-residency",
.msr = MSR_PKG_C8_RESIDENCY,
.rci_index = PCSTATE_RCI_INDEX_C8_RESIDENCY,
.bic = BIC_Pkgpc8,
.flags = 0,
.pkg_cstate_limit = PCL__8,
},
{
.feature_mask = PC9,
.perf_subsys = "cstate_pkg",
.perf_name = "c9-residency",
.msr = MSR_PKG_C9_RESIDENCY,
.rci_index = PCSTATE_RCI_INDEX_C9_RESIDENCY,
.bic = BIC_Pkgpc9,
.flags = 0,
.pkg_cstate_limit = PCL__9,
},
{
.feature_mask = PC10,
.perf_subsys = "cstate_pkg",
.perf_name = "c10-residency",
.msr = MSR_PKG_C10_RESIDENCY,
.rci_index = PCSTATE_RCI_INDEX_C10_RESIDENCY,
.bic = BIC_Pkgpc10,
.flags = 0,
.pkg_cstate_limit = PCL_10,
},
};
/* Indexes used to map data read from perf and MSRs into global variables */
enum msr_rci_index {
MSR_RCI_INDEX_APERF = 0,
MSR_RCI_INDEX_MPERF = 1,
MSR_RCI_INDEX_SMI = 2,
NUM_MSR_COUNTERS,
};
struct msr_counter_info_t {
unsigned long long data[NUM_MSR_COUNTERS];
enum counter_source source[NUM_MSR_COUNTERS];
unsigned long long msr[NUM_MSR_COUNTERS];
unsigned long long msr_mask[NUM_MSR_COUNTERS];
int fd_perf;
};
struct msr_counter_info_t *msr_counter_info;
unsigned int msr_counter_info_size;
struct msr_counter_arch_info {
const char *perf_subsys;
const char *perf_name;
unsigned long long msr;
unsigned long long msr_mask;
unsigned int rci_index; /* Maps data from perf counters to global variables */
bool needed;
bool present;
};
enum msr_arch_info_index {
MSR_ARCH_INFO_APERF_INDEX = 0,
MSR_ARCH_INFO_MPERF_INDEX = 1,
MSR_ARCH_INFO_SMI_INDEX = 2,
};
static struct msr_counter_arch_info msr_counter_arch_infos[] = {
[MSR_ARCH_INFO_APERF_INDEX] = {
.perf_subsys = "msr",
.perf_name = "aperf",
.msr = MSR_IA32_APERF,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.rci_index = MSR_RCI_INDEX_APERF,
},
[MSR_ARCH_INFO_MPERF_INDEX] = {
.perf_subsys = "msr",
.perf_name = "mperf",
.msr = MSR_IA32_MPERF,
.msr_mask = 0xFFFFFFFFFFFFFFFF,
.rci_index = MSR_RCI_INDEX_MPERF,
},
[MSR_ARCH_INFO_SMI_INDEX] = {
.perf_subsys = "msr",
.perf_name = "smi",
.msr = MSR_SMI_COUNT,
.msr_mask = 0xFFFFFFFF,
.rci_index = MSR_RCI_INDEX_SMI,
},
};
/* Can be redefined when compiling, useful for testing. */
#ifndef SYSFS_TELEM_PATH
#define SYSFS_TELEM_PATH "/sys/class/intel_pmt"
#endif
#define PMT_COUNTER_MTL_DC6_OFFSET 120
#define PMT_COUNTER_MTL_DC6_LSB 0
#define PMT_COUNTER_MTL_DC6_MSB 63
#define PMT_MTL_DC6_GUID 0x1a067102
#define PMT_COUNTER_NAME_SIZE_BYTES 16
#define PMT_COUNTER_TYPE_NAME_SIZE_BYTES 32
struct pmt_mmio {
struct pmt_mmio *next;
unsigned int guid;
unsigned int size;
/* Base pointer to the mmaped memory. */
void *mmio_base;
/*
* Offset to be applied to the mmio_base
* to get the beginning of the PMT counters for given GUID.
*/
unsigned long pmt_offset;
} *pmt_mmios;
enum pmt_datatype {
PMT_TYPE_RAW,
PMT_TYPE_XTAL_TIME,
};
struct pmt_domain_info {
/*
* Pointer to the MMIO obtained by applying a counter offset
* to the mmio_base of the mmaped region for the given GUID.
*
* This is where to read the raw value of the counter from.
*/
unsigned long *pcounter;
};
struct pmt_counter {
struct pmt_counter *next;
/* PMT metadata */
char name[PMT_COUNTER_NAME_SIZE_BYTES];
enum pmt_datatype type;
enum counter_scope scope;
unsigned int lsb;
unsigned int msb;
/* BIC-like metadata */
enum counter_format format;
unsigned int num_domains;
struct pmt_domain_info *domains;
};
unsigned int pmt_counter_get_width(const struct pmt_counter *p)
{
return (p->msb - p->lsb) + 1;
}
void pmt_counter_resize_(struct pmt_counter *pcounter, unsigned int new_size)
{
struct pmt_domain_info *new_mem;
new_mem = (struct pmt_domain_info *)reallocarray(pcounter->domains, new_size, sizeof(*pcounter->domains));
if (!new_mem) {
fprintf(stderr, "%s: failed to allocate memory for PMT counters\n", __func__);
exit(1);
}
/* Zero initialize just allocated memory. */
const size_t num_new_domains = new_size - pcounter->num_domains;
memset(&new_mem[pcounter->num_domains], 0, num_new_domains * sizeof(*pcounter->domains));
pcounter->num_domains = new_size;
pcounter->domains = new_mem;
}
void pmt_counter_resize(struct pmt_counter *pcounter, unsigned int new_size)
{
/*
* Allocate more memory ahead of time.
*
* Always allocate space for at least 8 elements
* and double the size when growing.
*/
if (new_size < 8)
new_size = 8;
new_size = MAX(new_size, pcounter->num_domains * 2);
pmt_counter_resize_(pcounter, new_size);
}
struct thread_data {
struct timeval tv_begin;
struct timeval tv_end;
struct timeval tv_delta;
unsigned long long tsc;
unsigned long long aperf;
unsigned long long mperf;
unsigned long long c1;
unsigned long long instr_count;
unsigned long long irq_count;
unsigned int smi_count;
unsigned int cpu_id;
unsigned int apic_id;
unsigned int x2apic_id;
unsigned int flags;
bool is_atom;
unsigned long long counter[MAX_ADDED_THREAD_COUNTERS];
unsigned long long perf_counter[MAX_ADDED_THREAD_COUNTERS];
unsigned long long pmt_counter[PMT_MAX_ADDED_THREAD_COUNTERS];
} *thread_even, *thread_odd;
struct core_data {
int base_cpu;
unsigned long long c3;
unsigned long long c6;
unsigned long long c7;
unsigned long long mc6_us; /* duplicate as per-core for now, even though per module */
unsigned int core_temp_c;
struct rapl_counter core_energy; /* MSR_CORE_ENERGY_STAT */
unsigned int core_id;
unsigned long long core_throt_cnt;
unsigned long long counter[MAX_ADDED_CORE_COUNTERS];
unsigned long long perf_counter[MAX_ADDED_CORE_COUNTERS];
unsigned long long pmt_counter[PMT_MAX_ADDED_CORE_COUNTERS];
} *core_even, *core_odd;
struct pkg_data {
int base_cpu;
unsigned long long pc2;
unsigned long long pc3;
unsigned long long pc6;
unsigned long long pc7;
unsigned long long pc8;
unsigned long long pc9;
unsigned long long pc10;
long long cpu_lpi;
long long sys_lpi;
unsigned long long pkg_wtd_core_c0;
unsigned long long pkg_any_core_c0;
unsigned long long pkg_any_gfxe_c0;
unsigned long long pkg_both_core_gfxe_c0;
long long gfx_rc6_ms;
unsigned int gfx_mhz;
unsigned int gfx_act_mhz;
long long sam_mc6_ms;
unsigned int sam_mhz;
unsigned int sam_act_mhz;
unsigned int package_id;
struct rapl_counter energy_pkg; /* MSR_PKG_ENERGY_STATUS */
struct rapl_counter energy_dram; /* MSR_DRAM_ENERGY_STATUS */
struct rapl_counter energy_cores; /* MSR_PP0_ENERGY_STATUS */
struct rapl_counter energy_gfx; /* MSR_PP1_ENERGY_STATUS */
struct rapl_counter rapl_pkg_perf_status; /* MSR_PKG_PERF_STATUS */
struct rapl_counter rapl_dram_perf_status; /* MSR_DRAM_PERF_STATUS */
unsigned int pkg_temp_c;
unsigned int uncore_mhz;
unsigned long long die_c6;
unsigned long long counter[MAX_ADDED_PACKAGE_COUNTERS];
unsigned long long perf_counter[MAX_ADDED_PACKAGE_COUNTERS];
unsigned long long pmt_counter[PMT_MAX_ADDED_PACKAGE_COUNTERS];
} *package_even, *package_odd;
#define ODD_COUNTERS thread_odd, core_odd, package_odd
#define EVEN_COUNTERS thread_even, core_even, package_even
#define GET_THREAD(thread_base, thread_no, core_no, node_no, pkg_no) \
((thread_base) + \
((pkg_no) * \
topo.nodes_per_pkg * topo.cores_per_node * topo.threads_per_core) + \
((node_no) * topo.cores_per_node * topo.threads_per_core) + \
((core_no) * topo.threads_per_core) + \
(thread_no))
#define GET_CORE(core_base, core_no, node_no, pkg_no) \
((core_base) + \
((pkg_no) * topo.nodes_per_pkg * topo.cores_per_node) + \
((node_no) * topo.cores_per_node) + \
(core_no))
#define GET_PKG(pkg_base, pkg_no) (pkg_base + pkg_no)
/*
* The accumulated sum of MSR is defined as a monotonic
* increasing MSR, it will be accumulated periodically,
* despite its register's bit width.
*/
enum {
IDX_PKG_ENERGY,
IDX_DRAM_ENERGY,
IDX_PP0_ENERGY,
IDX_PP1_ENERGY,
IDX_PKG_PERF,
IDX_DRAM_PERF,
IDX_COUNT,
};
int get_msr_sum(int cpu, off_t offset, unsigned long long *msr);
struct msr_sum_array {
/* get_msr_sum() = sum + (get_msr() - last) */
struct {
/*The accumulated MSR value is updated by the timer */
unsigned long long sum;
/*The MSR footprint recorded in last timer */
unsigned long long last;
} entries[IDX_COUNT];
};
/* The percpu MSR sum array.*/
struct msr_sum_array *per_cpu_msr_sum;
off_t idx_to_offset(int idx)
{
off_t offset;
switch (idx) {
case IDX_PKG_ENERGY:
if (platform->rapl_msrs & RAPL_AMD_F17H)
offset = MSR_PKG_ENERGY_STAT;
else
offset = MSR_PKG_ENERGY_STATUS;
break;
case IDX_DRAM_ENERGY:
offset = MSR_DRAM_ENERGY_STATUS;
break;
case IDX_PP0_ENERGY:
offset = MSR_PP0_ENERGY_STATUS;
break;
case IDX_PP1_ENERGY:
offset = MSR_PP1_ENERGY_STATUS;
break;
case IDX_PKG_PERF:
offset = MSR_PKG_PERF_STATUS;
break;
case IDX_DRAM_PERF:
offset = MSR_DRAM_PERF_STATUS;
break;
default:
offset = -1;
}
return offset;
}
int offset_to_idx(off_t offset)
{
int idx;
switch (offset) {
case MSR_PKG_ENERGY_STATUS:
case MSR_PKG_ENERGY_STAT:
idx = IDX_PKG_ENERGY;
break;
case MSR_DRAM_ENERGY_STATUS:
idx = IDX_DRAM_ENERGY;
break;
case MSR_PP0_ENERGY_STATUS:
idx = IDX_PP0_ENERGY;
break;
case MSR_PP1_ENERGY_STATUS:
idx = IDX_PP1_ENERGY;
break;
case MSR_PKG_PERF_STATUS:
idx = IDX_PKG_PERF;
break;
case MSR_DRAM_PERF_STATUS:
idx = IDX_DRAM_PERF;
break;
default:
idx = -1;
}
return idx;
}
int idx_valid(int idx)
{
switch (idx) {
case IDX_PKG_ENERGY:
return platform->rapl_msrs & (RAPL_PKG | RAPL_AMD_F17H);
case IDX_DRAM_ENERGY:
return platform->rapl_msrs & RAPL_DRAM;
case IDX_PP0_ENERGY:
return platform->rapl_msrs & RAPL_CORE_ENERGY_STATUS;
case IDX_PP1_ENERGY:
return platform->rapl_msrs & RAPL_GFX;
case IDX_PKG_PERF:
return platform->rapl_msrs & RAPL_PKG_PERF_STATUS;
case IDX_DRAM_PERF:
return platform->rapl_msrs & RAPL_DRAM_PERF_STATUS;
default:
return 0;
}
}
struct sys_counters {
/* MSR added counters */
unsigned int added_thread_counters;
unsigned int added_core_counters;
unsigned int added_package_counters;
struct msr_counter *tp;
struct msr_counter *cp;
struct msr_counter *pp;
/* perf added counters */
unsigned int added_thread_perf_counters;
unsigned int added_core_perf_counters;
unsigned int added_package_perf_counters;
struct perf_counter_info *perf_tp;
struct perf_counter_info *perf_cp;
struct perf_counter_info *perf_pp;
struct pmt_counter *pmt_tp;
struct pmt_counter *pmt_cp;
struct pmt_counter *pmt_pp;
} sys;
static size_t free_msr_counters_(struct msr_counter **pp)
{
struct msr_counter *p = NULL;
size_t num_freed = 0;
while (*pp) {
p = *pp;
if (p->msr_num != 0) {
*pp = p->next;
free(p);
++num_freed;
continue;
}
pp = &p->next;
}
return num_freed;
}
/*
* Free all added counters accessed via msr.
*/
static void free_sys_msr_counters(void)
{
/* Thread counters */
sys.added_thread_counters -= free_msr_counters_(&sys.tp);
/* Core counters */
sys.added_core_counters -= free_msr_counters_(&sys.cp);
/* Package counters */
sys.added_package_counters -= free_msr_counters_(&sys.pp);
}
struct system_summary {
struct thread_data threads;
struct core_data cores;
struct pkg_data packages;
} average;
struct cpu_topology {
int physical_package_id;
int die_id;
int logical_cpu_id;
int physical_node_id;
int logical_node_id; /* 0-based count within the package */
int physical_core_id;
int thread_id;
cpu_set_t *put_ids; /* Processing Unit/Thread IDs */
} *cpus;
struct topo_params {
int num_packages;
int num_die;
int num_cpus;
int num_cores;
int allowed_packages;
int allowed_cpus;
int allowed_cores;
int max_cpu_num;
int max_core_id;
int max_package_id;
int max_die_id;
int max_node_num;
int nodes_per_pkg;
int cores_per_node;
int threads_per_core;
} topo;
struct timeval tv_even, tv_odd, tv_delta;
int *irq_column_2_cpu; /* /proc/interrupts column numbers */
int *irqs_per_cpu; /* indexed by cpu_num */
void setup_all_buffers(bool startup);
char *sys_lpi_file;
char *sys_lpi_file_sysfs = "/sys/devices/system/cpu/cpuidle/low_power_idle_system_residency_us";
char *sys_lpi_file_debugfs = "/sys/kernel/debug/pmc_core/slp_s0_residency_usec";
int cpu_is_not_present(int cpu)
{
return !CPU_ISSET_S(cpu, cpu_present_setsize, cpu_present_set);
}
int cpu_is_not_allowed(int cpu)
{
return !CPU_ISSET_S(cpu, cpu_allowed_setsize, cpu_allowed_set);
}
/*
* run func(thread, core, package) in topology order
* skip non-present cpus
*/
int for_all_cpus(int (func) (struct thread_data *, struct core_data *, struct pkg_data *),
struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base)
{
int retval, pkg_no, core_no, thread_no, node_no;
for (pkg_no = 0; pkg_no < topo.num_packages; ++pkg_no) {
for (node_no = 0; node_no < topo.nodes_per_pkg; node_no++) {
for (core_no = 0; core_no < topo.cores_per_node; ++core_no) {
for (thread_no = 0; thread_no < topo.threads_per_core; ++thread_no) {
struct thread_data *t;
struct core_data *c;
struct pkg_data *p;
t = GET_THREAD(thread_base, thread_no, core_no, node_no, pkg_no);
if (cpu_is_not_allowed(t->cpu_id))
continue;
c = GET_CORE(core_base, core_no, node_no, pkg_no);
p = GET_PKG(pkg_base, pkg_no);
retval = func(t, c, p);
if (retval)
return retval;
}
}
}
}
return 0;
}
int is_cpu_first_thread_in_core(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
UNUSED(p);
return ((int)t->cpu_id == c->base_cpu || c->base_cpu < 0);
}
int is_cpu_first_core_in_package(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
UNUSED(c);
return ((int)t->cpu_id == p->base_cpu || p->base_cpu < 0);
}
int is_cpu_first_thread_in_package(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
return is_cpu_first_thread_in_core(t, c, p) && is_cpu_first_core_in_package(t, c, p);
}
int cpu_migrate(int cpu)
{
CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set);
CPU_SET_S(cpu, cpu_affinity_setsize, cpu_affinity_set);
if (sched_setaffinity(0, cpu_affinity_setsize, cpu_affinity_set) == -1)
return -1;
else
return 0;
}
int get_msr_fd(int cpu)
{
char pathname[32];
int fd;
fd = fd_percpu[cpu];
if (fd)
return fd;
sprintf(pathname, "/dev/cpu/%d/msr", cpu);
fd = open(pathname, O_RDONLY);
if (fd < 0)
err(-1, "%s open failed, try chown or chmod +r /dev/cpu/*/msr, "
"or run with --no-msr, or run as root", pathname);
fd_percpu[cpu] = fd;
return fd;
}
static void bic_disable_msr_access(void)
{
const unsigned long bic_msrs = BIC_Mod_c6 | BIC_CoreTmp |
BIC_Totl_c0 | BIC_Any_c0 | BIC_GFX_c0 | BIC_CPUGFX | BIC_PkgTmp;
bic_enabled &= ~bic_msrs;
free_sys_msr_counters();
}
static long perf_event_open(struct perf_event_attr *hw_event, pid_t pid, int cpu, int group_fd, unsigned long flags)
{
assert(!no_perf);
return syscall(__NR_perf_event_open, hw_event, pid, cpu, group_fd, flags);
}
static long open_perf_counter(int cpu, unsigned int type, unsigned int config, int group_fd, __u64 read_format)
{
struct perf_event_attr attr;
const pid_t pid = -1;
const unsigned long flags = 0;
assert(!no_perf);
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.type = type;
attr.size = sizeof(struct perf_event_attr);
attr.config = config;
attr.disabled = 0;
attr.sample_type = PERF_SAMPLE_IDENTIFIER;
attr.read_format = read_format;
const int fd = perf_event_open(&attr, pid, cpu, group_fd, flags);
return fd;
}
int get_instr_count_fd(int cpu)
{
if (fd_instr_count_percpu[cpu])
return fd_instr_count_percpu[cpu];
fd_instr_count_percpu[cpu] = open_perf_counter(cpu, PERF_TYPE_HARDWARE, PERF_COUNT_HW_INSTRUCTIONS, -1, 0);
return fd_instr_count_percpu[cpu];
}
int get_msr(int cpu, off_t offset, unsigned long long *msr)
{
ssize_t retval;
assert(!no_msr);
retval = pread(get_msr_fd(cpu), msr, sizeof(*msr), offset);
if (retval != sizeof *msr)
err(-1, "cpu%d: msr offset 0x%llx read failed", cpu, (unsigned long long)offset);
return 0;
}
int probe_msr(int cpu, off_t offset)
{
ssize_t retval;
unsigned long long dummy;
assert(!no_msr);
retval = pread(get_msr_fd(cpu), &dummy, sizeof(dummy), offset);
if (retval != sizeof(dummy))
return 1;
return 0;
}
/* Convert CPU ID to domain ID for given added perf counter. */
unsigned int cpu_to_domain(const struct perf_counter_info *pc, int cpu)
{
switch (pc->scope) {
case SCOPE_CPU:
return cpu;
case SCOPE_CORE:
return cpus[cpu].physical_core_id;
case SCOPE_PACKAGE:
return cpus[cpu].physical_package_id;
}
__builtin_unreachable();
}
#define MAX_DEFERRED 16
char *deferred_add_names[MAX_DEFERRED];
char *deferred_skip_names[MAX_DEFERRED];
int deferred_add_index;
int deferred_skip_index;
/*
* HIDE_LIST - hide this list of counters, show the rest [default]
* SHOW_LIST - show this list of counters, hide the rest
*/
enum show_hide_mode { SHOW_LIST, HIDE_LIST } global_show_hide_mode = HIDE_LIST;
void help(void)
{
fprintf(outf,
"Usage: turbostat [OPTIONS][(--interval seconds) | COMMAND ...]\n"
"\n"
"Turbostat forks the specified COMMAND and prints statistics\n"
"when COMMAND completes.\n"
"If no COMMAND is specified, turbostat wakes every 5-seconds\n"
"to print statistics, until interrupted.\n"
" -a, --add add a counter\n"
" eg. --add msr0x10,u64,cpu,delta,MY_TSC\n"
" eg. --add perf/cstate_pkg/c2-residency,package,delta,percent,perfPC2\n"
" eg. --add pmt,name=XTAL,type=raw,domain=package0,offset=0,lsb=0,msb=63,guid=0x1a067102\n"
" -c, --cpu cpu-set limit output to summary plus cpu-set:\n"
" {core | package | j,k,l..m,n-p }\n"
" -d, --debug displays usec, Time_Of_Day_Seconds and more debugging\n"
" debug messages are printed to stderr\n"
" -D, --Dump displays the raw counter values\n"
" -e, --enable [all | column]\n"
" shows all or the specified disabled column\n"
" -H, --hide [column|column,column,...]\n"
" hide the specified column(s)\n"
" -i, --interval sec.subsec\n"
" Override default 5-second measurement interval\n"
" -J, --Joules displays energy in Joules instead of Watts\n"
" -l, --list list column headers only\n"
" -M, --no-msr Disable all uses of the MSR driver\n"
" -P, --no-perf Disable all uses of the perf API\n"
" -n, --num_iterations num\n"
" number of the measurement iterations\n"
" -N, --header_iterations num\n"
" print header every num iterations\n"
" -o, --out file\n"
" create or truncate \"file\" for all output\n"
" -q, --quiet skip decoding system configuration header\n"
" -s, --show [column|column,column,...]\n"
" show only the specified column(s)\n"
" -S, --Summary\n"
" limits output to 1-line system summary per interval\n"
" -T, --TCC temperature\n"
" sets the Thermal Control Circuit temperature in\n"
" degrees Celsius\n"
" -h, --help print this help message\n"
" -v, --version print version information\n" "\n" "For more help, run \"man turbostat\"\n");
}
/*
* bic_lookup
* for all the strings in comma separate name_list,
* set the approprate bit in return value.
*/
unsigned long long bic_lookup(char *name_list, enum show_hide_mode mode)
{
unsigned int i;
unsigned long long retval = 0;
while (name_list) {
char *comma;
comma = strchr(name_list, ',');
if (comma)
*comma = '\0';
for (i = 0; i < MAX_BIC; ++i) {
if (!strcmp(name_list, bic[i].name)) {
retval |= (1ULL << i);
break;
}
if (!strcmp(name_list, "all")) {
retval |= ~0;
break;
} else if (!strcmp(name_list, "topology")) {
retval |= BIC_TOPOLOGY;
break;
} else if (!strcmp(name_list, "power")) {
retval |= BIC_THERMAL_PWR;
break;
} else if (!strcmp(name_list, "idle")) {
retval |= BIC_IDLE;
break;
} else if (!strcmp(name_list, "frequency")) {
retval |= BIC_FREQUENCY;
break;
} else if (!strcmp(name_list, "other")) {
retval |= BIC_OTHER;
break;
}
}
if (i == MAX_BIC) {
if (mode == SHOW_LIST) {
deferred_add_names[deferred_add_index++] = name_list;
if (deferred_add_index >= MAX_DEFERRED) {
fprintf(stderr, "More than max %d un-recognized --add options '%s'\n",
MAX_DEFERRED, name_list);
help();
exit(1);
}
} else {
deferred_skip_names[deferred_skip_index++] = name_list;
if (debug)
fprintf(stderr, "deferred \"%s\"\n", name_list);
if (deferred_skip_index >= MAX_DEFERRED) {
fprintf(stderr, "More than max %d un-recognized --skip options '%s'\n",
MAX_DEFERRED, name_list);
help();
exit(1);
}
}
}
name_list = comma;
if (name_list)
name_list++;
}
return retval;
}
void print_header(char *delim)
{
struct msr_counter *mp;
struct perf_counter_info *pp;
struct pmt_counter *ppmt;
int printed = 0;
if (DO_BIC(BIC_USEC))
outp += sprintf(outp, "%susec", (printed++ ? delim : ""));
if (DO_BIC(BIC_TOD))
outp += sprintf(outp, "%sTime_Of_Day_Seconds", (printed++ ? delim : ""));
if (DO_BIC(BIC_Package))
outp += sprintf(outp, "%sPackage", (printed++ ? delim : ""));
if (DO_BIC(BIC_Die))
outp += sprintf(outp, "%sDie", (printed++ ? delim : ""));
if (DO_BIC(BIC_Node))
outp += sprintf(outp, "%sNode", (printed++ ? delim : ""));
if (DO_BIC(BIC_Core))
outp += sprintf(outp, "%sCore", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU))
outp += sprintf(outp, "%sCPU", (printed++ ? delim : ""));
if (DO_BIC(BIC_APIC))
outp += sprintf(outp, "%sAPIC", (printed++ ? delim : ""));
if (DO_BIC(BIC_X2APIC))
outp += sprintf(outp, "%sX2APIC", (printed++ ? delim : ""));
if (DO_BIC(BIC_Avg_MHz))
outp += sprintf(outp, "%sAvg_MHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_Busy))
outp += sprintf(outp, "%sBusy%%", (printed++ ? delim : ""));
if (DO_BIC(BIC_Bzy_MHz))
outp += sprintf(outp, "%sBzy_MHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_TSC_MHz))
outp += sprintf(outp, "%sTSC_MHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_IPC))
outp += sprintf(outp, "%sIPC", (printed++ ? delim : ""));
if (DO_BIC(BIC_IRQ)) {
if (sums_need_wide_columns)
outp += sprintf(outp, "%s IRQ", (printed++ ? delim : ""));
else
outp += sprintf(outp, "%sIRQ", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_SMI))
outp += sprintf(outp, "%sSMI", (printed++ ? delim : ""));
for (mp = sys.tp; mp; mp = mp->next) {
if (mp->format == FORMAT_RAW) {
if (mp->width == 64)
outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), mp->name);
else
outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), mp->name);
} else {
if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), mp->name);
else
outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), mp->name);
}
}
for (pp = sys.perf_tp; pp; pp = pp->next) {
if (pp->format == FORMAT_RAW) {
if (pp->width == 64)
outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), pp->name);
else
outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), pp->name);
} else {
if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), pp->name);
else
outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), pp->name);
}
}
ppmt = sys.pmt_tp;
while (ppmt) {
switch (ppmt->type) {
case PMT_TYPE_RAW:
if (pmt_counter_get_width(ppmt) <= 32)
outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), ppmt->name);
else
outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), ppmt->name);
break;
case PMT_TYPE_XTAL_TIME:
outp += sprintf(outp, "%s%s", delim, ppmt->name);
break;
}
ppmt = ppmt->next;
}
if (DO_BIC(BIC_CPU_c1))
outp += sprintf(outp, "%sCPU%%c1", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU_c3))
outp += sprintf(outp, "%sCPU%%c3", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU_c6))
outp += sprintf(outp, "%sCPU%%c6", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU_c7))
outp += sprintf(outp, "%sCPU%%c7", (printed++ ? delim : ""));
if (DO_BIC(BIC_Mod_c6))
outp += sprintf(outp, "%sMod%%c6", (printed++ ? delim : ""));
if (DO_BIC(BIC_CoreTmp))
outp += sprintf(outp, "%sCoreTmp", (printed++ ? delim : ""));
if (DO_BIC(BIC_CORE_THROT_CNT))
outp += sprintf(outp, "%sCoreThr", (printed++ ? delim : ""));
if (platform->rapl_msrs && !rapl_joules) {
if (DO_BIC(BIC_CorWatt) && platform->has_per_core_rapl)
outp += sprintf(outp, "%sCorWatt", (printed++ ? delim : ""));
} else if (platform->rapl_msrs && rapl_joules) {
if (DO_BIC(BIC_Cor_J) && platform->has_per_core_rapl)
outp += sprintf(outp, "%sCor_J", (printed++ ? delim : ""));
}
for (mp = sys.cp; mp; mp = mp->next) {
if (mp->format == FORMAT_RAW) {
if (mp->width == 64)
outp += sprintf(outp, "%s%18.18s", delim, mp->name);
else
outp += sprintf(outp, "%s%10.10s", delim, mp->name);
} else {
if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", delim, mp->name);
else
outp += sprintf(outp, "%s%s", delim, mp->name);
}
}
for (pp = sys.perf_cp; pp; pp = pp->next) {
if (pp->format == FORMAT_RAW) {
if (pp->width == 64)
outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), pp->name);
else
outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), pp->name);
} else {
if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), pp->name);
else
outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), pp->name);
}
}
ppmt = sys.pmt_cp;
while (ppmt) {
switch (ppmt->type) {
case PMT_TYPE_RAW:
if (pmt_counter_get_width(ppmt) <= 32)
outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), ppmt->name);
else
outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), ppmt->name);
break;
case PMT_TYPE_XTAL_TIME:
outp += sprintf(outp, "%s%s", delim, ppmt->name);
break;
}
ppmt = ppmt->next;
}
if (DO_BIC(BIC_PkgTmp))
outp += sprintf(outp, "%sPkgTmp", (printed++ ? delim : ""));
if (DO_BIC(BIC_GFX_rc6))
outp += sprintf(outp, "%sGFX%%rc6", (printed++ ? delim : ""));
if (DO_BIC(BIC_GFXMHz))
outp += sprintf(outp, "%sGFXMHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_GFXACTMHz))
outp += sprintf(outp, "%sGFXAMHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_SAM_mc6))
outp += sprintf(outp, "%sSAM%%mc6", (printed++ ? delim : ""));
if (DO_BIC(BIC_SAMMHz))
outp += sprintf(outp, "%sSAMMHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_SAMACTMHz))
outp += sprintf(outp, "%sSAMAMHz", (printed++ ? delim : ""));
if (DO_BIC(BIC_Totl_c0))
outp += sprintf(outp, "%sTotl%%C0", (printed++ ? delim : ""));
if (DO_BIC(BIC_Any_c0))
outp += sprintf(outp, "%sAny%%C0", (printed++ ? delim : ""));
if (DO_BIC(BIC_GFX_c0))
outp += sprintf(outp, "%sGFX%%C0", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPUGFX))
outp += sprintf(outp, "%sCPUGFX%%", (printed++ ? delim : ""));
if (DO_BIC(BIC_Pkgpc2))
outp += sprintf(outp, "%sPkg%%pc2", (printed++ ? delim : ""));
if (DO_BIC(BIC_Pkgpc3))
outp += sprintf(outp, "%sPkg%%pc3", (printed++ ? delim : ""));
if (DO_BIC(BIC_Pkgpc6))
outp += sprintf(outp, "%sPkg%%pc6", (printed++ ? delim : ""));
if (DO_BIC(BIC_Pkgpc7))
outp += sprintf(outp, "%sPkg%%pc7", (printed++ ? delim : ""));
if (DO_BIC(BIC_Pkgpc8))
outp += sprintf(outp, "%sPkg%%pc8", (printed++ ? delim : ""));
if (DO_BIC(BIC_Pkgpc9))
outp += sprintf(outp, "%sPkg%%pc9", (printed++ ? delim : ""));
if (DO_BIC(BIC_Pkgpc10))
outp += sprintf(outp, "%sPk%%pc10", (printed++ ? delim : ""));
if (DO_BIC(BIC_Diec6))
outp += sprintf(outp, "%sDie%%c6", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU_LPI))
outp += sprintf(outp, "%sCPU%%LPI", (printed++ ? delim : ""));
if (DO_BIC(BIC_SYS_LPI))
outp += sprintf(outp, "%sSYS%%LPI", (printed++ ? delim : ""));
if (platform->rapl_msrs && !rapl_joules) {
if (DO_BIC(BIC_PkgWatt))
outp += sprintf(outp, "%sPkgWatt", (printed++ ? delim : ""));
if (DO_BIC(BIC_CorWatt) && !platform->has_per_core_rapl)
outp += sprintf(outp, "%sCorWatt", (printed++ ? delim : ""));
if (DO_BIC(BIC_GFXWatt))
outp += sprintf(outp, "%sGFXWatt", (printed++ ? delim : ""));
if (DO_BIC(BIC_RAMWatt))
outp += sprintf(outp, "%sRAMWatt", (printed++ ? delim : ""));
if (DO_BIC(BIC_PKG__))
outp += sprintf(outp, "%sPKG_%%", (printed++ ? delim : ""));
if (DO_BIC(BIC_RAM__))
outp += sprintf(outp, "%sRAM_%%", (printed++ ? delim : ""));
} else if (platform->rapl_msrs && rapl_joules) {
if (DO_BIC(BIC_Pkg_J))
outp += sprintf(outp, "%sPkg_J", (printed++ ? delim : ""));
if (DO_BIC(BIC_Cor_J) && !platform->has_per_core_rapl)
outp += sprintf(outp, "%sCor_J", (printed++ ? delim : ""));
if (DO_BIC(BIC_GFX_J))
outp += sprintf(outp, "%sGFX_J", (printed++ ? delim : ""));
if (DO_BIC(BIC_RAM_J))
outp += sprintf(outp, "%sRAM_J", (printed++ ? delim : ""));
if (DO_BIC(BIC_PKG__))
outp += sprintf(outp, "%sPKG_%%", (printed++ ? delim : ""));
if (DO_BIC(BIC_RAM__))
outp += sprintf(outp, "%sRAM_%%", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_UNCORE_MHZ))
outp += sprintf(outp, "%sUncMHz", (printed++ ? delim : ""));
for (mp = sys.pp; mp; mp = mp->next) {
if (mp->format == FORMAT_RAW) {
if (mp->width == 64)
outp += sprintf(outp, "%s%18.18s", delim, mp->name);
else if (mp->width == 32)
outp += sprintf(outp, "%s%10.10s", delim, mp->name);
else
outp += sprintf(outp, "%s%7.7s", delim, mp->name);
} else {
if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", delim, mp->name);
else
outp += sprintf(outp, "%s%7.7s", delim, mp->name);
}
}
for (pp = sys.perf_pp; pp; pp = pp->next) {
if (pp->format == FORMAT_RAW) {
if (pp->width == 64)
outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), pp->name);
else
outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), pp->name);
} else {
if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), pp->name);
else
outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), pp->name);
}
}
ppmt = sys.pmt_pp;
while (ppmt) {
switch (ppmt->type) {
case PMT_TYPE_RAW:
if (pmt_counter_get_width(ppmt) <= 32)
outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), ppmt->name);
else
outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), ppmt->name);
break;
case PMT_TYPE_XTAL_TIME:
outp += sprintf(outp, "%s%s", delim, ppmt->name);
break;
}
ppmt = ppmt->next;
}
outp += sprintf(outp, "\n");
}
int dump_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
int i;
struct msr_counter *mp;
outp += sprintf(outp, "t %p, c %p, p %p\n", t, c, p);
if (t) {
outp += sprintf(outp, "CPU: %d flags 0x%x\n", t->cpu_id, t->flags);
outp += sprintf(outp, "TSC: %016llX\n", t->tsc);
outp += sprintf(outp, "aperf: %016llX\n", t->aperf);
outp += sprintf(outp, "mperf: %016llX\n", t->mperf);
outp += sprintf(outp, "c1: %016llX\n", t->c1);
if (DO_BIC(BIC_IPC))
outp += sprintf(outp, "IPC: %lld\n", t->instr_count);
if (DO_BIC(BIC_IRQ))
outp += sprintf(outp, "IRQ: %lld\n", t->irq_count);
if (DO_BIC(BIC_SMI))
outp += sprintf(outp, "SMI: %d\n", t->smi_count);
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
outp +=
sprintf(outp, "tADDED [%d] %8s msr0x%x: %08llX %s\n", i, mp->name, mp->msr_num,
t->counter[i], mp->sp->path);
}
}
if (c && is_cpu_first_thread_in_core(t, c, p)) {
outp += sprintf(outp, "core: %d\n", c->core_id);
outp += sprintf(outp, "c3: %016llX\n", c->c3);
outp += sprintf(outp, "c6: %016llX\n", c->c6);
outp += sprintf(outp, "c7: %016llX\n", c->c7);
outp += sprintf(outp, "DTS: %dC\n", c->core_temp_c);
outp += sprintf(outp, "cpu_throt_count: %016llX\n", c->core_throt_cnt);
const unsigned long long energy_value = c->core_energy.raw_value * c->core_energy.scale;
const double energy_scale = c->core_energy.scale;
if (c->core_energy.unit == RAPL_UNIT_JOULES)
outp += sprintf(outp, "Joules: %0llX (scale: %lf)\n", energy_value, energy_scale);
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
outp +=
sprintf(outp, "cADDED [%d] %8s msr0x%x: %08llX %s\n", i, mp->name, mp->msr_num,
c->counter[i], mp->sp->path);
}
outp += sprintf(outp, "mc6_us: %016llX\n", c->mc6_us);
}
if (p && is_cpu_first_core_in_package(t, c, p)) {
outp += sprintf(outp, "package: %d\n", p->package_id);
outp += sprintf(outp, "Weighted cores: %016llX\n", p->pkg_wtd_core_c0);
outp += sprintf(outp, "Any cores: %016llX\n", p->pkg_any_core_c0);
outp += sprintf(outp, "Any GFX: %016llX\n", p->pkg_any_gfxe_c0);
outp += sprintf(outp, "CPU + GFX: %016llX\n", p->pkg_both_core_gfxe_c0);
outp += sprintf(outp, "pc2: %016llX\n", p->pc2);
if (DO_BIC(BIC_Pkgpc3))
outp += sprintf(outp, "pc3: %016llX\n", p->pc3);
if (DO_BIC(BIC_Pkgpc6))
outp += sprintf(outp, "pc6: %016llX\n", p->pc6);
if (DO_BIC(BIC_Pkgpc7))
outp += sprintf(outp, "pc7: %016llX\n", p->pc7);
outp += sprintf(outp, "pc8: %016llX\n", p->pc8);
outp += sprintf(outp, "pc9: %016llX\n", p->pc9);
outp += sprintf(outp, "pc10: %016llX\n", p->pc10);
outp += sprintf(outp, "cpu_lpi: %016llX\n", p->cpu_lpi);
outp += sprintf(outp, "sys_lpi: %016llX\n", p->sys_lpi);
outp += sprintf(outp, "Joules PKG: %0llX\n", p->energy_pkg.raw_value);
outp += sprintf(outp, "Joules COR: %0llX\n", p->energy_cores.raw_value);
outp += sprintf(outp, "Joules GFX: %0llX\n", p->energy_gfx.raw_value);
outp += sprintf(outp, "Joules RAM: %0llX\n", p->energy_dram.raw_value);
outp += sprintf(outp, "Throttle PKG: %0llX\n", p->rapl_pkg_perf_status.raw_value);
outp += sprintf(outp, "Throttle RAM: %0llX\n", p->rapl_dram_perf_status.raw_value);
outp += sprintf(outp, "PTM: %dC\n", p->pkg_temp_c);
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
outp +=
sprintf(outp, "pADDED [%d] %8s msr0x%x: %08llX %s\n", i, mp->name, mp->msr_num,
p->counter[i], mp->sp->path);
}
}
outp += sprintf(outp, "\n");
return 0;
}
double rapl_counter_get_value(const struct rapl_counter *c, enum rapl_unit desired_unit, double interval)
{
assert(desired_unit != RAPL_UNIT_INVALID);
/*
* For now we don't expect anything other than joules,
* so just simplify the logic.
*/
assert(c->unit == RAPL_UNIT_JOULES);
const double scaled = c->raw_value * c->scale;
if (desired_unit == RAPL_UNIT_WATTS)
return scaled / interval;
return scaled;
}
/*
* column formatting convention & formats
*/
int format_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
double interval_float, tsc;
char *fmt8;
int i;
struct msr_counter *mp;
struct perf_counter_info *pp;
struct pmt_counter *ppmt;
char *delim = "\t";
int printed = 0;
/* if showing only 1st thread in core and this isn't one, bail out */
if (show_core_only && !is_cpu_first_thread_in_core(t, c, p))
return 0;
/* if showing only 1st thread in pkg and this isn't one, bail out */
if (show_pkg_only && !is_cpu_first_core_in_package(t, c, p))
return 0;
/*if not summary line and --cpu is used */
if ((t != &average.threads) && (cpu_subset && !CPU_ISSET_S(t->cpu_id, cpu_subset_size, cpu_subset)))
return 0;
if (DO_BIC(BIC_USEC)) {
/* on each row, print how many usec each timestamp took to gather */
struct timeval tv;
timersub(&t->tv_end, &t->tv_begin, &tv);
outp += sprintf(outp, "%5ld\t", tv.tv_sec * 1000000 + tv.tv_usec);
}
/* Time_Of_Day_Seconds: on each row, print sec.usec last timestamp taken */
if (DO_BIC(BIC_TOD))
outp += sprintf(outp, "%10ld.%06ld\t", t->tv_end.tv_sec, t->tv_end.tv_usec);
interval_float = t->tv_delta.tv_sec + t->tv_delta.tv_usec / 1000000.0;
tsc = t->tsc * tsc_tweak;
/* topo columns, print blanks on 1st (average) line */
if (t == &average.threads) {
if (DO_BIC(BIC_Package))
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
if (DO_BIC(BIC_Die))
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
if (DO_BIC(BIC_Node))
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
if (DO_BIC(BIC_Core))
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
if (DO_BIC(BIC_CPU))
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
if (DO_BIC(BIC_APIC))
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
if (DO_BIC(BIC_X2APIC))
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
} else {
if (DO_BIC(BIC_Package)) {
if (p)
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->package_id);
else
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_Die)) {
if (c)
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), cpus[t->cpu_id].die_id);
else
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_Node)) {
if (t)
outp += sprintf(outp, "%s%d",
(printed++ ? delim : ""), cpus[t->cpu_id].physical_node_id);
else
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_Core)) {
if (c)
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), c->core_id);
else
outp += sprintf(outp, "%s-", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_CPU))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->cpu_id);
if (DO_BIC(BIC_APIC))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->apic_id);
if (DO_BIC(BIC_X2APIC))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->x2apic_id);
}
if (DO_BIC(BIC_Avg_MHz))
outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""), 1.0 / units * t->aperf / interval_float);
if (DO_BIC(BIC_Busy))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->mperf / tsc);
if (DO_BIC(BIC_Bzy_MHz)) {
if (has_base_hz)
outp +=
sprintf(outp, "%s%.0f", (printed++ ? delim : ""), base_hz / units * t->aperf / t->mperf);
else
outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""),
tsc / units * t->aperf / t->mperf / interval_float);
}
if (DO_BIC(BIC_TSC_MHz))
outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""), 1.0 * t->tsc / units / interval_float);
if (DO_BIC(BIC_IPC))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 1.0 * t->instr_count / t->aperf);
/* IRQ */
if (DO_BIC(BIC_IRQ)) {
if (sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), t->irq_count);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), t->irq_count);
}
/* SMI */
if (DO_BIC(BIC_SMI))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->smi_count);
/* Added counters */
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) {
if (mp->width == 32)
outp +=
sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)t->counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), t->counter[i]);
} else if (mp->format == FORMAT_DELTA) {
if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), t->counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), t->counter[i]);
} else if (mp->format == FORMAT_PERCENT) {
if (mp->type == COUNTER_USEC)
outp +=
sprintf(outp, "%s%.2f", (printed++ ? delim : ""),
t->counter[i] / interval_float / 10000);
else
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->counter[i] / tsc);
}
}
/* Added perf counters */
for (i = 0, pp = sys.perf_tp; pp; ++i, pp = pp->next) {
if (pp->format == FORMAT_RAW) {
if (pp->width == 32)
outp +=
sprintf(outp, "%s0x%08x", (printed++ ? delim : ""),
(unsigned int)t->perf_counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), t->perf_counter[i]);
} else if (pp->format == FORMAT_DELTA) {
if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), t->perf_counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), t->perf_counter[i]);
} else if (pp->format == FORMAT_PERCENT) {
if (pp->type == COUNTER_USEC)
outp +=
sprintf(outp, "%s%.2f", (printed++ ? delim : ""),
t->perf_counter[i] / interval_float / 10000);
else
outp +=
sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->perf_counter[i] / tsc);
}
}
for (i = 0, ppmt = sys.pmt_tp; ppmt; i++, ppmt = ppmt->next) {
switch (ppmt->type) {
case PMT_TYPE_RAW:
if (pmt_counter_get_width(ppmt) <= 32)
outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""),
(unsigned int)t->pmt_counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), t->pmt_counter[i]);
break;
case PMT_TYPE_XTAL_TIME:
const unsigned long value_raw = t->pmt_counter[i];
const double value_converted = 100.0 * value_raw / crystal_hz / interval_float;
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), value_converted);
break;
}
}
/* C1 */
if (DO_BIC(BIC_CPU_c1))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->c1 / tsc);
/* print per-core data only for 1st thread in core */
if (!is_cpu_first_thread_in_core(t, c, p))
goto done;
if (DO_BIC(BIC_CPU_c3))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c3 / tsc);
if (DO_BIC(BIC_CPU_c6))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c6 / tsc);
if (DO_BIC(BIC_CPU_c7))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c7 / tsc);
/* Mod%c6 */
if (DO_BIC(BIC_Mod_c6))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->mc6_us / tsc);
if (DO_BIC(BIC_CoreTmp))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), c->core_temp_c);
/* Core throttle count */
if (DO_BIC(BIC_CORE_THROT_CNT))
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), c->core_throt_cnt);
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) {
if (mp->width == 32)
outp +=
sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)c->counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), c->counter[i]);
} else if (mp->format == FORMAT_DELTA) {
if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), c->counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), c->counter[i]);
} else if (mp->format == FORMAT_PERCENT) {
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->counter[i] / tsc);
}
}
for (i = 0, pp = sys.perf_cp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW) {
if (pp->width == 32)
outp +=
sprintf(outp, "%s0x%08x", (printed++ ? delim : ""),
(unsigned int)c->perf_counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), c->perf_counter[i]);
} else if (pp->format == FORMAT_DELTA) {
if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), c->perf_counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), c->perf_counter[i]);
} else if (pp->format == FORMAT_PERCENT) {
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->perf_counter[i] / tsc);
}
}
for (i = 0, ppmt = sys.pmt_cp; ppmt; i++, ppmt = ppmt->next) {
switch (ppmt->type) {
case PMT_TYPE_RAW:
if (pmt_counter_get_width(ppmt) <= 32)
outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""),
(unsigned int)c->pmt_counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), c->pmt_counter[i]);
break;
case PMT_TYPE_XTAL_TIME:
const unsigned long value_raw = c->pmt_counter[i];
const double value_converted = 100.0 * value_raw / crystal_hz / interval_float;
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), value_converted);
break;
}
}
fmt8 = "%s%.2f";
if (DO_BIC(BIC_CorWatt) && platform->has_per_core_rapl)
outp +=
sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&c->core_energy, RAPL_UNIT_WATTS, interval_float));
if (DO_BIC(BIC_Cor_J) && platform->has_per_core_rapl)
outp += sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&c->core_energy, RAPL_UNIT_JOULES, interval_float));
/* print per-package data only for 1st core in package */
if (!is_cpu_first_core_in_package(t, c, p))
goto done;
/* PkgTmp */
if (DO_BIC(BIC_PkgTmp))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->pkg_temp_c);
/* GFXrc6 */
if (DO_BIC(BIC_GFX_rc6)) {
if (p->gfx_rc6_ms == -1) { /* detect GFX counter reset */
outp += sprintf(outp, "%s**.**", (printed++ ? delim : ""));
} else {
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""),
p->gfx_rc6_ms / 10.0 / interval_float);
}
}
/* GFXMHz */
if (DO_BIC(BIC_GFXMHz))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->gfx_mhz);
/* GFXACTMHz */
if (DO_BIC(BIC_GFXACTMHz))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->gfx_act_mhz);
/* SAMmc6 */
if (DO_BIC(BIC_SAM_mc6)) {
if (p->sam_mc6_ms == -1) { /* detect GFX counter reset */
outp += sprintf(outp, "%s**.**", (printed++ ? delim : ""));
} else {
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""),
p->sam_mc6_ms / 10.0 / interval_float);
}
}
/* SAMMHz */
if (DO_BIC(BIC_SAMMHz))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->sam_mhz);
/* SAMACTMHz */
if (DO_BIC(BIC_SAMACTMHz))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->sam_act_mhz);
/* Totl%C0, Any%C0 GFX%C0 CPUGFX% */
if (DO_BIC(BIC_Totl_c0))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_wtd_core_c0 / tsc);
if (DO_BIC(BIC_Any_c0))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_any_core_c0 / tsc);
if (DO_BIC(BIC_GFX_c0))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_any_gfxe_c0 / tsc);
if (DO_BIC(BIC_CPUGFX))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_both_core_gfxe_c0 / tsc);
if (DO_BIC(BIC_Pkgpc2))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc2 / tsc);
if (DO_BIC(BIC_Pkgpc3))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc3 / tsc);
if (DO_BIC(BIC_Pkgpc6))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc6 / tsc);
if (DO_BIC(BIC_Pkgpc7))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc7 / tsc);
if (DO_BIC(BIC_Pkgpc8))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc8 / tsc);
if (DO_BIC(BIC_Pkgpc9))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc9 / tsc);
if (DO_BIC(BIC_Pkgpc10))
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc10 / tsc);
if (DO_BIC(BIC_Diec6))
outp +=
sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->die_c6 / crystal_hz / interval_float);
if (DO_BIC(BIC_CPU_LPI)) {
if (p->cpu_lpi >= 0)
outp +=
sprintf(outp, "%s%.2f", (printed++ ? delim : ""),
100.0 * p->cpu_lpi / 1000000.0 / interval_float);
else
outp += sprintf(outp, "%s(neg)", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_SYS_LPI)) {
if (p->sys_lpi >= 0)
outp +=
sprintf(outp, "%s%.2f", (printed++ ? delim : ""),
100.0 * p->sys_lpi / 1000000.0 / interval_float);
else
outp += sprintf(outp, "%s(neg)", (printed++ ? delim : ""));
}
if (DO_BIC(BIC_PkgWatt))
outp +=
sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->energy_pkg, RAPL_UNIT_WATTS, interval_float));
if (DO_BIC(BIC_CorWatt) && !platform->has_per_core_rapl)
outp +=
sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->energy_cores, RAPL_UNIT_WATTS, interval_float));
if (DO_BIC(BIC_GFXWatt))
outp +=
sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->energy_gfx, RAPL_UNIT_WATTS, interval_float));
if (DO_BIC(BIC_RAMWatt))
outp +=
sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->energy_dram, RAPL_UNIT_WATTS, interval_float));
if (DO_BIC(BIC_Pkg_J))
outp += sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->energy_pkg, RAPL_UNIT_JOULES, interval_float));
if (DO_BIC(BIC_Cor_J) && !platform->has_per_core_rapl)
outp += sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->energy_cores, RAPL_UNIT_JOULES, interval_float));
if (DO_BIC(BIC_GFX_J))
outp += sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->energy_gfx, RAPL_UNIT_JOULES, interval_float));
if (DO_BIC(BIC_RAM_J))
outp += sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->energy_dram, RAPL_UNIT_JOULES, interval_float));
if (DO_BIC(BIC_PKG__))
outp +=
sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->rapl_pkg_perf_status, RAPL_UNIT_WATTS, interval_float));
if (DO_BIC(BIC_RAM__))
outp +=
sprintf(outp, fmt8, (printed++ ? delim : ""),
rapl_counter_get_value(&p->rapl_dram_perf_status, RAPL_UNIT_WATTS, interval_float));
/* UncMHz */
if (DO_BIC(BIC_UNCORE_MHZ))
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->uncore_mhz);
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW) {
if (mp->width == 32)
outp +=
sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)p->counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), p->counter[i]);
} else if (mp->format == FORMAT_DELTA) {
if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), p->counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), p->counter[i]);
} else if (mp->format == FORMAT_PERCENT) {
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->counter[i] / tsc);
} else if (mp->type == COUNTER_K2M)
outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), (unsigned int)p->counter[i] / 1000);
}
for (i = 0, pp = sys.perf_pp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW) {
if (pp->width == 32)
outp +=
sprintf(outp, "%s0x%08x", (printed++ ? delim : ""),
(unsigned int)p->perf_counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), p->perf_counter[i]);
} else if (pp->format == FORMAT_DELTA) {
if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns)
outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), p->perf_counter[i]);
else
outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), p->perf_counter[i]);
} else if (pp->format == FORMAT_PERCENT) {
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->perf_counter[i] / tsc);
} else if (pp->type == COUNTER_K2M) {
outp +=
sprintf(outp, "%s%d", (printed++ ? delim : ""), (unsigned int)p->perf_counter[i] / 1000);
}
}
for (i = 0, ppmt = sys.pmt_pp; ppmt; i++, ppmt = ppmt->next) {
switch (ppmt->type) {
case PMT_TYPE_RAW:
if (pmt_counter_get_width(ppmt) <= 32)
outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""),
(unsigned int)p->pmt_counter[i]);
else
outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), p->pmt_counter[i]);
break;
case PMT_TYPE_XTAL_TIME:
const unsigned long value_raw = p->pmt_counter[i];
const double value_converted = 100.0 * value_raw / crystal_hz / interval_float;
outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), value_converted);
break;
}
}
done:
if (*(outp - 1) != '\n')
outp += sprintf(outp, "\n");
return 0;
}
void flush_output_stdout(void)
{
FILE *filep;
if (outf == stderr)
filep = stdout;
else
filep = outf;
fputs(output_buffer, filep);
fflush(filep);
outp = output_buffer;
}
void flush_output_stderr(void)
{
fputs(output_buffer, outf);
fflush(outf);
outp = output_buffer;
}
void format_all_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
static int count;
if ((!count || (header_iterations && !(count % header_iterations))) || !summary_only)
print_header("\t");
format_counters(&average.threads, &average.cores, &average.packages);
count++;
if (summary_only)
return;
for_all_cpus(format_counters, t, c, p);
}
#define DELTA_WRAP32(new, old) \
old = ((((unsigned long long)new << 32) - ((unsigned long long)old << 32)) >> 32);
int delta_package(struct pkg_data *new, struct pkg_data *old)
{
int i;
struct msr_counter *mp;
struct perf_counter_info *pp;
struct pmt_counter *ppmt;
if (DO_BIC(BIC_Totl_c0))
old->pkg_wtd_core_c0 = new->pkg_wtd_core_c0 - old->pkg_wtd_core_c0;
if (DO_BIC(BIC_Any_c0))
old->pkg_any_core_c0 = new->pkg_any_core_c0 - old->pkg_any_core_c0;
if (DO_BIC(BIC_GFX_c0))
old->pkg_any_gfxe_c0 = new->pkg_any_gfxe_c0 - old->pkg_any_gfxe_c0;
if (DO_BIC(BIC_CPUGFX))
old->pkg_both_core_gfxe_c0 = new->pkg_both_core_gfxe_c0 - old->pkg_both_core_gfxe_c0;
old->pc2 = new->pc2 - old->pc2;
if (DO_BIC(BIC_Pkgpc3))
old->pc3 = new->pc3 - old->pc3;
if (DO_BIC(BIC_Pkgpc6))
old->pc6 = new->pc6 - old->pc6;
if (DO_BIC(BIC_Pkgpc7))
old->pc7 = new->pc7 - old->pc7;
old->pc8 = new->pc8 - old->pc8;
old->pc9 = new->pc9 - old->pc9;
old->pc10 = new->pc10 - old->pc10;
old->die_c6 = new->die_c6 - old->die_c6;
old->cpu_lpi = new->cpu_lpi - old->cpu_lpi;
old->sys_lpi = new->sys_lpi - old->sys_lpi;
old->pkg_temp_c = new->pkg_temp_c;
/* flag an error when rc6 counter resets/wraps */
if (old->gfx_rc6_ms > new->gfx_rc6_ms)
old->gfx_rc6_ms = -1;
else
old->gfx_rc6_ms = new->gfx_rc6_ms - old->gfx_rc6_ms;
old->uncore_mhz = new->uncore_mhz;
old->gfx_mhz = new->gfx_mhz;
old->gfx_act_mhz = new->gfx_act_mhz;
/* flag an error when mc6 counter resets/wraps */
if (old->sam_mc6_ms > new->sam_mc6_ms)
old->sam_mc6_ms = -1;
else
old->sam_mc6_ms = new->sam_mc6_ms - old->sam_mc6_ms;
old->sam_mhz = new->sam_mhz;
old->sam_act_mhz = new->sam_act_mhz;
old->energy_pkg.raw_value = new->energy_pkg.raw_value - old->energy_pkg.raw_value;
old->energy_cores.raw_value = new->energy_cores.raw_value - old->energy_cores.raw_value;
old->energy_gfx.raw_value = new->energy_gfx.raw_value - old->energy_gfx.raw_value;
old->energy_dram.raw_value = new->energy_dram.raw_value - old->energy_dram.raw_value;
old->rapl_pkg_perf_status.raw_value = new->rapl_pkg_perf_status.raw_value - old->rapl_pkg_perf_status.raw_value;
old->rapl_dram_perf_status.raw_value =
new->rapl_dram_perf_status.raw_value - old->rapl_dram_perf_status.raw_value;
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW)
old->counter[i] = new->counter[i];
else if (mp->format == FORMAT_AVERAGE)
old->counter[i] = new->counter[i];
else
old->counter[i] = new->counter[i] - old->counter[i];
}
for (i = 0, pp = sys.perf_pp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW)
old->perf_counter[i] = new->perf_counter[i];
else if (pp->format == FORMAT_AVERAGE)
old->perf_counter[i] = new->perf_counter[i];
else
old->perf_counter[i] = new->perf_counter[i] - old->perf_counter[i];
}
for (i = 0, ppmt = sys.pmt_pp; ppmt; i++, ppmt = ppmt->next) {
if (ppmt->format == FORMAT_RAW)
old->pmt_counter[i] = new->pmt_counter[i];
else
old->pmt_counter[i] = new->pmt_counter[i] - old->pmt_counter[i];
}
return 0;
}
void delta_core(struct core_data *new, struct core_data *old)
{
int i;
struct msr_counter *mp;
struct perf_counter_info *pp;
struct pmt_counter *ppmt;
old->c3 = new->c3 - old->c3;
old->c6 = new->c6 - old->c6;
old->c7 = new->c7 - old->c7;
old->core_temp_c = new->core_temp_c;
old->core_throt_cnt = new->core_throt_cnt;
old->mc6_us = new->mc6_us - old->mc6_us;
DELTA_WRAP32(new->core_energy.raw_value, old->core_energy.raw_value);
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW)
old->counter[i] = new->counter[i];
else
old->counter[i] = new->counter[i] - old->counter[i];
}
for (i = 0, pp = sys.perf_cp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW)
old->perf_counter[i] = new->perf_counter[i];
else
old->perf_counter[i] = new->perf_counter[i] - old->perf_counter[i];
}
for (i = 0, ppmt = sys.pmt_cp; ppmt; i++, ppmt = ppmt->next) {
if (ppmt->format == FORMAT_RAW)
old->pmt_counter[i] = new->pmt_counter[i];
else
old->pmt_counter[i] = new->pmt_counter[i] - old->pmt_counter[i];
}
}
int soft_c1_residency_display(int bic)
{
if (!DO_BIC(BIC_CPU_c1) || platform->has_msr_core_c1_res)
return 0;
return DO_BIC_READ(bic);
}
/*
* old = new - old
*/
int delta_thread(struct thread_data *new, struct thread_data *old, struct core_data *core_delta)
{
int i;
struct msr_counter *mp;
struct perf_counter_info *pp;
struct pmt_counter *ppmt;
/* we run cpuid just the 1st time, copy the results */
if (DO_BIC(BIC_APIC))
new->apic_id = old->apic_id;
if (DO_BIC(BIC_X2APIC))
new->x2apic_id = old->x2apic_id;
/*
* the timestamps from start of measurement interval are in "old"
* the timestamp from end of measurement interval are in "new"
* over-write old w/ new so we can print end of interval values
*/
timersub(&new->tv_begin, &old->tv_begin, &old->tv_delta);
old->tv_begin = new->tv_begin;
old->tv_end = new->tv_end;
old->tsc = new->tsc - old->tsc;
/* check for TSC < 1 Mcycles over interval */
if (old->tsc < (1000 * 1000))
errx(-3, "Insanely slow TSC rate, TSC stops in idle?\n"
"You can disable all c-states by booting with \"idle=poll\"\n"
"or just the deep ones with \"processor.max_cstate=1\"");
old->c1 = new->c1 - old->c1;
if (DO_BIC(BIC_Avg_MHz) || DO_BIC(BIC_Busy) || DO_BIC(BIC_Bzy_MHz) || DO_BIC(BIC_IPC)
|| soft_c1_residency_display(BIC_Avg_MHz)) {
if ((new->aperf > old->aperf) && (new->mperf > old->mperf)) {
old->aperf = new->aperf - old->aperf;
old->mperf = new->mperf - old->mperf;
} else {
return -1;
}
}
if (platform->has_msr_core_c1_res) {
/*
* Some models have a dedicated C1 residency MSR,
* which should be more accurate than the derivation below.
*/
} else {
/*
* As counter collection is not atomic,
* it is possible for mperf's non-halted cycles + idle states
* to exceed TSC's all cycles: show c1 = 0% in that case.
*/
if ((old->mperf + core_delta->c3 + core_delta->c6 + core_delta->c7) > (old->tsc * tsc_tweak))
old->c1 = 0;
else {
/* normal case, derive c1 */
old->c1 = (old->tsc * tsc_tweak) - old->mperf - core_delta->c3
- core_delta->c6 - core_delta->c7;
}
}
if (old->mperf == 0) {
if (debug > 1)
fprintf(outf, "cpu%d MPERF 0!\n", old->cpu_id);
old->mperf = 1; /* divide by 0 protection */
}
if (DO_BIC(BIC_IPC))
old->instr_count = new->instr_count - old->instr_count;
if (DO_BIC(BIC_IRQ))
old->irq_count = new->irq_count - old->irq_count;
if (DO_BIC(BIC_SMI))
old->smi_count = new->smi_count - old->smi_count;
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW)
old->counter[i] = new->counter[i];
else
old->counter[i] = new->counter[i] - old->counter[i];
}
for (i = 0, pp = sys.perf_tp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW)
old->perf_counter[i] = new->perf_counter[i];
else
old->perf_counter[i] = new->perf_counter[i] - old->perf_counter[i];
}
for (i = 0, ppmt = sys.pmt_tp; ppmt; i++, ppmt = ppmt->next) {
if (ppmt->format == FORMAT_RAW)
old->pmt_counter[i] = new->pmt_counter[i];
else
old->pmt_counter[i] = new->pmt_counter[i] - old->pmt_counter[i];
}
return 0;
}
int delta_cpu(struct thread_data *t, struct core_data *c,
struct pkg_data *p, struct thread_data *t2, struct core_data *c2, struct pkg_data *p2)
{
int retval = 0;
/* calculate core delta only for 1st thread in core */
if (is_cpu_first_thread_in_core(t, c, p))
delta_core(c, c2);
/* always calculate thread delta */
retval = delta_thread(t, t2, c2); /* c2 is core delta */
if (retval)
return retval;
/* calculate package delta only for 1st core in package */
if (is_cpu_first_core_in_package(t, c, p))
retval = delta_package(p, p2);
return retval;
}
void rapl_counter_clear(struct rapl_counter *c)
{
c->raw_value = 0;
c->scale = 0.0;
c->unit = RAPL_UNIT_INVALID;
}
void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
int i;
struct msr_counter *mp;
t->tv_begin.tv_sec = 0;
t->tv_begin.tv_usec = 0;
t->tv_end.tv_sec = 0;
t->tv_end.tv_usec = 0;
t->tv_delta.tv_sec = 0;
t->tv_delta.tv_usec = 0;
t->tsc = 0;
t->aperf = 0;
t->mperf = 0;
t->c1 = 0;
t->instr_count = 0;
t->irq_count = 0;
t->smi_count = 0;
c->c3 = 0;
c->c6 = 0;
c->c7 = 0;
c->mc6_us = 0;
c->core_temp_c = 0;
rapl_counter_clear(&c->core_energy);
c->core_throt_cnt = 0;
p->pkg_wtd_core_c0 = 0;
p->pkg_any_core_c0 = 0;
p->pkg_any_gfxe_c0 = 0;
p->pkg_both_core_gfxe_c0 = 0;
p->pc2 = 0;
if (DO_BIC(BIC_Pkgpc3))
p->pc3 = 0;
if (DO_BIC(BIC_Pkgpc6))
p->pc6 = 0;
if (DO_BIC(BIC_Pkgpc7))
p->pc7 = 0;
p->pc8 = 0;
p->pc9 = 0;
p->pc10 = 0;
p->die_c6 = 0;
p->cpu_lpi = 0;
p->sys_lpi = 0;
rapl_counter_clear(&p->energy_pkg);
rapl_counter_clear(&p->energy_dram);
rapl_counter_clear(&p->energy_cores);
rapl_counter_clear(&p->energy_gfx);
rapl_counter_clear(&p->rapl_pkg_perf_status);
rapl_counter_clear(&p->rapl_dram_perf_status);
p->pkg_temp_c = 0;
p->gfx_rc6_ms = 0;
p->uncore_mhz = 0;
p->gfx_mhz = 0;
p->gfx_act_mhz = 0;
p->sam_mc6_ms = 0;
p->sam_mhz = 0;
p->sam_act_mhz = 0;
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next)
t->counter[i] = 0;
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next)
c->counter[i] = 0;
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next)
p->counter[i] = 0;
memset(&t->perf_counter[0], 0, sizeof(t->perf_counter));
memset(&c->perf_counter[0], 0, sizeof(c->perf_counter));
memset(&p->perf_counter[0], 0, sizeof(p->perf_counter));
memset(&t->pmt_counter[0], 0, ARRAY_SIZE(t->pmt_counter));
memset(&c->pmt_counter[0], 0, ARRAY_SIZE(c->pmt_counter));
memset(&p->pmt_counter[0], 0, ARRAY_SIZE(p->pmt_counter));
}
void rapl_counter_accumulate(struct rapl_counter *dst, const struct rapl_counter *src)
{
/* Copy unit and scale from src if dst is not initialized */
if (dst->unit == RAPL_UNIT_INVALID) {
dst->unit = src->unit;
dst->scale = src->scale;
}
assert(dst->unit == src->unit);
assert(dst->scale == src->scale);
dst->raw_value += src->raw_value;
}
int sum_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
int i;
struct msr_counter *mp;
struct perf_counter_info *pp;
struct pmt_counter *ppmt;
/* copy un-changing apic_id's */
if (DO_BIC(BIC_APIC))
average.threads.apic_id = t->apic_id;
if (DO_BIC(BIC_X2APIC))
average.threads.x2apic_id = t->x2apic_id;
/* remember first tv_begin */
if (average.threads.tv_begin.tv_sec == 0)
average.threads.tv_begin = t->tv_begin;
/* remember last tv_end */
average.threads.tv_end = t->tv_end;
average.threads.tsc += t->tsc;
average.threads.aperf += t->aperf;
average.threads.mperf += t->mperf;
average.threads.c1 += t->c1;
average.threads.instr_count += t->instr_count;
average.threads.irq_count += t->irq_count;
average.threads.smi_count += t->smi_count;
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW)
continue;
average.threads.counter[i] += t->counter[i];
}
for (i = 0, pp = sys.perf_tp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW)
continue;
average.threads.perf_counter[i] += t->perf_counter[i];
}
for (i = 0, ppmt = sys.pmt_tp; ppmt; i++, ppmt = ppmt->next) {
average.threads.pmt_counter[i] += t->pmt_counter[i];
}
/* sum per-core values only for 1st thread in core */
if (!is_cpu_first_thread_in_core(t, c, p))
return 0;
average.cores.c3 += c->c3;
average.cores.c6 += c->c6;
average.cores.c7 += c->c7;
average.cores.mc6_us += c->mc6_us;
average.cores.core_temp_c = MAX(average.cores.core_temp_c, c->core_temp_c);
average.cores.core_throt_cnt = MAX(average.cores.core_throt_cnt, c->core_throt_cnt);
rapl_counter_accumulate(&average.cores.core_energy, &c->core_energy);
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW)
continue;
average.cores.counter[i] += c->counter[i];
}
for (i = 0, pp = sys.perf_cp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW)
continue;
average.cores.perf_counter[i] += c->perf_counter[i];
}
for (i = 0, ppmt = sys.pmt_cp; ppmt; i++, ppmt = ppmt->next) {
average.cores.pmt_counter[i] += c->pmt_counter[i];
}
/* sum per-pkg values only for 1st core in pkg */
if (!is_cpu_first_core_in_package(t, c, p))
return 0;
if (DO_BIC(BIC_Totl_c0))
average.packages.pkg_wtd_core_c0 += p->pkg_wtd_core_c0;
if (DO_BIC(BIC_Any_c0))
average.packages.pkg_any_core_c0 += p->pkg_any_core_c0;
if (DO_BIC(BIC_GFX_c0))
average.packages.pkg_any_gfxe_c0 += p->pkg_any_gfxe_c0;
if (DO_BIC(BIC_CPUGFX))
average.packages.pkg_both_core_gfxe_c0 += p->pkg_both_core_gfxe_c0;
average.packages.pc2 += p->pc2;
if (DO_BIC(BIC_Pkgpc3))
average.packages.pc3 += p->pc3;
if (DO_BIC(BIC_Pkgpc6))
average.packages.pc6 += p->pc6;
if (DO_BIC(BIC_Pkgpc7))
average.packages.pc7 += p->pc7;
average.packages.pc8 += p->pc8;
average.packages.pc9 += p->pc9;
average.packages.pc10 += p->pc10;
average.packages.die_c6 += p->die_c6;
average.packages.cpu_lpi = p->cpu_lpi;
average.packages.sys_lpi = p->sys_lpi;
rapl_counter_accumulate(&average.packages.energy_pkg, &p->energy_pkg);
rapl_counter_accumulate(&average.packages.energy_dram, &p->energy_dram);
rapl_counter_accumulate(&average.packages.energy_cores, &p->energy_cores);
rapl_counter_accumulate(&average.packages.energy_gfx, &p->energy_gfx);
average.packages.gfx_rc6_ms = p->gfx_rc6_ms;
average.packages.uncore_mhz = p->uncore_mhz;
average.packages.gfx_mhz = p->gfx_mhz;
average.packages.gfx_act_mhz = p->gfx_act_mhz;
average.packages.sam_mc6_ms = p->sam_mc6_ms;
average.packages.sam_mhz = p->sam_mhz;
average.packages.sam_act_mhz = p->sam_act_mhz;
average.packages.pkg_temp_c = MAX(average.packages.pkg_temp_c, p->pkg_temp_c);
rapl_counter_accumulate(&average.packages.rapl_pkg_perf_status, &p->rapl_pkg_perf_status);
rapl_counter_accumulate(&average.packages.rapl_dram_perf_status, &p->rapl_dram_perf_status);
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
if ((mp->format == FORMAT_RAW) && (topo.num_packages == 0))
average.packages.counter[i] = p->counter[i];
else
average.packages.counter[i] += p->counter[i];
}
for (i = 0, pp = sys.perf_pp; pp; i++, pp = pp->next) {
if ((pp->format == FORMAT_RAW) && (topo.num_packages == 0))
average.packages.perf_counter[i] = p->perf_counter[i];
else
average.packages.perf_counter[i] += p->perf_counter[i];
}
for (i = 0, ppmt = sys.pmt_pp; ppmt; i++, ppmt = ppmt->next) {
average.packages.pmt_counter[i] += p->pmt_counter[i];
}
return 0;
}
/*
* sum the counters for all cpus in the system
* compute the weighted average
*/
void compute_average(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
int i;
struct msr_counter *mp;
struct perf_counter_info *pp;
struct pmt_counter *ppmt;
clear_counters(&average.threads, &average.cores, &average.packages);
for_all_cpus(sum_counters, t, c, p);
/* Use the global time delta for the average. */
average.threads.tv_delta = tv_delta;
average.threads.tsc /= topo.allowed_cpus;
average.threads.aperf /= topo.allowed_cpus;
average.threads.mperf /= topo.allowed_cpus;
average.threads.instr_count /= topo.allowed_cpus;
average.threads.c1 /= topo.allowed_cpus;
if (average.threads.irq_count > 9999999)
sums_need_wide_columns = 1;
average.cores.c3 /= topo.allowed_cores;
average.cores.c6 /= topo.allowed_cores;
average.cores.c7 /= topo.allowed_cores;
average.cores.mc6_us /= topo.allowed_cores;
if (DO_BIC(BIC_Totl_c0))
average.packages.pkg_wtd_core_c0 /= topo.allowed_packages;
if (DO_BIC(BIC_Any_c0))
average.packages.pkg_any_core_c0 /= topo.allowed_packages;
if (DO_BIC(BIC_GFX_c0))
average.packages.pkg_any_gfxe_c0 /= topo.allowed_packages;
if (DO_BIC(BIC_CPUGFX))
average.packages.pkg_both_core_gfxe_c0 /= topo.allowed_packages;
average.packages.pc2 /= topo.allowed_packages;
if (DO_BIC(BIC_Pkgpc3))
average.packages.pc3 /= topo.allowed_packages;
if (DO_BIC(BIC_Pkgpc6))
average.packages.pc6 /= topo.allowed_packages;
if (DO_BIC(BIC_Pkgpc7))
average.packages.pc7 /= topo.allowed_packages;
average.packages.pc8 /= topo.allowed_packages;
average.packages.pc9 /= topo.allowed_packages;
average.packages.pc10 /= topo.allowed_packages;
average.packages.die_c6 /= topo.allowed_packages;
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW)
continue;
if (mp->type == COUNTER_ITEMS) {
if (average.threads.counter[i] > 9999999)
sums_need_wide_columns = 1;
continue;
}
average.threads.counter[i] /= topo.allowed_cpus;
}
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW)
continue;
if (mp->type == COUNTER_ITEMS) {
if (average.cores.counter[i] > 9999999)
sums_need_wide_columns = 1;
}
average.cores.counter[i] /= topo.allowed_cores;
}
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
if (mp->format == FORMAT_RAW)
continue;
if (mp->type == COUNTER_ITEMS) {
if (average.packages.counter[i] > 9999999)
sums_need_wide_columns = 1;
}
average.packages.counter[i] /= topo.allowed_packages;
}
for (i = 0, pp = sys.perf_tp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW)
continue;
if (pp->type == COUNTER_ITEMS) {
if (average.threads.perf_counter[i] > 9999999)
sums_need_wide_columns = 1;
continue;
}
average.threads.perf_counter[i] /= topo.allowed_cpus;
}
for (i = 0, pp = sys.perf_cp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW)
continue;
if (pp->type == COUNTER_ITEMS) {
if (average.cores.perf_counter[i] > 9999999)
sums_need_wide_columns = 1;
}
average.cores.perf_counter[i] /= topo.allowed_cores;
}
for (i = 0, pp = sys.perf_pp; pp; i++, pp = pp->next) {
if (pp->format == FORMAT_RAW)
continue;
if (pp->type == COUNTER_ITEMS) {
if (average.packages.perf_counter[i] > 9999999)
sums_need_wide_columns = 1;
}
average.packages.perf_counter[i] /= topo.allowed_packages;
}
for (i = 0, ppmt = sys.pmt_tp; ppmt; i++, ppmt = ppmt->next) {
average.threads.pmt_counter[i] /= topo.allowed_cpus;
}
for (i = 0, ppmt = sys.pmt_cp; ppmt; i++, ppmt = ppmt->next) {
average.cores.pmt_counter[i] /= topo.allowed_cores;
}
for (i = 0, ppmt = sys.pmt_pp; ppmt; i++, ppmt = ppmt->next) {
average.packages.pmt_counter[i] /= topo.allowed_packages;
}
}
static unsigned long long rdtsc(void)
{
unsigned int low, high;
asm volatile ("rdtsc":"=a" (low), "=d"(high));
return low | ((unsigned long long)high) << 32;
}
/*
* Open a file, and exit on failure
*/
FILE *fopen_or_die(const char *path, const char *mode)
{
FILE *filep = fopen(path, mode);
if (!filep)
err(1, "%s: open failed", path);
return filep;
}
/*
* snapshot_sysfs_counter()
*
* return snapshot of given counter
*/
unsigned long long snapshot_sysfs_counter(char *path)
{
FILE *fp;
int retval;
unsigned long long counter;
fp = fopen_or_die(path, "r");
retval = fscanf(fp, "%lld", &counter);
if (retval != 1)
err(1, "snapshot_sysfs_counter(%s)", path);
fclose(fp);
return counter;
}
int get_mp(int cpu, struct msr_counter *mp, unsigned long long *counterp, char *counter_path)
{
if (mp->msr_num != 0) {
assert(!no_msr);
if (get_msr(cpu, mp->msr_num, counterp))
return -1;
} else {
char path[128 + PATH_BYTES];
if (mp->flags & SYSFS_PERCPU) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/%s", cpu, mp->sp->path);
*counterp = snapshot_sysfs_counter(path);
} else {
*counterp = snapshot_sysfs_counter(counter_path);
}
}
return 0;
}
unsigned long long get_legacy_uncore_mhz(int package)
{
char path[128];
int die;
static int warn_once;
/*
* for this package, use the first die_id that exists
*/
for (die = 0; die <= topo.max_die_id; ++die) {
sprintf(path, "/sys/devices/system/cpu/intel_uncore_frequency/package_%02d_die_%02d/current_freq_khz",
package, die);
if (access(path, R_OK) == 0)
return (snapshot_sysfs_counter(path) / 1000);
}
if (!warn_once) {
warnx("BUG: %s: No %s", __func__, path);
warn_once = 1;
}
return 0;
}
int get_epb(int cpu)
{
char path[128 + PATH_BYTES];
unsigned long long msr;
int ret, epb = -1;
FILE *fp;
sprintf(path, "/sys/devices/system/cpu/cpu%d/power/energy_perf_bias", cpu);
fp = fopen(path, "r");
if (!fp)
goto msr_fallback;
ret = fscanf(fp, "%d", &epb);
if (ret != 1)
err(1, "%s(%s)", __func__, path);
fclose(fp);
return epb;
msr_fallback:
if (no_msr)
return -1;
get_msr(cpu, MSR_IA32_ENERGY_PERF_BIAS, &msr);
return msr & 0xf;
}
void get_apic_id(struct thread_data *t)
{
unsigned int eax, ebx, ecx, edx;
if (DO_BIC(BIC_APIC)) {
eax = ebx = ecx = edx = 0;
__cpuid(1, eax, ebx, ecx, edx);
t->apic_id = (ebx >> 24) & 0xff;
}
if (!DO_BIC(BIC_X2APIC))
return;
if (authentic_amd || hygon_genuine) {
unsigned int topology_extensions;
if (max_extended_level < 0x8000001e)
return;
eax = ebx = ecx = edx = 0;
__cpuid(0x80000001, eax, ebx, ecx, edx);
topology_extensions = ecx & (1 << 22);
if (topology_extensions == 0)
return;
eax = ebx = ecx = edx = 0;
__cpuid(0x8000001e, eax, ebx, ecx, edx);
t->x2apic_id = eax;
return;
}
if (!genuine_intel)
return;
if (max_level < 0xb)
return;
ecx = 0;
__cpuid(0xb, eax, ebx, ecx, edx);
t->x2apic_id = edx;
if (debug && (t->apic_id != (t->x2apic_id & 0xff)))
fprintf(outf, "cpu%d: BIOS BUG: apic 0x%x x2apic 0x%x\n", t->cpu_id, t->apic_id, t->x2apic_id);
}
int get_core_throt_cnt(int cpu, unsigned long long *cnt)
{
char path[128 + PATH_BYTES];
unsigned long long tmp;
FILE *fp;
int ret;
sprintf(path, "/sys/devices/system/cpu/cpu%d/thermal_throttle/core_throttle_count", cpu);
fp = fopen(path, "r");
if (!fp)
return -1;
ret = fscanf(fp, "%lld", &tmp);
fclose(fp);
if (ret != 1)
return -1;
*cnt = tmp;
return 0;
}
struct amperf_group_fd {
int aperf; /* Also the group descriptor */
int mperf;
};
static int read_perf_counter_info(const char *const path, const char *const parse_format, void *value_ptr)
{
int fdmt;
int bytes_read;
char buf[64];
int ret = -1;
fdmt = open(path, O_RDONLY, 0);
if (fdmt == -1) {
if (debug)
fprintf(stderr, "Failed to parse perf counter info %s\n", path);
ret = -1;
goto cleanup_and_exit;
}
bytes_read = read(fdmt, buf, sizeof(buf) - 1);
if (bytes_read <= 0 || bytes_read >= (int)sizeof(buf)) {
if (debug)
fprintf(stderr, "Failed to parse perf counter info %s\n", path);
ret = -1;
goto cleanup_and_exit;
}
buf[bytes_read] = '\0';
if (sscanf(buf, parse_format, value_ptr) != 1) {
if (debug)
fprintf(stderr, "Failed to parse perf counter info %s\n", path);
ret = -1;
goto cleanup_and_exit;
}
ret = 0;
cleanup_and_exit:
close(fdmt);
return ret;
}
static unsigned int read_perf_counter_info_n(const char *const path, const char *const parse_format)
{
unsigned int v;
int status;
status = read_perf_counter_info(path, parse_format, &v);
if (status)
v = -1;
return v;
}
static unsigned int read_perf_type(const char *subsys)
{
const char *const path_format = "/sys/bus/event_source/devices/%s/type";
const char *const format = "%u";
char path[128];
snprintf(path, sizeof(path), path_format, subsys);
return read_perf_counter_info_n(path, format);
}
static unsigned int read_perf_config(const char *subsys, const char *event_name)
{
const char *const path_format = "/sys/bus/event_source/devices/%s/events/%s";
FILE *fconfig = NULL;
char path[128];
char config_str[64];
unsigned int config;
unsigned int umask;
bool has_config = false;
bool has_umask = false;
unsigned int ret = -1;
snprintf(path, sizeof(path), path_format, subsys, event_name);
fconfig = fopen(path, "r");
if (!fconfig)
return -1;
if (fgets(config_str, ARRAY_SIZE(config_str), fconfig) != config_str)
goto cleanup_and_exit;
for (char *pconfig_str = &config_str[0]; pconfig_str;) {
if (sscanf(pconfig_str, "event=%x", &config) == 1) {
has_config = true;
goto next;
}
if (sscanf(pconfig_str, "umask=%x", &umask) == 1) {
has_umask = true;
goto next;
}
next:
pconfig_str = strchr(pconfig_str, ',');
if (pconfig_str) {
*pconfig_str = '\0';
++pconfig_str;
}
}
if (!has_umask)
umask = 0;
if (has_config)
ret = (umask << 8) | config;
cleanup_and_exit:
fclose(fconfig);
return ret;
}
static unsigned int read_perf_rapl_unit(const char *subsys, const char *event_name)
{
const char *const path_format = "/sys/bus/event_source/devices/%s/events/%s.unit";
const char *const format = "%s";
char path[128];
char unit_buffer[16];
snprintf(path, sizeof(path), path_format, subsys, event_name);
read_perf_counter_info(path, format, &unit_buffer);
if (strcmp("Joules", unit_buffer) == 0)
return RAPL_UNIT_JOULES;
return RAPL_UNIT_INVALID;
}
static double read_perf_scale(const char *subsys, const char *event_name)
{
const char *const path_format = "/sys/bus/event_source/devices/%s/events/%s.scale";
const char *const format = "%lf";
char path[128];
double scale;
snprintf(path, sizeof(path), path_format, subsys, event_name);
if (read_perf_counter_info(path, format, &scale))
return 0.0;
return scale;
}
size_t rapl_counter_info_count_perf(const struct rapl_counter_info_t *rci)
{
size_t ret = 0;
for (int i = 0; i < NUM_RAPL_COUNTERS; ++i)
if (rci->source[i] == COUNTER_SOURCE_PERF)
++ret;
return ret;
}
static size_t cstate_counter_info_count_perf(const struct cstate_counter_info_t *cci)
{
size_t ret = 0;
for (int i = 0; i < NUM_CSTATE_COUNTERS; ++i)
if (cci->source[i] == COUNTER_SOURCE_PERF)
++ret;
return ret;
}
void write_rapl_counter(struct rapl_counter *rc, struct rapl_counter_info_t *rci, unsigned int idx)
{
rc->raw_value = rci->data[idx];
rc->unit = rci->unit[idx];
rc->scale = rci->scale[idx];
}
int get_rapl_counters(int cpu, unsigned int domain, struct core_data *c, struct pkg_data *p)
{
unsigned long long perf_data[NUM_RAPL_COUNTERS + 1];
struct rapl_counter_info_t *rci;
if (debug >= 2)
fprintf(stderr, "%s: cpu%d domain%d\n", __func__, cpu, domain);
assert(rapl_counter_info_perdomain);
assert(domain < rapl_counter_info_perdomain_size);
rci = &rapl_counter_info_perdomain[domain];
/*
* If we have any perf counters to read, read them all now, in bulk
*/
if (rci->fd_perf != -1) {
size_t num_perf_counters = rapl_counter_info_count_perf(rci);
const ssize_t expected_read_size = (num_perf_counters + 1) * sizeof(unsigned long long);
const ssize_t actual_read_size = read(rci->fd_perf, &perf_data[0], sizeof(perf_data));
if (actual_read_size != expected_read_size)
err(-1, "%s: failed to read perf_data (%zu %zu)", __func__, expected_read_size,
actual_read_size);
}
for (unsigned int i = 0, pi = 1; i < NUM_RAPL_COUNTERS; ++i) {
switch (rci->source[i]) {
case COUNTER_SOURCE_NONE:
break;
case COUNTER_SOURCE_PERF:
assert(pi < ARRAY_SIZE(perf_data));
assert(rci->fd_perf != -1);
if (debug >= 2)
fprintf(stderr, "Reading rapl counter via perf at %u (%llu %e %lf)\n",
i, perf_data[pi], rci->scale[i], perf_data[pi] * rci->scale[i]);
rci->data[i] = perf_data[pi];
++pi;
break;
case COUNTER_SOURCE_MSR:
if (debug >= 2)
fprintf(stderr, "Reading rapl counter via msr at %u\n", i);
assert(!no_msr);
if (rci->flags[i] & RAPL_COUNTER_FLAG_USE_MSR_SUM) {
if (get_msr_sum(cpu, rci->msr[i], &rci->data[i]))
return -13 - i;
} else {
if (get_msr(cpu, rci->msr[i], &rci->data[i]))
return -13 - i;
}
rci->data[i] &= rci->msr_mask[i];
if (rci->msr_shift[i] >= 0)
rci->data[i] >>= abs(rci->msr_shift[i]);
else
rci->data[i] <<= abs(rci->msr_shift[i]);
break;
}
}
BUILD_BUG_ON(NUM_RAPL_COUNTERS != 7);
write_rapl_counter(&p->energy_pkg, rci, RAPL_RCI_INDEX_ENERGY_PKG);
write_rapl_counter(&p->energy_cores, rci, RAPL_RCI_INDEX_ENERGY_CORES);
write_rapl_counter(&p->energy_dram, rci, RAPL_RCI_INDEX_DRAM);
write_rapl_counter(&p->energy_gfx, rci, RAPL_RCI_INDEX_GFX);
write_rapl_counter(&p->rapl_pkg_perf_status, rci, RAPL_RCI_INDEX_PKG_PERF_STATUS);
write_rapl_counter(&p->rapl_dram_perf_status, rci, RAPL_RCI_INDEX_DRAM_PERF_STATUS);
write_rapl_counter(&c->core_energy, rci, RAPL_RCI_INDEX_CORE_ENERGY);
return 0;
}
char *find_sysfs_path_by_id(struct sysfs_path *sp, int id)
{
while (sp) {
if (sp->id == id)
return (sp->path);
sp = sp->next;
}
if (debug)
warnx("%s: id%d not found", __func__, id);
return NULL;
}
int get_cstate_counters(unsigned int cpu, struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
/*
* Overcommit memory a little bit here,
* but skip calculating exact sizes for the buffers.
*/
unsigned long long perf_data[NUM_CSTATE_COUNTERS];
unsigned long long perf_data_core[NUM_CSTATE_COUNTERS + 1];
unsigned long long perf_data_pkg[NUM_CSTATE_COUNTERS + 1];
struct cstate_counter_info_t *cci;
if (debug >= 2)
fprintf(stderr, "%s: cpu%d\n", __func__, cpu);
assert(ccstate_counter_info);
assert(cpu <= ccstate_counter_info_size);
ZERO_ARRAY(perf_data);
ZERO_ARRAY(perf_data_core);
ZERO_ARRAY(perf_data_pkg);
cci = &ccstate_counter_info[cpu];
/*
* If we have any perf counters to read, read them all now, in bulk
*/
const size_t num_perf_counters = cstate_counter_info_count_perf(cci);
ssize_t expected_read_size = num_perf_counters * sizeof(unsigned long long);
ssize_t actual_read_size_core = 0, actual_read_size_pkg = 0;
if (cci->fd_perf_core != -1) {
/* Each descriptor read begins with number of counters read. */
expected_read_size += sizeof(unsigned long long);
actual_read_size_core = read(cci->fd_perf_core, &perf_data_core[0], sizeof(perf_data_core));
if (actual_read_size_core <= 0)
err(-1, "%s: read perf %s: %ld", __func__, "core", actual_read_size_core);
}
if (cci->fd_perf_pkg != -1) {
/* Each descriptor read begins with number of counters read. */
expected_read_size += sizeof(unsigned long long);
actual_read_size_pkg = read(cci->fd_perf_pkg, &perf_data_pkg[0], sizeof(perf_data_pkg));
if (actual_read_size_pkg <= 0)
err(-1, "%s: read perf %s: %ld", __func__, "pkg", actual_read_size_pkg);
}
const ssize_t actual_read_size_total = actual_read_size_core + actual_read_size_pkg;
if (actual_read_size_total != expected_read_size)
err(-1, "%s: failed to read perf_data (%zu %zu)", __func__, expected_read_size, actual_read_size_total);
/*
* Copy ccstate and pcstate data into unified buffer.
*
* Skip first element from core and pkg buffers.
* Kernel puts there how many counters were read.
*/
const size_t num_core_counters = perf_data_core[0];
const size_t num_pkg_counters = perf_data_pkg[0];
assert(num_perf_counters == num_core_counters + num_pkg_counters);
/* Copy ccstate perf data */
memcpy(&perf_data[0], &perf_data_core[1], num_core_counters * sizeof(unsigned long long));
/* Copy pcstate perf data */
memcpy(&perf_data[num_core_counters], &perf_data_pkg[1], num_pkg_counters * sizeof(unsigned long long));
for (unsigned int i = 0, pi = 0; i < NUM_CSTATE_COUNTERS; ++i) {
switch (cci->source[i]) {
case COUNTER_SOURCE_NONE:
break;
case COUNTER_SOURCE_PERF:
assert(pi < ARRAY_SIZE(perf_data));
assert(cci->fd_perf_core != -1 || cci->fd_perf_pkg != -1);
if (debug >= 2)
fprintf(stderr, "cstate via %s %u: %llu\n", "perf", i, perf_data[pi]);
cci->data[i] = perf_data[pi];
++pi;
break;
case COUNTER_SOURCE_MSR:
assert(!no_msr);
if (get_msr(cpu, cci->msr[i], &cci->data[i]))
return -13 - i;
if (debug >= 2)
fprintf(stderr, "cstate via %s0x%llx %u: %llu\n", "msr", cci->msr[i], i, cci->data[i]);
break;
}
}
/*
* Helper to write the data only if the source of
* the counter for the current cpu is not none.
*
* Otherwise we would overwrite core data with 0 (default value),
* when invoked for the thread sibling.
*/
#define PERF_COUNTER_WRITE_DATA(out_counter, index) do { \
if (cci->source[index] != COUNTER_SOURCE_NONE) \
out_counter = cci->data[index]; \
} while (0)
BUILD_BUG_ON(NUM_CSTATE_COUNTERS != 11);
PERF_COUNTER_WRITE_DATA(t->c1, CCSTATE_RCI_INDEX_C1_RESIDENCY);
PERF_COUNTER_WRITE_DATA(c->c3, CCSTATE_RCI_INDEX_C3_RESIDENCY);
PERF_COUNTER_WRITE_DATA(c->c6, CCSTATE_RCI_INDEX_C6_RESIDENCY);
PERF_COUNTER_WRITE_DATA(c->c7, CCSTATE_RCI_INDEX_C7_RESIDENCY);
PERF_COUNTER_WRITE_DATA(p->pc2, PCSTATE_RCI_INDEX_C2_RESIDENCY);
PERF_COUNTER_WRITE_DATA(p->pc3, PCSTATE_RCI_INDEX_C3_RESIDENCY);
PERF_COUNTER_WRITE_DATA(p->pc6, PCSTATE_RCI_INDEX_C6_RESIDENCY);
PERF_COUNTER_WRITE_DATA(p->pc7, PCSTATE_RCI_INDEX_C7_RESIDENCY);
PERF_COUNTER_WRITE_DATA(p->pc8, PCSTATE_RCI_INDEX_C8_RESIDENCY);
PERF_COUNTER_WRITE_DATA(p->pc9, PCSTATE_RCI_INDEX_C9_RESIDENCY);
PERF_COUNTER_WRITE_DATA(p->pc10, PCSTATE_RCI_INDEX_C10_RESIDENCY);
#undef PERF_COUNTER_WRITE_DATA
return 0;
}
size_t msr_counter_info_count_perf(const struct msr_counter_info_t *mci)
{
size_t ret = 0;
for (int i = 0; i < NUM_MSR_COUNTERS; ++i)
if (mci->source[i] == COUNTER_SOURCE_PERF)
++ret;
return ret;
}
int get_smi_aperf_mperf(unsigned int cpu, struct thread_data *t)
{
unsigned long long perf_data[NUM_MSR_COUNTERS + 1];
struct msr_counter_info_t *mci;
if (debug >= 2)
fprintf(stderr, "%s: cpu%d\n", __func__, cpu);
assert(msr_counter_info);
assert(cpu <= msr_counter_info_size);
mci = &msr_counter_info[cpu];
ZERO_ARRAY(perf_data);
ZERO_ARRAY(mci->data);
if (mci->fd_perf != -1) {
const size_t num_perf_counters = msr_counter_info_count_perf(mci);
const ssize_t expected_read_size = (num_perf_counters + 1) * sizeof(unsigned long long);
const ssize_t actual_read_size = read(mci->fd_perf, &perf_data[0], sizeof(perf_data));
if (actual_read_size != expected_read_size)
err(-1, "%s: failed to read perf_data (%zu %zu)", __func__, expected_read_size,
actual_read_size);
}
for (unsigned int i = 0, pi = 1; i < NUM_MSR_COUNTERS; ++i) {
switch (mci->source[i]) {
case COUNTER_SOURCE_NONE:
break;
case COUNTER_SOURCE_PERF:
assert(pi < ARRAY_SIZE(perf_data));
assert(mci->fd_perf != -1);
if (debug >= 2)
fprintf(stderr, "Reading msr counter via perf at %u: %llu\n", i, perf_data[pi]);
mci->data[i] = perf_data[pi];
++pi;
break;
case COUNTER_SOURCE_MSR:
assert(!no_msr);
if (get_msr(cpu, mci->msr[i], &mci->data[i]))
return -2 - i;
mci->data[i] &= mci->msr_mask[i];
if (debug >= 2)
fprintf(stderr, "Reading msr counter via msr at %u: %llu\n", i, mci->data[i]);
break;
}
}
BUILD_BUG_ON(NUM_MSR_COUNTERS != 3);
t->aperf = mci->data[MSR_RCI_INDEX_APERF];
t->mperf = mci->data[MSR_RCI_INDEX_MPERF];
t->smi_count = mci->data[MSR_RCI_INDEX_SMI];
return 0;
}
int perf_counter_info_read_values(struct perf_counter_info *pp, int cpu, unsigned long long *out, size_t out_size)
{
unsigned int domain;
unsigned long long value;
int fd_counter;
for (size_t i = 0; pp; ++i, pp = pp->next) {
domain = cpu_to_domain(pp, cpu);
assert(domain < pp->num_domains);
fd_counter = pp->fd_perf_per_domain[domain];
if (fd_counter == -1)
continue;
if (read(fd_counter, &value, sizeof(value)) != sizeof(value))
return 1;
assert(i < out_size);
out[i] = value * pp->scale;
}
return 0;
}
unsigned long pmt_gen_value_mask(unsigned int lsb, unsigned int msb)
{
unsigned long mask;
if (msb == 63)
mask = 0xffffffffffffffff;
else
mask = ((1 << (msb + 1)) - 1);
mask -= (1 << lsb) - 1;
return mask;
}
unsigned long pmt_read_counter(struct pmt_counter *ppmt, unsigned int domain_id)
{
assert(domain_id < ppmt->num_domains);
const unsigned long *pmmio = ppmt->domains[domain_id].pcounter;
const unsigned long value = pmmio ? *pmmio : 0;
const unsigned long value_mask = pmt_gen_value_mask(ppmt->lsb, ppmt->msb);
const unsigned long value_shift = ppmt->lsb;
return (value & value_mask) >> value_shift;
}
/*
* get_counters(...)
* migrate to cpu
* acquire and record local counters for that cpu
*/
int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
int cpu = t->cpu_id;
unsigned long long msr;
struct msr_counter *mp;
struct pmt_counter *pp;
int i;
int status;
if (cpu_migrate(cpu)) {
fprintf(outf, "%s: Could not migrate to CPU %d\n", __func__, cpu);
return -1;
}
gettimeofday(&t->tv_begin, (struct timezone *)NULL);
if (first_counter_read)
get_apic_id(t);
t->tsc = rdtsc(); /* we are running on local CPU of interest */
get_smi_aperf_mperf(cpu, t);
if (DO_BIC(BIC_IPC))
if (read(get_instr_count_fd(cpu), &t->instr_count, sizeof(long long)) != sizeof(long long))
return -4;
if (DO_BIC(BIC_IRQ))
t->irq_count = irqs_per_cpu[cpu];
get_cstate_counters(cpu, t, c, p);
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (get_mp(cpu, mp, &t->counter[i], mp->sp->path))
return -10;
}
if (perf_counter_info_read_values(sys.perf_tp, cpu, t->perf_counter, MAX_ADDED_THREAD_COUNTERS))
return -10;
for (i = 0, pp = sys.pmt_tp; pp; i++, pp = pp->next)
t->pmt_counter[i] = pmt_read_counter(pp, t->cpu_id);
/* collect core counters only for 1st thread in core */
if (!is_cpu_first_thread_in_core(t, c, p))
goto done;
if (platform->has_per_core_rapl) {
status = get_rapl_counters(cpu, c->core_id, c, p);
if (status != 0)
return status;
}
if (DO_BIC(BIC_CPU_c7) && t->is_atom) {
/*
* For Atom CPUs that has core cstate deeper than c6,
* MSR_CORE_C6_RESIDENCY returns residency of cc6 and deeper.
* Minus CC7 (and deeper cstates) residency to get
* accturate cc6 residency.
*/
c->c6 -= c->c7;
}
if (DO_BIC(BIC_Mod_c6))
if (get_msr(cpu, MSR_MODULE_C6_RES_MS, &c->mc6_us))
return -8;
if (DO_BIC(BIC_CoreTmp)) {
if (get_msr(cpu, MSR_IA32_THERM_STATUS, &msr))
return -9;
c->core_temp_c = tj_max - ((msr >> 16) & 0x7F);
}
if (DO_BIC(BIC_CORE_THROT_CNT))
get_core_throt_cnt(cpu, &c->core_throt_cnt);
for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) {
if (get_mp(cpu, mp, &c->counter[i], mp->sp->path))
return -10;
}
if (perf_counter_info_read_values(sys.perf_cp, cpu, c->perf_counter, MAX_ADDED_CORE_COUNTERS))
return -10;
for (i = 0, pp = sys.pmt_cp; pp; i++, pp = pp->next)
c->pmt_counter[i] = pmt_read_counter(pp, c->core_id);
/* collect package counters only for 1st core in package */
if (!is_cpu_first_core_in_package(t, c, p))
goto done;
if (DO_BIC(BIC_Totl_c0)) {
if (get_msr(cpu, MSR_PKG_WEIGHTED_CORE_C0_RES, &p->pkg_wtd_core_c0))
return -10;
}
if (DO_BIC(BIC_Any_c0)) {
if (get_msr(cpu, MSR_PKG_ANY_CORE_C0_RES, &p->pkg_any_core_c0))
return -11;
}
if (DO_BIC(BIC_GFX_c0)) {
if (get_msr(cpu, MSR_PKG_ANY_GFXE_C0_RES, &p->pkg_any_gfxe_c0))
return -12;
}
if (DO_BIC(BIC_CPUGFX)) {
if (get_msr(cpu, MSR_PKG_BOTH_CORE_GFXE_C0_RES, &p->pkg_both_core_gfxe_c0))
return -13;
}
if (DO_BIC(BIC_CPU_LPI))
p->cpu_lpi = cpuidle_cur_cpu_lpi_us;
if (DO_BIC(BIC_SYS_LPI))
p->sys_lpi = cpuidle_cur_sys_lpi_us;
if (!platform->has_per_core_rapl) {
status = get_rapl_counters(cpu, p->package_id, c, p);
if (status != 0)
return status;
}
if (DO_BIC(BIC_PkgTmp)) {
if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_STATUS, &msr))
return -17;
p->pkg_temp_c = tj_max - ((msr >> 16) & 0x7F);
}
if (DO_BIC(BIC_UNCORE_MHZ))
p->uncore_mhz = get_legacy_uncore_mhz(p->package_id);
if (DO_BIC(BIC_GFX_rc6))
p->gfx_rc6_ms = gfx_info[GFX_rc6].val_ull;
if (DO_BIC(BIC_GFXMHz))
p->gfx_mhz = gfx_info[GFX_MHz].val;
if (DO_BIC(BIC_GFXACTMHz))
p->gfx_act_mhz = gfx_info[GFX_ACTMHz].val;
if (DO_BIC(BIC_SAM_mc6))
p->sam_mc6_ms = gfx_info[SAM_mc6].val_ull;
if (DO_BIC(BIC_SAMMHz))
p->sam_mhz = gfx_info[SAM_MHz].val;
if (DO_BIC(BIC_SAMACTMHz))
p->sam_act_mhz = gfx_info[SAM_ACTMHz].val;
for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) {
char *path = NULL;
if (mp->msr_num == 0) {
path = find_sysfs_path_by_id(mp->sp, p->package_id);
if (path == NULL) {
warnx("%s: package_id %d not found", __func__, p->package_id);
return -10;
}
}
if (get_mp(cpu, mp, &p->counter[i], path))
return -10;
}
if (perf_counter_info_read_values(sys.perf_pp, cpu, p->perf_counter, MAX_ADDED_PACKAGE_COUNTERS))
return -10;
for (i = 0, pp = sys.pmt_pp; pp; i++, pp = pp->next)
p->pmt_counter[i] = pmt_read_counter(pp, p->package_id);
done:
gettimeofday(&t->tv_end, (struct timezone *)NULL);
return 0;
}
int pkg_cstate_limit = PCLUKN;
char *pkg_cstate_limit_strings[] = { "unknown", "reserved", "pc0", "pc1", "pc2",
"pc3", "pc4", "pc6", "pc6n", "pc6r", "pc7", "pc7s", "pc8", "pc9", "pc10", "unlimited"
};
int nhm_pkg_cstate_limits[16] =
{ PCL__0, PCL__1, PCL__3, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCLRSV, PCLRSV
};
int snb_pkg_cstate_limits[16] =
{ PCL__0, PCL__2, PCL_6N, PCL_6R, PCL__7, PCL_7S, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCLRSV, PCLRSV
};
int hsw_pkg_cstate_limits[16] =
{ PCL__0, PCL__2, PCL__3, PCL__6, PCL__7, PCL_7S, PCL__8, PCL__9, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCLRSV, PCLRSV
};
int slv_pkg_cstate_limits[16] =
{ PCL__0, PCL__1, PCLRSV, PCLRSV, PCL__4, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCL__6, PCL__7
};
int amt_pkg_cstate_limits[16] =
{ PCLUNL, PCL__1, PCL__2, PCLRSV, PCLRSV, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCLRSV, PCLRSV
};
int phi_pkg_cstate_limits[16] =
{ PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCLRSV, PCLRSV
};
int glm_pkg_cstate_limits[16] =
{ PCLUNL, PCL__1, PCL__3, PCL__6, PCL__7, PCL_7S, PCL__8, PCL__9, PCL_10, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCLRSV, PCLRSV
};
int skx_pkg_cstate_limits[16] =
{ PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCLRSV, PCLRSV
};
int icx_pkg_cstate_limits[16] =
{ PCL__0, PCL__2, PCL__6, PCL__6, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV,
PCLRSV, PCLRSV
};
void probe_cst_limit(void)
{
unsigned long long msr;
int *pkg_cstate_limits;
if (!platform->has_nhm_msrs || no_msr)
return;
switch (platform->cst_limit) {
case CST_LIMIT_NHM:
pkg_cstate_limits = nhm_pkg_cstate_limits;
break;
case CST_LIMIT_SNB:
pkg_cstate_limits = snb_pkg_cstate_limits;
break;
case CST_LIMIT_HSW:
pkg_cstate_limits = hsw_pkg_cstate_limits;
break;
case CST_LIMIT_SKX:
pkg_cstate_limits = skx_pkg_cstate_limits;
break;
case CST_LIMIT_ICX:
pkg_cstate_limits = icx_pkg_cstate_limits;
break;
case CST_LIMIT_SLV:
pkg_cstate_limits = slv_pkg_cstate_limits;
break;
case CST_LIMIT_AMT:
pkg_cstate_limits = amt_pkg_cstate_limits;
break;
case CST_LIMIT_KNL:
pkg_cstate_limits = phi_pkg_cstate_limits;
break;
case CST_LIMIT_GMT:
pkg_cstate_limits = glm_pkg_cstate_limits;
break;
default:
return;
}
get_msr(base_cpu, MSR_PKG_CST_CONFIG_CONTROL, &msr);
pkg_cstate_limit = pkg_cstate_limits[msr & 0xF];
}
static void dump_platform_info(void)
{
unsigned long long msr;
unsigned int ratio;
if (!platform->has_nhm_msrs || no_msr)
return;
get_msr(base_cpu, MSR_PLATFORM_INFO, &msr);
fprintf(outf, "cpu%d: MSR_PLATFORM_INFO: 0x%08llx\n", base_cpu, msr);
ratio = (msr >> 40) & 0xFF;
fprintf(outf, "%d * %.1f = %.1f MHz max efficiency frequency\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0xFF;
fprintf(outf, "%d * %.1f = %.1f MHz base frequency\n", ratio, bclk, ratio * bclk);
}
static void dump_power_ctl(void)
{
unsigned long long msr;
if (!platform->has_nhm_msrs || no_msr)
return;
get_msr(base_cpu, MSR_IA32_POWER_CTL, &msr);
fprintf(outf, "cpu%d: MSR_IA32_POWER_CTL: 0x%08llx (C1E auto-promotion: %sabled)\n",
base_cpu, msr, msr & 0x2 ? "EN" : "DIS");
/* C-state Pre-wake Disable (CSTATE_PREWAKE_DISABLE) */
if (platform->has_cst_prewake_bit)
fprintf(outf, "C-state Pre-wake: %sabled\n", msr & 0x40000000 ? "DIS" : "EN");
return;
}
static void dump_turbo_ratio_limit2(void)
{
unsigned long long msr;
unsigned int ratio;
get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT2, &msr);
fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT2: 0x%08llx\n", base_cpu, msr);
ratio = (msr >> 8) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 18 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 0) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 17 active cores\n", ratio, bclk, ratio * bclk);
return;
}
static void dump_turbo_ratio_limit1(void)
{
unsigned long long msr;
unsigned int ratio;
get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT1, &msr);
fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT1: 0x%08llx\n", base_cpu, msr);
ratio = (msr >> 56) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 16 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 48) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 15 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 40) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 14 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 32) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 13 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 24) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 12 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 16) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 11 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 10 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 0) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 9 active cores\n", ratio, bclk, ratio * bclk);
return;
}
static void dump_turbo_ratio_limits(int trl_msr_offset)
{
unsigned long long msr, core_counts;
int shift;
get_msr(base_cpu, trl_msr_offset, &msr);
fprintf(outf, "cpu%d: MSR_%sTURBO_RATIO_LIMIT: 0x%08llx\n",
base_cpu, trl_msr_offset == MSR_SECONDARY_TURBO_RATIO_LIMIT ? "SECONDARY_" : "", msr);
if (platform->trl_msrs & TRL_CORECOUNT) {
get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT1, &core_counts);
fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT1: 0x%08llx\n", base_cpu, core_counts);
} else {
core_counts = 0x0807060504030201;
}
for (shift = 56; shift >= 0; shift -= 8) {
unsigned int ratio, group_size;
ratio = (msr >> shift) & 0xFF;
group_size = (core_counts >> shift) & 0xFF;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio, bclk, ratio * bclk, group_size);
}
return;
}
static void dump_atom_turbo_ratio_limits(void)
{
unsigned long long msr;
unsigned int ratio;
get_msr(base_cpu, MSR_ATOM_CORE_RATIOS, &msr);
fprintf(outf, "cpu%d: MSR_ATOM_CORE_RATIOS: 0x%08llx\n", base_cpu, msr & 0xFFFFFFFF);
ratio = (msr >> 0) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz minimum operating frequency\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz low frequency mode (LFM)\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 16) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz base frequency\n", ratio, bclk, ratio * bclk);
get_msr(base_cpu, MSR_ATOM_CORE_TURBO_RATIOS, &msr);
fprintf(outf, "cpu%d: MSR_ATOM_CORE_TURBO_RATIOS: 0x%08llx\n", base_cpu, msr & 0xFFFFFFFF);
ratio = (msr >> 24) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 4 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 16) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 3 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 8) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 2 active cores\n", ratio, bclk, ratio * bclk);
ratio = (msr >> 0) & 0x3F;
if (ratio)
fprintf(outf, "%d * %.1f = %.1f MHz max turbo 1 active core\n", ratio, bclk, ratio * bclk);
}
static void dump_knl_turbo_ratio_limits(void)
{
const unsigned int buckets_no = 7;
unsigned long long msr;
int delta_cores, delta_ratio;
int i, b_nr;
unsigned int cores[buckets_no];
unsigned int ratio[buckets_no];
get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT, &msr);
fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT: 0x%08llx\n", base_cpu, msr);
/*
* Turbo encoding in KNL is as follows:
* [0] -- Reserved
* [7:1] -- Base value of number of active cores of bucket 1.
* [15:8] -- Base value of freq ratio of bucket 1.
* [20:16] -- +ve delta of number of active cores of bucket 2.
* i.e. active cores of bucket 2 =
* active cores of bucket 1 + delta
* [23:21] -- Negative delta of freq ratio of bucket 2.
* i.e. freq ratio of bucket 2 =
* freq ratio of bucket 1 - delta
* [28:24]-- +ve delta of number of active cores of bucket 3.
* [31:29]-- -ve delta of freq ratio of bucket 3.
* [36:32]-- +ve delta of number of active cores of bucket 4.
* [39:37]-- -ve delta of freq ratio of bucket 4.
* [44:40]-- +ve delta of number of active cores of bucket 5.
* [47:45]-- -ve delta of freq ratio of bucket 5.
* [52:48]-- +ve delta of number of active cores of bucket 6.
* [55:53]-- -ve delta of freq ratio of bucket 6.
* [60:56]-- +ve delta of number of active cores of bucket 7.
* [63:61]-- -ve delta of freq ratio of bucket 7.
*/
b_nr = 0;
cores[b_nr] = (msr & 0xFF) >> 1;
ratio[b_nr] = (msr >> 8) & 0xFF;
for (i = 16; i < 64; i += 8) {
delta_cores = (msr >> i) & 0x1F;
delta_ratio = (msr >> (i + 5)) & 0x7;
cores[b_nr + 1] = cores[b_nr] + delta_cores;
ratio[b_nr + 1] = ratio[b_nr] - delta_ratio;
b_nr++;
}
for (i = buckets_no - 1; i >= 0; i--)
if (i > 0 ? ratio[i] != ratio[i - 1] : 1)
fprintf(outf,
"%d * %.1f = %.1f MHz max turbo %d active cores\n",
ratio[i], bclk, ratio[i] * bclk, cores[i]);
}
static void dump_cst_cfg(void)
{
unsigned long long msr;
if (!platform->has_nhm_msrs || no_msr)
return;
get_msr(base_cpu, MSR_PKG_CST_CONFIG_CONTROL, &msr);
fprintf(outf, "cpu%d: MSR_PKG_CST_CONFIG_CONTROL: 0x%08llx", base_cpu, msr);
fprintf(outf, " (%s%s%s%s%slocked, pkg-cstate-limit=%d (%s)",
(msr & SNB_C3_AUTO_UNDEMOTE) ? "UNdemote-C3, " : "",
(msr & SNB_C1_AUTO_UNDEMOTE) ? "UNdemote-C1, " : "",
(msr & NHM_C3_AUTO_DEMOTE) ? "demote-C3, " : "",
(msr & NHM_C1_AUTO_DEMOTE) ? "demote-C1, " : "",
(msr & (1 << 15)) ? "" : "UN", (unsigned int)msr & 0xF, pkg_cstate_limit_strings[pkg_cstate_limit]);
#define AUTOMATIC_CSTATE_CONVERSION (1UL << 16)
if (platform->has_cst_auto_convension) {
fprintf(outf, ", automatic c-state conversion=%s", (msr & AUTOMATIC_CSTATE_CONVERSION) ? "on" : "off");
}
fprintf(outf, ")\n");
return;
}
static void dump_config_tdp(void)
{
unsigned long long msr;
get_msr(base_cpu, MSR_CONFIG_TDP_NOMINAL, &msr);
fprintf(outf, "cpu%d: MSR_CONFIG_TDP_NOMINAL: 0x%08llx", base_cpu, msr);
fprintf(outf, " (base_ratio=%d)\n", (unsigned int)msr & 0xFF);
get_msr(base_cpu, MSR_CONFIG_TDP_LEVEL_1, &msr);
fprintf(outf, "cpu%d: MSR_CONFIG_TDP_LEVEL_1: 0x%08llx (", base_cpu, msr);
if (msr) {
fprintf(outf, "PKG_MIN_PWR_LVL1=%d ", (unsigned int)(msr >> 48) & 0x7FFF);
fprintf(outf, "PKG_MAX_PWR_LVL1=%d ", (unsigned int)(msr >> 32) & 0x7FFF);
fprintf(outf, "LVL1_RATIO=%d ", (unsigned int)(msr >> 16) & 0xFF);
fprintf(outf, "PKG_TDP_LVL1=%d", (unsigned int)(msr) & 0x7FFF);
}
fprintf(outf, ")\n");
get_msr(base_cpu, MSR_CONFIG_TDP_LEVEL_2, &msr);
fprintf(outf, "cpu%d: MSR_CONFIG_TDP_LEVEL_2: 0x%08llx (", base_cpu, msr);
if (msr) {
fprintf(outf, "PKG_MIN_PWR_LVL2=%d ", (unsigned int)(msr >> 48) & 0x7FFF);
fprintf(outf, "PKG_MAX_PWR_LVL2=%d ", (unsigned int)(msr >> 32) & 0x7FFF);
fprintf(outf, "LVL2_RATIO=%d ", (unsigned int)(msr >> 16) & 0xFF);
fprintf(outf, "PKG_TDP_LVL2=%d", (unsigned int)(msr) & 0x7FFF);
}
fprintf(outf, ")\n");
get_msr(base_cpu, MSR_CONFIG_TDP_CONTROL, &msr);
fprintf(outf, "cpu%d: MSR_CONFIG_TDP_CONTROL: 0x%08llx (", base_cpu, msr);
if ((msr) & 0x3)
fprintf(outf, "TDP_LEVEL=%d ", (unsigned int)(msr) & 0x3);
fprintf(outf, " lock=%d", (unsigned int)(msr >> 31) & 1);
fprintf(outf, ")\n");
get_msr(base_cpu, MSR_TURBO_ACTIVATION_RATIO, &msr);
fprintf(outf, "cpu%d: MSR_TURBO_ACTIVATION_RATIO: 0x%08llx (", base_cpu, msr);
fprintf(outf, "MAX_NON_TURBO_RATIO=%d", (unsigned int)(msr) & 0xFF);
fprintf(outf, " lock=%d", (unsigned int)(msr >> 31) & 1);
fprintf(outf, ")\n");
}
unsigned int irtl_time_units[] = { 1, 32, 1024, 32768, 1048576, 33554432, 0, 0 };
void print_irtl(void)
{
unsigned long long msr;
if (!platform->has_irtl_msrs || no_msr)
return;
if (platform->supported_cstates & PC3) {
get_msr(base_cpu, MSR_PKGC3_IRTL, &msr);
fprintf(outf, "cpu%d: MSR_PKGC3_IRTL: 0x%08llx (", base_cpu, msr);
fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT",
(msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]);
}
if (platform->supported_cstates & PC6) {
get_msr(base_cpu, MSR_PKGC6_IRTL, &msr);
fprintf(outf, "cpu%d: MSR_PKGC6_IRTL: 0x%08llx (", base_cpu, msr);
fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT",
(msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]);
}
if (platform->supported_cstates & PC7) {
get_msr(base_cpu, MSR_PKGC7_IRTL, &msr);
fprintf(outf, "cpu%d: MSR_PKGC7_IRTL: 0x%08llx (", base_cpu, msr);
fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT",
(msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]);
}
if (platform->supported_cstates & PC8) {
get_msr(base_cpu, MSR_PKGC8_IRTL, &msr);
fprintf(outf, "cpu%d: MSR_PKGC8_IRTL: 0x%08llx (", base_cpu, msr);
fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT",
(msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]);
}
if (platform->supported_cstates & PC9) {
get_msr(base_cpu, MSR_PKGC9_IRTL, &msr);
fprintf(outf, "cpu%d: MSR_PKGC9_IRTL: 0x%08llx (", base_cpu, msr);
fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT",
(msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]);
}
if (platform->supported_cstates & PC10) {
get_msr(base_cpu, MSR_PKGC10_IRTL, &msr);
fprintf(outf, "cpu%d: MSR_PKGC10_IRTL: 0x%08llx (", base_cpu, msr);
fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT",
(msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]);
}
}
void free_fd_percpu(void)
{
int i;
if (!fd_percpu)
return;
for (i = 0; i < topo.max_cpu_num + 1; ++i) {
if (fd_percpu[i] != 0)
close(fd_percpu[i]);
}
free(fd_percpu);
fd_percpu = NULL;
}
void free_fd_instr_count_percpu(void)
{
if (!fd_instr_count_percpu)
return;
for (int i = 0; i < topo.max_cpu_num + 1; ++i) {
if (fd_instr_count_percpu[i] != 0)
close(fd_instr_count_percpu[i]);
}
free(fd_instr_count_percpu);
fd_instr_count_percpu = NULL;
}
void free_fd_cstate(void)
{
if (!ccstate_counter_info)
return;
const int counter_info_num = ccstate_counter_info_size;
for (int counter_id = 0; counter_id < counter_info_num; ++counter_id) {
if (ccstate_counter_info[counter_id].fd_perf_core != -1)
close(ccstate_counter_info[counter_id].fd_perf_core);
if (ccstate_counter_info[counter_id].fd_perf_pkg != -1)
close(ccstate_counter_info[counter_id].fd_perf_pkg);
}
free(ccstate_counter_info);
ccstate_counter_info = NULL;
ccstate_counter_info_size = 0;
}
void free_fd_msr(void)
{
if (!msr_counter_info)
return;
for (int cpu = 0; cpu < topo.max_cpu_num; ++cpu) {
if (msr_counter_info[cpu].fd_perf != -1)
close(msr_counter_info[cpu].fd_perf);
}
free(msr_counter_info);
msr_counter_info = NULL;
msr_counter_info_size = 0;
}
void free_fd_rapl_percpu(void)
{
if (!rapl_counter_info_perdomain)
return;
const int num_domains = rapl_counter_info_perdomain_size;
for (int domain_id = 0; domain_id < num_domains; ++domain_id) {
if (rapl_counter_info_perdomain[domain_id].fd_perf != -1)
close(rapl_counter_info_perdomain[domain_id].fd_perf);
}
free(rapl_counter_info_perdomain);
rapl_counter_info_perdomain = NULL;
rapl_counter_info_perdomain_size = 0;
}
void free_fd_added_perf_counters_(struct perf_counter_info *pp)
{
if (!pp)
return;
if (!pp->fd_perf_per_domain)
return;
while (pp) {
for (size_t domain = 0; domain < pp->num_domains; ++domain) {
if (pp->fd_perf_per_domain[domain] != -1) {
close(pp->fd_perf_per_domain[domain]);
pp->fd_perf_per_domain[domain] = -1;
}
}
free(pp->fd_perf_per_domain);
pp->fd_perf_per_domain = NULL;
pp = pp->next;
}
}
void free_fd_added_perf_counters(void)
{
free_fd_added_perf_counters_(sys.perf_tp);
free_fd_added_perf_counters_(sys.perf_cp);
free_fd_added_perf_counters_(sys.perf_pp);
}
void free_all_buffers(void)
{
int i;
CPU_FREE(cpu_present_set);
cpu_present_set = NULL;
cpu_present_setsize = 0;
CPU_FREE(cpu_effective_set);
cpu_effective_set = NULL;
cpu_effective_setsize = 0;
CPU_FREE(cpu_allowed_set);
cpu_allowed_set = NULL;
cpu_allowed_setsize = 0;
CPU_FREE(cpu_affinity_set);
cpu_affinity_set = NULL;
cpu_affinity_setsize = 0;
free(thread_even);
free(core_even);
free(package_even);
thread_even = NULL;
core_even = NULL;
package_even = NULL;
free(thread_odd);
free(core_odd);
free(package_odd);
thread_odd = NULL;
core_odd = NULL;
package_odd = NULL;
free(output_buffer);
output_buffer = NULL;
outp = NULL;
free_fd_percpu();
free_fd_instr_count_percpu();
free_fd_msr();
free_fd_rapl_percpu();
free_fd_cstate();
free_fd_added_perf_counters();
free(irq_column_2_cpu);
free(irqs_per_cpu);
for (i = 0; i <= topo.max_cpu_num; ++i) {
if (cpus[i].put_ids)
CPU_FREE(cpus[i].put_ids);
}
free(cpus);
}
/*
* Parse a file containing a single int.
* Return 0 if file can not be opened
* Exit if file can be opened, but can not be parsed
*/
int parse_int_file(const char *fmt, ...)
{
va_list args;
char path[PATH_MAX];
FILE *filep;
int value;
va_start(args, fmt);
vsnprintf(path, sizeof(path), fmt, args);
va_end(args);
filep = fopen(path, "r");
if (!filep)
return 0;
if (fscanf(filep, "%d", &value) != 1)
err(1, "%s: failed to parse number from file", path);
fclose(filep);
return value;
}
/*
* cpu_is_first_core_in_package(cpu)
* return 1 if given CPU is 1st core in package
*/
int cpu_is_first_core_in_package(int cpu)
{
return cpu == parse_int_file("/sys/devices/system/cpu/cpu%d/topology/core_siblings_list", cpu);
}
int get_physical_package_id(int cpu)
{
return parse_int_file("/sys/devices/system/cpu/cpu%d/topology/physical_package_id", cpu);
}
int get_die_id(int cpu)
{
return parse_int_file("/sys/devices/system/cpu/cpu%d/topology/die_id", cpu);
}
int get_core_id(int cpu)
{
return parse_int_file("/sys/devices/system/cpu/cpu%d/topology/core_id", cpu);
}
void set_node_data(void)
{
int pkg, node, lnode, cpu, cpux;
int cpu_count;
/* initialize logical_node_id */
for (cpu = 0; cpu <= topo.max_cpu_num; ++cpu)
cpus[cpu].logical_node_id = -1;
cpu_count = 0;
for (pkg = 0; pkg < topo.num_packages; pkg++) {
lnode = 0;
for (cpu = 0; cpu <= topo.max_cpu_num; ++cpu) {
if (cpus[cpu].physical_package_id != pkg)
continue;
/* find a cpu with an unset logical_node_id */
if (cpus[cpu].logical_node_id != -1)
continue;
cpus[cpu].logical_node_id = lnode;
node = cpus[cpu].physical_node_id;
cpu_count++;
/*
* find all matching cpus on this pkg and set
* the logical_node_id
*/
for (cpux = cpu; cpux <= topo.max_cpu_num; cpux++) {
if ((cpus[cpux].physical_package_id == pkg) && (cpus[cpux].physical_node_id == node)) {
cpus[cpux].logical_node_id = lnode;
cpu_count++;
}
}
lnode++;
if (lnode > topo.nodes_per_pkg)
topo.nodes_per_pkg = lnode;
}
if (cpu_count >= topo.max_cpu_num)
break;
}
}
int get_physical_node_id(struct cpu_topology *thiscpu)
{
char path[80];
FILE *filep;
int i;
int cpu = thiscpu->logical_cpu_id;
for (i = 0; i <= topo.max_cpu_num; i++) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/node%i/cpulist", cpu, i);
filep = fopen(path, "r");
if (!filep)
continue;
fclose(filep);
return i;
}
return -1;
}
static int parse_cpu_str(char *cpu_str, cpu_set_t *cpu_set, int cpu_set_size)
{
unsigned int start, end;
char *next = cpu_str;
while (next && *next) {
if (*next == '-') /* no negative cpu numbers */
return 1;
start = strtoul(next, &next, 10);
if (start >= CPU_SUBSET_MAXCPUS)
return 1;
CPU_SET_S(start, cpu_set_size, cpu_set);
if (*next == '\0' || *next == '\n')
break;
if (*next == ',') {
next += 1;
continue;
}
if (*next == '-') {
next += 1; /* start range */
} else if (*next == '.') {
next += 1;
if (*next == '.')
next += 1; /* start range */
else
return 1;
}
end = strtoul(next, &next, 10);
if (end <= start)
return 1;
while (++start <= end) {
if (start >= CPU_SUBSET_MAXCPUS)
return 1;
CPU_SET_S(start, cpu_set_size, cpu_set);
}
if (*next == ',')
next += 1;
else if (*next != '\0' && *next != '\n')
return 1;
}
return 0;
}
int get_thread_siblings(struct cpu_topology *thiscpu)
{
char path[80], character;
FILE *filep;
unsigned long map;
int so, shift, sib_core;
int cpu = thiscpu->logical_cpu_id;
int offset = topo.max_cpu_num + 1;
size_t size;
int thread_id = 0;
thiscpu->put_ids = CPU_ALLOC((topo.max_cpu_num + 1));
if (thiscpu->thread_id < 0)
thiscpu->thread_id = thread_id++;
if (!thiscpu->put_ids)
return -1;
size = CPU_ALLOC_SIZE((topo.max_cpu_num + 1));
CPU_ZERO_S(size, thiscpu->put_ids);
sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/thread_siblings", cpu);
filep = fopen(path, "r");
if (!filep) {
warnx("%s: open failed", path);
return -1;
}
do {
offset -= BITMASK_SIZE;
if (fscanf(filep, "%lx%c", &map, &character) != 2)
err(1, "%s: failed to parse file", path);
for (shift = 0; shift < BITMASK_SIZE; shift++) {
if ((map >> shift) & 0x1) {
so = shift + offset;
sib_core = get_core_id(so);
if (sib_core == thiscpu->physical_core_id) {
CPU_SET_S(so, size, thiscpu->put_ids);
if ((so != cpu) && (cpus[so].thread_id < 0))
cpus[so].thread_id = thread_id++;
}
}
}
} while (character == ',');
fclose(filep);
return CPU_COUNT_S(size, thiscpu->put_ids);
}
/*
* run func(thread, core, package) in topology order
* skip non-present cpus
*/
int for_all_cpus_2(int (func) (struct thread_data *, struct core_data *,
struct pkg_data *, struct thread_data *, struct core_data *,
struct pkg_data *), struct thread_data *thread_base,
struct core_data *core_base, struct pkg_data *pkg_base,
struct thread_data *thread_base2, struct core_data *core_base2, struct pkg_data *pkg_base2)
{
int retval, pkg_no, node_no, core_no, thread_no;
for (pkg_no = 0; pkg_no < topo.num_packages; ++pkg_no) {
for (node_no = 0; node_no < topo.nodes_per_pkg; ++node_no) {
for (core_no = 0; core_no < topo.cores_per_node; ++core_no) {
for (thread_no = 0; thread_no < topo.threads_per_core; ++thread_no) {
struct thread_data *t, *t2;
struct core_data *c, *c2;
struct pkg_data *p, *p2;
t = GET_THREAD(thread_base, thread_no, core_no, node_no, pkg_no);
if (cpu_is_not_allowed(t->cpu_id))
continue;
t2 = GET_THREAD(thread_base2, thread_no, core_no, node_no, pkg_no);
c = GET_CORE(core_base, core_no, node_no, pkg_no);
c2 = GET_CORE(core_base2, core_no, node_no, pkg_no);
p = GET_PKG(pkg_base, pkg_no);
p2 = GET_PKG(pkg_base2, pkg_no);
retval = func(t, c, p, t2, c2, p2);
if (retval)
return retval;
}
}
}
}
return 0;
}
/*
* run func(cpu) on every cpu in /proc/stat
* return max_cpu number
*/
int for_all_proc_cpus(int (func) (int))
{
FILE *fp;
int cpu_num;
int retval;
fp = fopen_or_die(proc_stat, "r");
retval = fscanf(fp, "cpu %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n");
if (retval != 0)
err(1, "%s: failed to parse format", proc_stat);
while (1) {
retval = fscanf(fp, "cpu%u %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n", &cpu_num);
if (retval != 1)
break;
retval = func(cpu_num);
if (retval) {
fclose(fp);
return (retval);
}
}
fclose(fp);
return 0;
}
#define PATH_EFFECTIVE_CPUS "/sys/fs/cgroup/cpuset.cpus.effective"
static char cpu_effective_str[1024];
static int update_effective_str(bool startup)
{
FILE *fp;
char *pos;
char buf[1024];
int ret;
if (cpu_effective_str[0] == '\0' && !startup)
return 0;
fp = fopen(PATH_EFFECTIVE_CPUS, "r");
if (!fp)
return 0;
pos = fgets(buf, 1024, fp);
if (!pos)
err(1, "%s: file read failed\n", PATH_EFFECTIVE_CPUS);
fclose(fp);
ret = strncmp(cpu_effective_str, buf, 1024);
if (!ret)
return 0;
strncpy(cpu_effective_str, buf, 1024);
return 1;
}
static void update_effective_set(bool startup)
{
update_effective_str(startup);
if (parse_cpu_str(cpu_effective_str, cpu_effective_set, cpu_effective_setsize))
err(1, "%s: cpu str malformat %s\n", PATH_EFFECTIVE_CPUS, cpu_effective_str);
}
void linux_perf_init(void);
void msr_perf_init(void);
void rapl_perf_init(void);
void cstate_perf_init(void);
void added_perf_counters_init(void);
void pmt_init(void);
void re_initialize(void)
{
free_all_buffers();
setup_all_buffers(false);
linux_perf_init();
msr_perf_init();
rapl_perf_init();
cstate_perf_init();
added_perf_counters_init();
pmt_init();
fprintf(outf, "turbostat: re-initialized with num_cpus %d, allowed_cpus %d\n", topo.num_cpus,
topo.allowed_cpus);
}
void set_max_cpu_num(void)
{
FILE *filep;
int base_cpu;
unsigned long dummy;
char pathname[64];
base_cpu = sched_getcpu();
if (base_cpu < 0)
err(1, "cannot find calling cpu ID");
sprintf(pathname, "/sys/devices/system/cpu/cpu%d/topology/thread_siblings", base_cpu);
filep = fopen_or_die(pathname, "r");
topo.max_cpu_num = 0;
while (fscanf(filep, "%lx,", &dummy) == 1)
topo.max_cpu_num += BITMASK_SIZE;
fclose(filep);
topo.max_cpu_num--; /* 0 based */
}
/*
* count_cpus()
* remember the last one seen, it will be the max
*/
int count_cpus(int cpu)
{
UNUSED(cpu);
topo.num_cpus++;
return 0;
}
int mark_cpu_present(int cpu)
{
CPU_SET_S(cpu, cpu_present_setsize, cpu_present_set);
return 0;
}
int init_thread_id(int cpu)
{
cpus[cpu].thread_id = -1;
return 0;
}
/*
* snapshot_proc_interrupts()
*
* read and record summary of /proc/interrupts
*
* return 1 if config change requires a restart, else return 0
*/
int snapshot_proc_interrupts(void)
{
static FILE *fp;
int column, retval;
if (fp == NULL)
fp = fopen_or_die("/proc/interrupts", "r");
else
rewind(fp);
/* read 1st line of /proc/interrupts to get cpu* name for each column */
for (column = 0; column < topo.num_cpus; ++column) {
int cpu_number;
retval = fscanf(fp, " CPU%d", &cpu_number);
if (retval != 1)
break;
if (cpu_number > topo.max_cpu_num) {
warn("/proc/interrupts: cpu%d: > %d", cpu_number, topo.max_cpu_num);
return 1;
}
irq_column_2_cpu[column] = cpu_number;
irqs_per_cpu[cpu_number] = 0;
}
/* read /proc/interrupt count lines and sum up irqs per cpu */
while (1) {
int column;
char buf[64];
retval = fscanf(fp, " %s:", buf); /* flush irq# "N:" */
if (retval != 1)
break;
/* read the count per cpu */
for (column = 0; column < topo.num_cpus; ++column) {
int cpu_number, irq_count;
retval = fscanf(fp, " %d", &irq_count);
if (retval != 1)
break;
cpu_number = irq_column_2_cpu[column];
irqs_per_cpu[cpu_number] += irq_count;
}
while (getc(fp) != '\n') ; /* flush interrupt description */
}
return 0;
}
/*
* snapshot_graphics()
*
* record snapshot of specified graphics sysfs knob
*
* return 1 if config change requires a restart, else return 0
*/
int snapshot_graphics(int idx)
{
FILE *fp;
int retval;
switch (idx) {
case GFX_rc6:
case SAM_mc6:
fp = fopen_or_die(gfx_info[idx].path, "r");
retval = fscanf(fp, "%lld", &gfx_info[idx].val_ull);
if (retval != 1)
err(1, "rc6");
fclose(fp);
return 0;
case GFX_MHz:
case GFX_ACTMHz:
case SAM_MHz:
case SAM_ACTMHz:
if (gfx_info[idx].fp == NULL) {
gfx_info[idx].fp = fopen_or_die(gfx_info[idx].path, "r");
} else {
rewind(gfx_info[idx].fp);
fflush(gfx_info[idx].fp);
}
retval = fscanf(gfx_info[idx].fp, "%d", &gfx_info[idx].val);
if (retval != 1)
err(1, "MHz");
return 0;
default:
return -EINVAL;
}
}
/*
* snapshot_cpu_lpi()
*
* record snapshot of
* /sys/devices/system/cpu/cpuidle/low_power_idle_cpu_residency_us
*/
int snapshot_cpu_lpi_us(void)
{
FILE *fp;
int retval;
fp = fopen_or_die("/sys/devices/system/cpu/cpuidle/low_power_idle_cpu_residency_us", "r");
retval = fscanf(fp, "%lld", &cpuidle_cur_cpu_lpi_us);
if (retval != 1) {
fprintf(stderr, "Disabling Low Power Idle CPU output\n");
BIC_NOT_PRESENT(BIC_CPU_LPI);
fclose(fp);
return -1;
}
fclose(fp);
return 0;
}
/*
* snapshot_sys_lpi()
*
* record snapshot of sys_lpi_file
*/
int snapshot_sys_lpi_us(void)
{
FILE *fp;
int retval;
fp = fopen_or_die(sys_lpi_file, "r");
retval = fscanf(fp, "%lld", &cpuidle_cur_sys_lpi_us);
if (retval != 1) {
fprintf(stderr, "Disabling Low Power Idle System output\n");
BIC_NOT_PRESENT(BIC_SYS_LPI);
fclose(fp);
return -1;
}
fclose(fp);
return 0;
}
/*
* snapshot /proc and /sys files
*
* return 1 if configuration restart needed, else return 0
*/
int snapshot_proc_sysfs_files(void)
{
if (DO_BIC(BIC_IRQ))
if (snapshot_proc_interrupts())
return 1;
if (DO_BIC(BIC_GFX_rc6))
snapshot_graphics(GFX_rc6);
if (DO_BIC(BIC_GFXMHz))
snapshot_graphics(GFX_MHz);
if (DO_BIC(BIC_GFXACTMHz))
snapshot_graphics(GFX_ACTMHz);
if (DO_BIC(BIC_SAM_mc6))
snapshot_graphics(SAM_mc6);
if (DO_BIC(BIC_SAMMHz))
snapshot_graphics(SAM_MHz);
if (DO_BIC(BIC_SAMACTMHz))
snapshot_graphics(SAM_ACTMHz);
if (DO_BIC(BIC_CPU_LPI))
snapshot_cpu_lpi_us();
if (DO_BIC(BIC_SYS_LPI))
snapshot_sys_lpi_us();
return 0;
}
int exit_requested;
static void signal_handler(int signal)
{
switch (signal) {
case SIGINT:
exit_requested = 1;
if (debug)
fprintf(stderr, " SIGINT\n");
break;
case SIGUSR1:
if (debug > 1)
fprintf(stderr, "SIGUSR1\n");
break;
}
}
void setup_signal_handler(void)
{
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = &signal_handler;
if (sigaction(SIGINT, &sa, NULL) < 0)
err(1, "sigaction SIGINT");
if (sigaction(SIGUSR1, &sa, NULL) < 0)
err(1, "sigaction SIGUSR1");
}
void do_sleep(void)
{
struct timeval tout;
struct timespec rest;
fd_set readfds;
int retval;
FD_ZERO(&readfds);
FD_SET(0, &readfds);
if (ignore_stdin) {
nanosleep(&interval_ts, NULL);
return;
}
tout = interval_tv;
retval = select(1, &readfds, NULL, NULL, &tout);
if (retval == 1) {
switch (getc(stdin)) {
case 'q':
exit_requested = 1;
break;
case EOF:
/*
* 'stdin' is a pipe closed on the other end. There
* won't be any further input.
*/
ignore_stdin = 1;
/* Sleep the rest of the time */
rest.tv_sec = (tout.tv_sec + tout.tv_usec / 1000000);
rest.tv_nsec = (tout.tv_usec % 1000000) * 1000;
nanosleep(&rest, NULL);
}
}
}
int get_msr_sum(int cpu, off_t offset, unsigned long long *msr)
{
int ret, idx;
unsigned long long msr_cur, msr_last;
assert(!no_msr);
if (!per_cpu_msr_sum)
return 1;
idx = offset_to_idx(offset);
if (idx < 0)
return idx;
/* get_msr_sum() = sum + (get_msr() - last) */
ret = get_msr(cpu, offset, &msr_cur);
if (ret)
return ret;
msr_last = per_cpu_msr_sum[cpu].entries[idx].last;
DELTA_WRAP32(msr_cur, msr_last);
*msr = msr_last + per_cpu_msr_sum[cpu].entries[idx].sum;
return 0;
}
timer_t timerid;
/* Timer callback, update the sum of MSRs periodically. */
static int update_msr_sum(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
int i, ret;
int cpu = t->cpu_id;
UNUSED(c);
UNUSED(p);
assert(!no_msr);
for (i = IDX_PKG_ENERGY; i < IDX_COUNT; i++) {
unsigned long long msr_cur, msr_last;
off_t offset;
if (!idx_valid(i))
continue;
offset = idx_to_offset(i);
if (offset < 0)
continue;
ret = get_msr(cpu, offset, &msr_cur);
if (ret) {
fprintf(outf, "Can not update msr(0x%llx)\n", (unsigned long long)offset);
continue;
}
msr_last = per_cpu_msr_sum[cpu].entries[i].last;
per_cpu_msr_sum[cpu].entries[i].last = msr_cur & 0xffffffff;
DELTA_WRAP32(msr_cur, msr_last);
per_cpu_msr_sum[cpu].entries[i].sum += msr_last;
}
return 0;
}
static void msr_record_handler(union sigval v)
{
UNUSED(v);
for_all_cpus(update_msr_sum, EVEN_COUNTERS);
}
void msr_sum_record(void)
{
struct itimerspec its;
struct sigevent sev;
per_cpu_msr_sum = calloc(topo.max_cpu_num + 1, sizeof(struct msr_sum_array));
if (!per_cpu_msr_sum) {
fprintf(outf, "Can not allocate memory for long time MSR.\n");
return;
}
/*
* Signal handler might be restricted, so use thread notifier instead.
*/
memset(&sev, 0, sizeof(struct sigevent));
sev.sigev_notify = SIGEV_THREAD;
sev.sigev_notify_function = msr_record_handler;
sev.sigev_value.sival_ptr = &timerid;
if (timer_create(CLOCK_REALTIME, &sev, &timerid) == -1) {
fprintf(outf, "Can not create timer.\n");
goto release_msr;
}
its.it_value.tv_sec = 0;
its.it_value.tv_nsec = 1;
/*
* A wraparound time has been calculated early.
* Some sources state that the peak power for a
* microprocessor is usually 1.5 times the TDP rating,
* use 2 * TDP for safety.
*/
its.it_interval.tv_sec = rapl_joule_counter_range / 2;
its.it_interval.tv_nsec = 0;
if (timer_settime(timerid, 0, &its, NULL) == -1) {
fprintf(outf, "Can not set timer.\n");
goto release_timer;
}
return;
release_timer:
timer_delete(timerid);
release_msr:
free(per_cpu_msr_sum);
}
/*
* set_my_sched_priority(pri)
* return previous priority on success
* return value < -20 on failure
*/
int set_my_sched_priority(int priority)
{
int retval;
int original_priority;
errno = 0;
original_priority = getpriority(PRIO_PROCESS, 0);
if (errno && (original_priority == -1))
return -21;
retval = setpriority(PRIO_PROCESS, 0, priority);
if (retval)
return -21;
errno = 0;
retval = getpriority(PRIO_PROCESS, 0);
if (retval != priority)
return -21;
return original_priority;
}
void turbostat_loop()
{
int retval;
int restarted = 0;
unsigned int done_iters = 0;
setup_signal_handler();
/*
* elevate own priority for interval mode
*
* ignore on error - we probably don't have permission to set it, but
* it's not a big deal
*/
set_my_sched_priority(-20);
restart:
restarted++;
snapshot_proc_sysfs_files();
retval = for_all_cpus(get_counters, EVEN_COUNTERS);
first_counter_read = 0;
if (retval < -1) {
exit(retval);
} else if (retval == -1) {
if (restarted > 10) {
exit(retval);
}
re_initialize();
goto restart;
}
restarted = 0;
done_iters = 0;
gettimeofday(&tv_even, (struct timezone *)NULL);
while (1) {
if (for_all_proc_cpus(cpu_is_not_present)) {
re_initialize();
goto restart;
}
if (update_effective_str(false)) {
re_initialize();
goto restart;
}
do_sleep();
if (snapshot_proc_sysfs_files())
goto restart;
retval = for_all_cpus(get_counters, ODD_COUNTERS);
if (retval < -1) {
exit(retval);
} else if (retval == -1) {
re_initialize();
goto restart;
}
gettimeofday(&tv_odd, (struct timezone *)NULL);
timersub(&tv_odd, &tv_even, &tv_delta);
if (for_all_cpus_2(delta_cpu, ODD_COUNTERS, EVEN_COUNTERS)) {
re_initialize();
goto restart;
}
compute_average(EVEN_COUNTERS);
format_all_counters(EVEN_COUNTERS);
flush_output_stdout();
if (exit_requested)
break;
if (num_iterations && ++done_iters >= num_iterations)
break;
do_sleep();
if (snapshot_proc_sysfs_files())
goto restart;
retval = for_all_cpus(get_counters, EVEN_COUNTERS);
if (retval < -1) {
exit(retval);
} else if (retval == -1) {
re_initialize();
goto restart;
}
gettimeofday(&tv_even, (struct timezone *)NULL);
timersub(&tv_even, &tv_odd, &tv_delta);
if (for_all_cpus_2(delta_cpu, EVEN_COUNTERS, ODD_COUNTERS)) {
re_initialize();
goto restart;
}
compute_average(ODD_COUNTERS);
format_all_counters(ODD_COUNTERS);
flush_output_stdout();
if (exit_requested)
break;
if (num_iterations && ++done_iters >= num_iterations)
break;
}
}
void check_dev_msr()
{
struct stat sb;
char pathname[32];
if (no_msr)
return;
sprintf(pathname, "/dev/cpu/%d/msr", base_cpu);
if (stat(pathname, &sb))
if (system("/sbin/modprobe msr > /dev/null 2>&1"))
no_msr = 1;
}
/*
* check for CAP_SYS_RAWIO
* return 0 on success
* return 1 on fail
*/
int check_for_cap_sys_rawio(void)
{
cap_t caps;
cap_flag_value_t cap_flag_value;
int ret = 0;
caps = cap_get_proc();
if (caps == NULL)
return 1;
if (cap_get_flag(caps, CAP_SYS_RAWIO, CAP_EFFECTIVE, &cap_flag_value)) {
ret = 1;
goto free_and_exit;
}
if (cap_flag_value != CAP_SET) {
ret = 1;
goto free_and_exit;
}
free_and_exit:
if (cap_free(caps) == -1)
err(-6, "cap_free\n");
return ret;
}
void check_msr_permission(void)
{
int failed = 0;
char pathname[32];
if (no_msr)
return;
/* check for CAP_SYS_RAWIO */
failed += check_for_cap_sys_rawio();
/* test file permissions */
sprintf(pathname, "/dev/cpu/%d/msr", base_cpu);
if (euidaccess(pathname, R_OK)) {
failed++;
}
if (failed) {
warnx("Failed to access %s. Some of the counters may not be available\n"
"\tRun as root to enable them or use %s to disable the access explicitly", pathname, "--no-msr");
no_msr = 1;
}
}
void probe_bclk(void)
{
unsigned long long msr;
unsigned int base_ratio;
if (!platform->has_nhm_msrs || no_msr)
return;
if (platform->bclk_freq == BCLK_100MHZ)
bclk = 100.00;
else if (platform->bclk_freq == BCLK_133MHZ)
bclk = 133.33;
else if (platform->bclk_freq == BCLK_SLV)
bclk = slm_bclk();
else
return;
get_msr(base_cpu, MSR_PLATFORM_INFO, &msr);
base_ratio = (msr >> 8) & 0xFF;
base_hz = base_ratio * bclk * 1000000;
has_base_hz = 1;
if (platform->enable_tsc_tweak)
tsc_tweak = base_hz / tsc_hz;
}
static void remove_underbar(char *s)
{
char *to = s;
while (*s) {
if (*s != '_')
*to++ = *s;
s++;
}
*to = 0;
}
static void dump_turbo_ratio_info(void)
{
if (!has_turbo)
return;
if (!platform->has_nhm_msrs || no_msr)
return;
if (platform->trl_msrs & TRL_LIMIT2)
dump_turbo_ratio_limit2();
if (platform->trl_msrs & TRL_LIMIT1)
dump_turbo_ratio_limit1();
if (platform->trl_msrs & TRL_BASE) {
dump_turbo_ratio_limits(MSR_TURBO_RATIO_LIMIT);
if (is_hybrid)
dump_turbo_ratio_limits(MSR_SECONDARY_TURBO_RATIO_LIMIT);
}
if (platform->trl_msrs & TRL_ATOM)
dump_atom_turbo_ratio_limits();
if (platform->trl_msrs & TRL_KNL)
dump_knl_turbo_ratio_limits();
if (platform->has_config_tdp)
dump_config_tdp();
}
static int read_sysfs_int(char *path)
{
FILE *input;
int retval = -1;
input = fopen(path, "r");
if (input == NULL) {
if (debug)
fprintf(outf, "NSFOD %s\n", path);
return (-1);
}
if (fscanf(input, "%d", &retval) != 1)
err(1, "%s: failed to read int from file", path);
fclose(input);
return (retval);
}
static void dump_sysfs_file(char *path)
{
FILE *input;
char cpuidle_buf[64];
input = fopen(path, "r");
if (input == NULL) {
if (debug)
fprintf(outf, "NSFOD %s\n", path);
return;
}
if (!fgets(cpuidle_buf, sizeof(cpuidle_buf), input))
err(1, "%s: failed to read file", path);
fclose(input);
fprintf(outf, "%s: %s", strrchr(path, '/') + 1, cpuidle_buf);
}
static void probe_intel_uncore_frequency_legacy(void)
{
int i, j;
char path[256];
for (i = 0; i < topo.num_packages; ++i) {
for (j = 0; j <= topo.max_die_id; ++j) {
int k, l;
char path_base[128];
sprintf(path_base, "/sys/devices/system/cpu/intel_uncore_frequency/package_%02d_die_%02d", i,
j);
if (access(path_base, R_OK))
continue;
BIC_PRESENT(BIC_UNCORE_MHZ);
if (quiet)
return;
sprintf(path, "%s/min_freq_khz", path_base);
k = read_sysfs_int(path);
sprintf(path, "%s/max_freq_khz", path_base);
l = read_sysfs_int(path);
fprintf(outf, "Uncore Frequency package%d die%d: %d - %d MHz ", i, j, k / 1000, l / 1000);
sprintf(path, "%s/initial_min_freq_khz", path_base);
k = read_sysfs_int(path);
sprintf(path, "%s/initial_max_freq_khz", path_base);
l = read_sysfs_int(path);
fprintf(outf, "(%d - %d MHz)", k / 1000, l / 1000);
sprintf(path, "%s/current_freq_khz", path_base);
k = read_sysfs_int(path);
fprintf(outf, " %d MHz\n", k / 1000);
}
}
}
static void probe_intel_uncore_frequency_cluster(void)
{
int i, uncore_max_id;
char path[256];
char path_base[128];
if (access("/sys/devices/system/cpu/intel_uncore_frequency/uncore00/current_freq_khz", R_OK))
return;
for (uncore_max_id = 0;; ++uncore_max_id) {
sprintf(path_base, "/sys/devices/system/cpu/intel_uncore_frequency/uncore%02d", uncore_max_id);
/* uncore## start at 00 and skips no numbers, so stop upon first missing */
if (access(path_base, R_OK)) {
uncore_max_id -= 1;
break;
}
}
for (i = uncore_max_id; i >= 0; --i) {
int k, l;
int package_id, domain_id, cluster_id;
char name_buf[16];
sprintf(path_base, "/sys/devices/system/cpu/intel_uncore_frequency/uncore%02d", i);
if (access(path_base, R_OK))
err(1, "%s: %s\n", __func__, path_base);
sprintf(path, "%s/package_id", path_base);
package_id = read_sysfs_int(path);
sprintf(path, "%s/domain_id", path_base);
domain_id = read_sysfs_int(path);
sprintf(path, "%s/fabric_cluster_id", path_base);
cluster_id = read_sysfs_int(path);
sprintf(path, "%s/current_freq_khz", path_base);
sprintf(name_buf, "UMHz%d.%d", domain_id, cluster_id);
add_counter(0, path, name_buf, 0, SCOPE_PACKAGE, COUNTER_K2M, FORMAT_AVERAGE, 0, package_id);
if (quiet)
continue;
sprintf(path, "%s/min_freq_khz", path_base);
k = read_sysfs_int(path);
sprintf(path, "%s/max_freq_khz", path_base);
l = read_sysfs_int(path);
fprintf(outf, "Uncore Frequency package%d domain%d cluster%d: %d - %d MHz ", package_id, domain_id,
cluster_id, k / 1000, l / 1000);
sprintf(path, "%s/initial_min_freq_khz", path_base);
k = read_sysfs_int(path);
sprintf(path, "%s/initial_max_freq_khz", path_base);
l = read_sysfs_int(path);
fprintf(outf, "(%d - %d MHz)", k / 1000, l / 1000);
sprintf(path, "%s/current_freq_khz", path_base);
k = read_sysfs_int(path);
fprintf(outf, " %d MHz\n", k / 1000);
}
}
static void probe_intel_uncore_frequency(void)
{
if (!genuine_intel)
return;
if (access("/sys/devices/system/cpu/intel_uncore_frequency/uncore00", R_OK) == 0)
probe_intel_uncore_frequency_cluster();
else
probe_intel_uncore_frequency_legacy();
}
static void probe_graphics(void)
{
/* Xe graphics sysfs knobs */
if (!access("/sys/class/drm/card0/device/tile0/gt0/gtidle/idle_residency_ms", R_OK)) {
FILE *fp;
char buf[8];
bool gt0_is_gt;
int idx;
fp = fopen("/sys/class/drm/card0/device/tile0/gt0/gtidle/name", "r");
if (!fp)
goto next;
if (!fread(buf, sizeof(char), 7, fp)) {
fclose(fp);
goto next;
}
fclose(fp);
if (!strncmp(buf, "gt0-rc", strlen("gt0-rc")))
gt0_is_gt = true;
else if (!strncmp(buf, "gt0-mc", strlen("gt0-mc")))
gt0_is_gt = false;
else
goto next;
idx = gt0_is_gt ? GFX_rc6 : SAM_mc6;
gfx_info[idx].path = "/sys/class/drm/card0/device/tile0/gt0/gtidle/idle_residency_ms";
idx = gt0_is_gt ? GFX_MHz : SAM_MHz;
if (!access("/sys/class/drm/card0/device/tile0/gt0/freq0/cur_freq", R_OK))
gfx_info[idx].path = "/sys/class/drm/card0/device/tile0/gt0/freq0/cur_freq";
idx = gt0_is_gt ? GFX_ACTMHz : SAM_ACTMHz;
if (!access("/sys/class/drm/card0/device/tile0/gt0/freq0/act_freq", R_OK))
gfx_info[idx].path = "/sys/class/drm/card0/device/tile0/gt0/freq0/act_freq";
idx = gt0_is_gt ? SAM_mc6 : GFX_rc6;
if (!access("/sys/class/drm/card0/device/tile0/gt1/gtidle/idle_residency_ms", R_OK))
gfx_info[idx].path = "/sys/class/drm/card0/device/tile0/gt1/gtidle/idle_residency_ms";
idx = gt0_is_gt ? SAM_MHz : GFX_MHz;
if (!access("/sys/class/drm/card0/device/tile0/gt1/freq0/cur_freq", R_OK))
gfx_info[idx].path = "/sys/class/drm/card0/device/tile0/gt1/freq0/cur_freq";
idx = gt0_is_gt ? SAM_ACTMHz : GFX_ACTMHz;
if (!access("/sys/class/drm/card0/device/tile0/gt1/freq0/act_freq", R_OK))
gfx_info[idx].path = "/sys/class/drm/card0/device/tile0/gt1/freq0/act_freq";
goto end;
}
next:
/* New i915 graphics sysfs knobs */
if (!access("/sys/class/drm/card0/gt/gt0/rc6_residency_ms", R_OK)) {
gfx_info[GFX_rc6].path = "/sys/class/drm/card0/gt/gt0/rc6_residency_ms";
if (!access("/sys/class/drm/card0/gt/gt0/rps_cur_freq_mhz", R_OK))
gfx_info[GFX_MHz].path = "/sys/class/drm/card0/gt/gt0/rps_cur_freq_mhz";
if (!access("/sys/class/drm/card0/gt/gt0/rps_act_freq_mhz", R_OK))
gfx_info[GFX_ACTMHz].path = "/sys/class/drm/card0/gt/gt0/rps_act_freq_mhz";
if (!access("/sys/class/drm/card0/gt/gt1/rc6_residency_ms", R_OK))
gfx_info[SAM_mc6].path = "/sys/class/drm/card0/gt/gt1/rc6_residency_ms";
if (!access("/sys/class/drm/card0/gt/gt1/rps_cur_freq_mhz", R_OK))
gfx_info[SAM_MHz].path = "/sys/class/drm/card0/gt/gt1/rps_cur_freq_mhz";
if (!access("/sys/class/drm/card0/gt/gt1/rps_act_freq_mhz", R_OK))
gfx_info[SAM_ACTMHz].path = "/sys/class/drm/card0/gt/gt1/rps_act_freq_mhz";
goto end;
}
/* Fall back to traditional i915 graphics sysfs knobs */
if (!access("/sys/class/drm/card0/power/rc6_residency_ms", R_OK))
gfx_info[GFX_rc6].path = "/sys/class/drm/card0/power/rc6_residency_ms";
if (!access("/sys/class/drm/card0/gt_cur_freq_mhz", R_OK))
gfx_info[GFX_MHz].path = "/sys/class/drm/card0/gt_cur_freq_mhz";
else if (!access("/sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz", R_OK))
gfx_info[GFX_MHz].path = "/sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz";
if (!access("/sys/class/drm/card0/gt_act_freq_mhz", R_OK))
gfx_info[GFX_ACTMHz].path = "/sys/class/drm/card0/gt_act_freq_mhz";
else if (!access("/sys/class/graphics/fb0/device/drm/card0/gt_act_freq_mhz", R_OK))
gfx_info[GFX_ACTMHz].path = "/sys/class/graphics/fb0/device/drm/card0/gt_act_freq_mhz";
end:
if (gfx_info[GFX_rc6].path)
BIC_PRESENT(BIC_GFX_rc6);
if (gfx_info[GFX_MHz].path)
BIC_PRESENT(BIC_GFXMHz);
if (gfx_info[GFX_ACTMHz].path)
BIC_PRESENT(BIC_GFXACTMHz);
if (gfx_info[SAM_mc6].path)
BIC_PRESENT(BIC_SAM_mc6);
if (gfx_info[SAM_MHz].path)
BIC_PRESENT(BIC_SAMMHz);
if (gfx_info[SAM_ACTMHz].path)
BIC_PRESENT(BIC_SAMACTMHz);
}
static void dump_sysfs_cstate_config(void)
{
char path[64];
char name_buf[16];
char desc[64];
FILE *input;
int state;
char *sp;
if (access("/sys/devices/system/cpu/cpuidle", R_OK)) {
fprintf(outf, "cpuidle not loaded\n");
return;
}
dump_sysfs_file("/sys/devices/system/cpu/cpuidle/current_driver");
dump_sysfs_file("/sys/devices/system/cpu/cpuidle/current_governor");
dump_sysfs_file("/sys/devices/system/cpu/cpuidle/current_governor_ro");
for (state = 0; state < 10; ++state) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name", base_cpu, state);
input = fopen(path, "r");
if (input == NULL)
continue;
if (!fgets(name_buf, sizeof(name_buf), input))
err(1, "%s: failed to read file", path);
/* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */
sp = strchr(name_buf, '-');
if (!sp)
sp = strchrnul(name_buf, '\n');
*sp = '\0';
fclose(input);
remove_underbar(name_buf);
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/desc", base_cpu, state);
input = fopen(path, "r");
if (input == NULL)
continue;
if (!fgets(desc, sizeof(desc), input))
err(1, "%s: failed to read file", path);
fprintf(outf, "cpu%d: %s: %s", base_cpu, name_buf, desc);
fclose(input);
}
}
static void dump_sysfs_pstate_config(void)
{
char path[64];
char driver_buf[64];
char governor_buf[64];
FILE *input;
int turbo;
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_driver", base_cpu);
input = fopen(path, "r");
if (input == NULL) {
fprintf(outf, "NSFOD %s\n", path);
return;
}
if (!fgets(driver_buf, sizeof(driver_buf), input))
err(1, "%s: failed to read file", path);
fclose(input);
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_governor", base_cpu);
input = fopen(path, "r");
if (input == NULL) {
fprintf(outf, "NSFOD %s\n", path);
return;
}
if (!fgets(governor_buf, sizeof(governor_buf), input))
err(1, "%s: failed to read file", path);
fclose(input);
fprintf(outf, "cpu%d: cpufreq driver: %s", base_cpu, driver_buf);
fprintf(outf, "cpu%d: cpufreq governor: %s", base_cpu, governor_buf);
sprintf(path, "/sys/devices/system/cpu/cpufreq/boost");
input = fopen(path, "r");
if (input != NULL) {
if (fscanf(input, "%d", &turbo) != 1)
err(1, "%s: failed to parse number from file", path);
fprintf(outf, "cpufreq boost: %d\n", turbo);
fclose(input);
}
sprintf(path, "/sys/devices/system/cpu/intel_pstate/no_turbo");
input = fopen(path, "r");
if (input != NULL) {
if (fscanf(input, "%d", &turbo) != 1)
err(1, "%s: failed to parse number from file", path);
fprintf(outf, "cpufreq intel_pstate no_turbo: %d\n", turbo);
fclose(input);
}
}
/*
* print_epb()
* Decode the ENERGY_PERF_BIAS MSR
*/
int print_epb(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
char *epb_string;
int cpu, epb;
UNUSED(c);
UNUSED(p);
if (!has_epb)
return 0;
cpu = t->cpu_id;
/* EPB is per-package */
if (!is_cpu_first_thread_in_package(t, c, p))
return 0;
if (cpu_migrate(cpu)) {
fprintf(outf, "print_epb: Could not migrate to CPU %d\n", cpu);
return -1;
}
epb = get_epb(cpu);
if (epb < 0)
return 0;
switch (epb) {
case ENERGY_PERF_BIAS_PERFORMANCE:
epb_string = "performance";
break;
case ENERGY_PERF_BIAS_NORMAL:
epb_string = "balanced";
break;
case ENERGY_PERF_BIAS_POWERSAVE:
epb_string = "powersave";
break;
default:
epb_string = "custom";
break;
}
fprintf(outf, "cpu%d: EPB: %d (%s)\n", cpu, epb, epb_string);
return 0;
}
/*
* print_hwp()
* Decode the MSR_HWP_CAPABILITIES
*/
int print_hwp(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
unsigned long long msr;
int cpu;
UNUSED(c);
UNUSED(p);
if (no_msr)
return 0;
if (!has_hwp)
return 0;
cpu = t->cpu_id;
/* MSR_HWP_CAPABILITIES is per-package */
if (!is_cpu_first_thread_in_package(t, c, p))
return 0;
if (cpu_migrate(cpu)) {
fprintf(outf, "print_hwp: Could not migrate to CPU %d\n", cpu);
return -1;
}
if (get_msr(cpu, MSR_PM_ENABLE, &msr))
return 0;
fprintf(outf, "cpu%d: MSR_PM_ENABLE: 0x%08llx (%sHWP)\n", cpu, msr, (msr & (1 << 0)) ? "" : "No-");
/* MSR_PM_ENABLE[1] == 1 if HWP is enabled and MSRs visible */
if ((msr & (1 << 0)) == 0)
return 0;
if (get_msr(cpu, MSR_HWP_CAPABILITIES, &msr))
return 0;
fprintf(outf, "cpu%d: MSR_HWP_CAPABILITIES: 0x%08llx "
"(high %d guar %d eff %d low %d)\n",
cpu, msr,
(unsigned int)HWP_HIGHEST_PERF(msr),
(unsigned int)HWP_GUARANTEED_PERF(msr),
(unsigned int)HWP_MOSTEFFICIENT_PERF(msr), (unsigned int)HWP_LOWEST_PERF(msr));
if (get_msr(cpu, MSR_HWP_REQUEST, &msr))
return 0;
fprintf(outf, "cpu%d: MSR_HWP_REQUEST: 0x%08llx "
"(min %d max %d des %d epp 0x%x window 0x%x pkg 0x%x)\n",
cpu, msr,
(unsigned int)(((msr) >> 0) & 0xff),
(unsigned int)(((msr) >> 8) & 0xff),
(unsigned int)(((msr) >> 16) & 0xff),
(unsigned int)(((msr) >> 24) & 0xff),
(unsigned int)(((msr) >> 32) & 0xff3), (unsigned int)(((msr) >> 42) & 0x1));
if (has_hwp_pkg) {
if (get_msr(cpu, MSR_HWP_REQUEST_PKG, &msr))
return 0;
fprintf(outf, "cpu%d: MSR_HWP_REQUEST_PKG: 0x%08llx "
"(min %d max %d des %d epp 0x%x window 0x%x)\n",
cpu, msr,
(unsigned int)(((msr) >> 0) & 0xff),
(unsigned int)(((msr) >> 8) & 0xff),
(unsigned int)(((msr) >> 16) & 0xff),
(unsigned int)(((msr) >> 24) & 0xff), (unsigned int)(((msr) >> 32) & 0xff3));
}
if (has_hwp_notify) {
if (get_msr(cpu, MSR_HWP_INTERRUPT, &msr))
return 0;
fprintf(outf, "cpu%d: MSR_HWP_INTERRUPT: 0x%08llx "
"(%s_Guaranteed_Perf_Change, %s_Excursion_Min)\n",
cpu, msr, ((msr) & 0x1) ? "EN" : "Dis", ((msr) & 0x2) ? "EN" : "Dis");
}
if (get_msr(cpu, MSR_HWP_STATUS, &msr))
return 0;
fprintf(outf, "cpu%d: MSR_HWP_STATUS: 0x%08llx "
"(%sGuaranteed_Perf_Change, %sExcursion_Min)\n",
cpu, msr, ((msr) & 0x1) ? "" : "No-", ((msr) & 0x4) ? "" : "No-");
return 0;
}
/*
* print_perf_limit()
*/
int print_perf_limit(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
unsigned long long msr;
int cpu;
UNUSED(c);
UNUSED(p);
if (no_msr)
return 0;
cpu = t->cpu_id;
/* per-package */
if (!is_cpu_first_thread_in_package(t, c, p))
return 0;
if (cpu_migrate(cpu)) {
fprintf(outf, "print_perf_limit: Could not migrate to CPU %d\n", cpu);
return -1;
}
if (platform->plr_msrs & PLR_CORE) {
get_msr(cpu, MSR_CORE_PERF_LIMIT_REASONS, &msr);
fprintf(outf, "cpu%d: MSR_CORE_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr);
fprintf(outf, " (Active: %s%s%s%s%s%s%s%s%s%s%s%s%s%s)",
(msr & 1 << 15) ? "bit15, " : "",
(msr & 1 << 14) ? "bit14, " : "",
(msr & 1 << 13) ? "Transitions, " : "",
(msr & 1 << 12) ? "MultiCoreTurbo, " : "",
(msr & 1 << 11) ? "PkgPwrL2, " : "",
(msr & 1 << 10) ? "PkgPwrL1, " : "",
(msr & 1 << 9) ? "CorePwr, " : "",
(msr & 1 << 8) ? "Amps, " : "",
(msr & 1 << 6) ? "VR-Therm, " : "",
(msr & 1 << 5) ? "Auto-HWP, " : "",
(msr & 1 << 4) ? "Graphics, " : "",
(msr & 1 << 2) ? "bit2, " : "",
(msr & 1 << 1) ? "ThermStatus, " : "", (msr & 1 << 0) ? "PROCHOT, " : "");
fprintf(outf, " (Logged: %s%s%s%s%s%s%s%s%s%s%s%s%s%s)\n",
(msr & 1 << 31) ? "bit31, " : "",
(msr & 1 << 30) ? "bit30, " : "",
(msr & 1 << 29) ? "Transitions, " : "",
(msr & 1 << 28) ? "MultiCoreTurbo, " : "",
(msr & 1 << 27) ? "PkgPwrL2, " : "",
(msr & 1 << 26) ? "PkgPwrL1, " : "",
(msr & 1 << 25) ? "CorePwr, " : "",
(msr & 1 << 24) ? "Amps, " : "",
(msr & 1 << 22) ? "VR-Therm, " : "",
(msr & 1 << 21) ? "Auto-HWP, " : "",
(msr & 1 << 20) ? "Graphics, " : "",
(msr & 1 << 18) ? "bit18, " : "",
(msr & 1 << 17) ? "ThermStatus, " : "", (msr & 1 << 16) ? "PROCHOT, " : "");
}
if (platform->plr_msrs & PLR_GFX) {
get_msr(cpu, MSR_GFX_PERF_LIMIT_REASONS, &msr);
fprintf(outf, "cpu%d: MSR_GFX_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr);
fprintf(outf, " (Active: %s%s%s%s%s%s%s%s)",
(msr & 1 << 0) ? "PROCHOT, " : "",
(msr & 1 << 1) ? "ThermStatus, " : "",
(msr & 1 << 4) ? "Graphics, " : "",
(msr & 1 << 6) ? "VR-Therm, " : "",
(msr & 1 << 8) ? "Amps, " : "",
(msr & 1 << 9) ? "GFXPwr, " : "",
(msr & 1 << 10) ? "PkgPwrL1, " : "", (msr & 1 << 11) ? "PkgPwrL2, " : "");
fprintf(outf, " (Logged: %s%s%s%s%s%s%s%s)\n",
(msr & 1 << 16) ? "PROCHOT, " : "",
(msr & 1 << 17) ? "ThermStatus, " : "",
(msr & 1 << 20) ? "Graphics, " : "",
(msr & 1 << 22) ? "VR-Therm, " : "",
(msr & 1 << 24) ? "Amps, " : "",
(msr & 1 << 25) ? "GFXPwr, " : "",
(msr & 1 << 26) ? "PkgPwrL1, " : "", (msr & 1 << 27) ? "PkgPwrL2, " : "");
}
if (platform->plr_msrs & PLR_RING) {
get_msr(cpu, MSR_RING_PERF_LIMIT_REASONS, &msr);
fprintf(outf, "cpu%d: MSR_RING_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr);
fprintf(outf, " (Active: %s%s%s%s%s%s)",
(msr & 1 << 0) ? "PROCHOT, " : "",
(msr & 1 << 1) ? "ThermStatus, " : "",
(msr & 1 << 6) ? "VR-Therm, " : "",
(msr & 1 << 8) ? "Amps, " : "",
(msr & 1 << 10) ? "PkgPwrL1, " : "", (msr & 1 << 11) ? "PkgPwrL2, " : "");
fprintf(outf, " (Logged: %s%s%s%s%s%s)\n",
(msr & 1 << 16) ? "PROCHOT, " : "",
(msr & 1 << 17) ? "ThermStatus, " : "",
(msr & 1 << 22) ? "VR-Therm, " : "",
(msr & 1 << 24) ? "Amps, " : "",
(msr & 1 << 26) ? "PkgPwrL1, " : "", (msr & 1 << 27) ? "PkgPwrL2, " : "");
}
return 0;
}
#define RAPL_POWER_GRANULARITY 0x7FFF /* 15 bit power granularity */
#define RAPL_TIME_GRANULARITY 0x3F /* 6 bit time granularity */
double get_quirk_tdp(void)
{
if (platform->rapl_quirk_tdp)
return platform->rapl_quirk_tdp;
return 135.0;
}
double get_tdp_intel(void)
{
unsigned long long msr;
if (platform->rapl_msrs & RAPL_PKG_POWER_INFO)
if (!get_msr(base_cpu, MSR_PKG_POWER_INFO, &msr))
return ((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units;
return get_quirk_tdp();
}
double get_tdp_amd(void)
{
return get_quirk_tdp();
}
void rapl_probe_intel(void)
{
unsigned long long msr;
unsigned int time_unit;
double tdp;
const unsigned long long bic_watt_bits = BIC_PkgWatt | BIC_CorWatt | BIC_RAMWatt | BIC_GFXWatt;
const unsigned long long bic_joules_bits = BIC_Pkg_J | BIC_Cor_J | BIC_RAM_J | BIC_GFX_J;
if (rapl_joules)
bic_enabled &= ~bic_watt_bits;
else
bic_enabled &= ~bic_joules_bits;
if (!(platform->rapl_msrs & RAPL_PKG_PERF_STATUS))
bic_enabled &= ~BIC_PKG__;
if (!(platform->rapl_msrs & RAPL_DRAM_PERF_STATUS))
bic_enabled &= ~BIC_RAM__;
/* units on package 0, verify later other packages match */
if (get_msr(base_cpu, MSR_RAPL_POWER_UNIT, &msr))
return;
rapl_power_units = 1.0 / (1 << (msr & 0xF));
if (platform->has_rapl_divisor)
rapl_energy_units = 1.0 * (1 << (msr >> 8 & 0x1F)) / 1000000;
else
rapl_energy_units = 1.0 / (1 << (msr >> 8 & 0x1F));
if (platform->has_fixed_rapl_unit)
rapl_dram_energy_units = (15.3 / 1000000);
else
rapl_dram_energy_units = rapl_energy_units;
time_unit = msr >> 16 & 0xF;
if (time_unit == 0)
time_unit = 0xA;
rapl_time_units = 1.0 / (1 << (time_unit));
tdp = get_tdp_intel();
rapl_joule_counter_range = 0xFFFFFFFF * rapl_energy_units / tdp;
if (!quiet)
fprintf(outf, "RAPL: %.0f sec. Joule Counter Range, at %.0f Watts\n", rapl_joule_counter_range, tdp);
}
void rapl_probe_amd(void)
{
unsigned long long msr;
double tdp;
const unsigned long long bic_watt_bits = BIC_PkgWatt | BIC_CorWatt;
const unsigned long long bic_joules_bits = BIC_Pkg_J | BIC_Cor_J;
if (rapl_joules)
bic_enabled &= ~bic_watt_bits;
else
bic_enabled &= ~bic_joules_bits;
if (get_msr(base_cpu, MSR_RAPL_PWR_UNIT, &msr))
return;
rapl_time_units = ldexp(1.0, -(msr >> 16 & 0xf));
rapl_energy_units = ldexp(1.0, -(msr >> 8 & 0x1f));
rapl_power_units = ldexp(1.0, -(msr & 0xf));
tdp = get_tdp_amd();
rapl_joule_counter_range = 0xFFFFFFFF * rapl_energy_units / tdp;
if (!quiet)
fprintf(outf, "RAPL: %.0f sec. Joule Counter Range, at %.0f Watts\n", rapl_joule_counter_range, tdp);
}
void print_power_limit_msr(int cpu, unsigned long long msr, char *label)
{
fprintf(outf, "cpu%d: %s: %sabled (%0.3f Watts, %f sec, clamp %sabled)\n",
cpu, label,
((msr >> 15) & 1) ? "EN" : "DIS",
((msr >> 0) & 0x7FFF) * rapl_power_units,
(1.0 + (((msr >> 22) & 0x3) / 4.0)) * (1 << ((msr >> 17) & 0x1F)) * rapl_time_units,
(((msr >> 16) & 1) ? "EN" : "DIS"));
return;
}
int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
unsigned long long msr;
const char *msr_name;
int cpu;
UNUSED(c);
UNUSED(p);
if (!platform->rapl_msrs)
return 0;
/* RAPL counters are per package, so print only for 1st thread/package */
if (!is_cpu_first_thread_in_package(t, c, p))
return 0;
cpu = t->cpu_id;
if (cpu_migrate(cpu)) {
fprintf(outf, "print_rapl: Could not migrate to CPU %d\n", cpu);
return -1;
}
if (platform->rapl_msrs & RAPL_AMD_F17H) {
msr_name = "MSR_RAPL_PWR_UNIT";
if (get_msr(cpu, MSR_RAPL_PWR_UNIT, &msr))
return -1;
} else {
msr_name = "MSR_RAPL_POWER_UNIT";
if (get_msr(cpu, MSR_RAPL_POWER_UNIT, &msr))
return -1;
}
fprintf(outf, "cpu%d: %s: 0x%08llx (%f Watts, %f Joules, %f sec.)\n", cpu, msr_name, msr,
rapl_power_units, rapl_energy_units, rapl_time_units);
if (platform->rapl_msrs & RAPL_PKG_POWER_INFO) {
if (get_msr(cpu, MSR_PKG_POWER_INFO, &msr))
return -5;
fprintf(outf, "cpu%d: MSR_PKG_POWER_INFO: 0x%08llx (%.0f W TDP, RAPL %.0f - %.0f W, %f sec.)\n",
cpu, msr,
((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units,
((msr >> 16) & RAPL_POWER_GRANULARITY) * rapl_power_units,
((msr >> 32) & RAPL_POWER_GRANULARITY) * rapl_power_units,
((msr >> 48) & RAPL_TIME_GRANULARITY) * rapl_time_units);
}
if (platform->rapl_msrs & RAPL_PKG) {
if (get_msr(cpu, MSR_PKG_POWER_LIMIT, &msr))
return -9;
fprintf(outf, "cpu%d: MSR_PKG_POWER_LIMIT: 0x%08llx (%slocked)\n",
cpu, msr, (msr >> 63) & 1 ? "" : "UN");
print_power_limit_msr(cpu, msr, "PKG Limit #1");
fprintf(outf, "cpu%d: PKG Limit #2: %sabled (%0.3f Watts, %f* sec, clamp %sabled)\n",
cpu,
((msr >> 47) & 1) ? "EN" : "DIS",
((msr >> 32) & 0x7FFF) * rapl_power_units,
(1.0 + (((msr >> 54) & 0x3) / 4.0)) * (1 << ((msr >> 49) & 0x1F)) * rapl_time_units,
((msr >> 48) & 1) ? "EN" : "DIS");
if (get_msr(cpu, MSR_VR_CURRENT_CONFIG, &msr))
return -9;
fprintf(outf, "cpu%d: MSR_VR_CURRENT_CONFIG: 0x%08llx\n", cpu, msr);
fprintf(outf, "cpu%d: PKG Limit #4: %f Watts (%slocked)\n",
cpu, ((msr >> 0) & 0x1FFF) * rapl_power_units, (msr >> 31) & 1 ? "" : "UN");
}
if (platform->rapl_msrs & RAPL_DRAM_POWER_INFO) {
if (get_msr(cpu, MSR_DRAM_POWER_INFO, &msr))
return -6;
fprintf(outf, "cpu%d: MSR_DRAM_POWER_INFO,: 0x%08llx (%.0f W TDP, RAPL %.0f - %.0f W, %f sec.)\n",
cpu, msr,
((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units,
((msr >> 16) & RAPL_POWER_GRANULARITY) * rapl_power_units,
((msr >> 32) & RAPL_POWER_GRANULARITY) * rapl_power_units,
((msr >> 48) & RAPL_TIME_GRANULARITY) * rapl_time_units);
}
if (platform->rapl_msrs & RAPL_DRAM) {
if (get_msr(cpu, MSR_DRAM_POWER_LIMIT, &msr))
return -9;
fprintf(outf, "cpu%d: MSR_DRAM_POWER_LIMIT: 0x%08llx (%slocked)\n",
cpu, msr, (msr >> 31) & 1 ? "" : "UN");
print_power_limit_msr(cpu, msr, "DRAM Limit");
}
if (platform->rapl_msrs & RAPL_CORE_POLICY) {
if (get_msr(cpu, MSR_PP0_POLICY, &msr))
return -7;
fprintf(outf, "cpu%d: MSR_PP0_POLICY: %lld\n", cpu, msr & 0xF);
}
if (platform->rapl_msrs & RAPL_CORE_POWER_LIMIT) {
if (get_msr(cpu, MSR_PP0_POWER_LIMIT, &msr))
return -9;
fprintf(outf, "cpu%d: MSR_PP0_POWER_LIMIT: 0x%08llx (%slocked)\n",
cpu, msr, (msr >> 31) & 1 ? "" : "UN");
print_power_limit_msr(cpu, msr, "Cores Limit");
}
if (platform->rapl_msrs & RAPL_GFX) {
if (get_msr(cpu, MSR_PP1_POLICY, &msr))
return -8;
fprintf(outf, "cpu%d: MSR_PP1_POLICY: %lld\n", cpu, msr & 0xF);
if (get_msr(cpu, MSR_PP1_POWER_LIMIT, &msr))
return -9;
fprintf(outf, "cpu%d: MSR_PP1_POWER_LIMIT: 0x%08llx (%slocked)\n",
cpu, msr, (msr >> 31) & 1 ? "" : "UN");
print_power_limit_msr(cpu, msr, "GFX Limit");
}
return 0;
}
/*
* probe_rapl()
*
* sets rapl_power_units, rapl_energy_units, rapl_time_units
*/
void probe_rapl(void)
{
if (!platform->rapl_msrs || no_msr)
return;
if (genuine_intel)
rapl_probe_intel();
if (authentic_amd || hygon_genuine)
rapl_probe_amd();
if (quiet)
return;
for_all_cpus(print_rapl, ODD_COUNTERS);
}
/*
* MSR_IA32_TEMPERATURE_TARGET indicates the temperature where
* the Thermal Control Circuit (TCC) activates.
* This is usually equal to tjMax.
*
* Older processors do not have this MSR, so there we guess,
* but also allow cmdline over-ride with -T.
*
* Several MSR temperature values are in units of degrees-C
* below this value, including the Digital Thermal Sensor (DTS),
* Package Thermal Management Sensor (PTM), and thermal event thresholds.
*/
int set_temperature_target(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
unsigned long long msr;
unsigned int tcc_default, tcc_offset;
int cpu;
UNUSED(c);
UNUSED(p);
/* tj_max is used only for dts or ptm */
if (!(do_dts || do_ptm))
return 0;
/* this is a per-package concept */
if (!is_cpu_first_thread_in_package(t, c, p))
return 0;
cpu = t->cpu_id;
if (cpu_migrate(cpu)) {
fprintf(outf, "Could not migrate to CPU %d\n", cpu);
return -1;
}
if (tj_max_override != 0) {
tj_max = tj_max_override;
fprintf(outf, "cpu%d: Using cmdline TCC Target (%d C)\n", cpu, tj_max);
return 0;
}
/* Temperature Target MSR is Nehalem and newer only */
if (!platform->has_nhm_msrs || no_msr)
goto guess;
if (get_msr(base_cpu, MSR_IA32_TEMPERATURE_TARGET, &msr))
goto guess;
tcc_default = (msr >> 16) & 0xFF;
if (!quiet) {
int bits = platform->tcc_offset_bits;
unsigned long long enabled = 0;
if (bits && !get_msr(base_cpu, MSR_PLATFORM_INFO, &enabled))
enabled = (enabled >> 30) & 1;
if (bits && enabled) {
tcc_offset = (msr >> 24) & GENMASK(bits - 1, 0);
fprintf(outf, "cpu%d: MSR_IA32_TEMPERATURE_TARGET: 0x%08llx (%d C) (%d default - %d offset)\n",
cpu, msr, tcc_default - tcc_offset, tcc_default, tcc_offset);
} else {
fprintf(outf, "cpu%d: MSR_IA32_TEMPERATURE_TARGET: 0x%08llx (%d C)\n", cpu, msr, tcc_default);
}
}
if (!tcc_default)
goto guess;
tj_max = tcc_default;
return 0;
guess:
tj_max = TJMAX_DEFAULT;
fprintf(outf, "cpu%d: Guessing tjMax %d C, Please use -T to specify\n", cpu, tj_max);
return 0;
}
int print_thermal(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
unsigned long long msr;
unsigned int dts, dts2;
int cpu;
UNUSED(c);
UNUSED(p);
if (no_msr)
return 0;
if (!(do_dts || do_ptm))
return 0;
cpu = t->cpu_id;
/* DTS is per-core, no need to print for each thread */
if (!is_cpu_first_thread_in_core(t, c, p))
return 0;
if (cpu_migrate(cpu)) {
fprintf(outf, "print_thermal: Could not migrate to CPU %d\n", cpu);
return -1;
}
if (do_ptm && is_cpu_first_core_in_package(t, c, p)) {
if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_STATUS, &msr))
return 0;
dts = (msr >> 16) & 0x7F;
fprintf(outf, "cpu%d: MSR_IA32_PACKAGE_THERM_STATUS: 0x%08llx (%d C)\n", cpu, msr, tj_max - dts);
if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_INTERRUPT, &msr))
return 0;
dts = (msr >> 16) & 0x7F;
dts2 = (msr >> 8) & 0x7F;
fprintf(outf, "cpu%d: MSR_IA32_PACKAGE_THERM_INTERRUPT: 0x%08llx (%d C, %d C)\n",
cpu, msr, tj_max - dts, tj_max - dts2);
}
if (do_dts && debug) {
unsigned int resolution;
if (get_msr(cpu, MSR_IA32_THERM_STATUS, &msr))
return 0;
dts = (msr >> 16) & 0x7F;
resolution = (msr >> 27) & 0xF;
fprintf(outf, "cpu%d: MSR_IA32_THERM_STATUS: 0x%08llx (%d C +/- %d)\n",
cpu, msr, tj_max - dts, resolution);
if (get_msr(cpu, MSR_IA32_THERM_INTERRUPT, &msr))
return 0;
dts = (msr >> 16) & 0x7F;
dts2 = (msr >> 8) & 0x7F;
fprintf(outf, "cpu%d: MSR_IA32_THERM_INTERRUPT: 0x%08llx (%d C, %d C)\n",
cpu, msr, tj_max - dts, tj_max - dts2);
}
return 0;
}
void probe_thermal(void)
{
if (!access("/sys/devices/system/cpu/cpu0/thermal_throttle/core_throttle_count", R_OK))
BIC_PRESENT(BIC_CORE_THROT_CNT);
else
BIC_NOT_PRESENT(BIC_CORE_THROT_CNT);
for_all_cpus(set_temperature_target, ODD_COUNTERS);
if (quiet)
return;
for_all_cpus(print_thermal, ODD_COUNTERS);
}
int get_cpu_type(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
unsigned int eax, ebx, ecx, edx;
UNUSED(c);
UNUSED(p);
if (!genuine_intel)
return 0;
if (cpu_migrate(t->cpu_id)) {
fprintf(outf, "Could not migrate to CPU %d\n", t->cpu_id);
return -1;
}
if (max_level < 0x1a)
return 0;
__cpuid(0x1a, eax, ebx, ecx, edx);
eax = (eax >> 24) & 0xFF;
if (eax == 0x20)
t->is_atom = true;
return 0;
}
void decode_feature_control_msr(void)
{
unsigned long long msr;
if (no_msr)
return;
if (!get_msr(base_cpu, MSR_IA32_FEAT_CTL, &msr))
fprintf(outf, "cpu%d: MSR_IA32_FEATURE_CONTROL: 0x%08llx (%sLocked %s)\n",
base_cpu, msr, msr & FEAT_CTL_LOCKED ? "" : "UN-", msr & (1 << 18) ? "SGX" : "");
}
void decode_misc_enable_msr(void)
{
unsigned long long msr;
if (no_msr)
return;
if (!genuine_intel)
return;
if (!get_msr(base_cpu, MSR_IA32_MISC_ENABLE, &msr))
fprintf(outf, "cpu%d: MSR_IA32_MISC_ENABLE: 0x%08llx (%sTCC %sEIST %sMWAIT %sPREFETCH %sTURBO)\n",
base_cpu, msr,
msr & MSR_IA32_MISC_ENABLE_TM1 ? "" : "No-",
msr & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP ? "" : "No-",
msr & MSR_IA32_MISC_ENABLE_MWAIT ? "" : "No-",
msr & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE ? "No-" : "",
msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ? "No-" : "");
}
void decode_misc_feature_control(void)
{
unsigned long long msr;
if (no_msr)
return;
if (!platform->has_msr_misc_feature_control)
return;
if (!get_msr(base_cpu, MSR_MISC_FEATURE_CONTROL, &msr))
fprintf(outf,
"cpu%d: MSR_MISC_FEATURE_CONTROL: 0x%08llx (%sL2-Prefetch %sL2-Prefetch-pair %sL1-Prefetch %sL1-IP-Prefetch)\n",
base_cpu, msr, msr & (0 << 0) ? "No-" : "", msr & (1 << 0) ? "No-" : "",
msr & (2 << 0) ? "No-" : "", msr & (3 << 0) ? "No-" : "");
}
/*
* Decode MSR_MISC_PWR_MGMT
*
* Decode the bits according to the Nehalem documentation
* bit[0] seems to continue to have same meaning going forward
* bit[1] less so...
*/
void decode_misc_pwr_mgmt_msr(void)
{
unsigned long long msr;
if (no_msr)
return;
if (!platform->has_msr_misc_pwr_mgmt)
return;
if (!get_msr(base_cpu, MSR_MISC_PWR_MGMT, &msr))
fprintf(outf, "cpu%d: MSR_MISC_PWR_MGMT: 0x%08llx (%sable-EIST_Coordination %sable-EPB %sable-OOB)\n",
base_cpu, msr,
msr & (1 << 0) ? "DIS" : "EN", msr & (1 << 1) ? "EN" : "DIS", msr & (1 << 8) ? "EN" : "DIS");
}
/*
* Decode MSR_CC6_DEMOTION_POLICY_CONFIG, MSR_MC6_DEMOTION_POLICY_CONFIG
*
* This MSRs are present on Silvermont processors,
* Intel Atom processor E3000 series (Baytrail), and friends.
*/
void decode_c6_demotion_policy_msr(void)
{
unsigned long long msr;
if (no_msr)
return;
if (!platform->has_msr_c6_demotion_policy_config)
return;
if (!get_msr(base_cpu, MSR_CC6_DEMOTION_POLICY_CONFIG, &msr))
fprintf(outf, "cpu%d: MSR_CC6_DEMOTION_POLICY_CONFIG: 0x%08llx (%sable-CC6-Demotion)\n",
base_cpu, msr, msr & (1 << 0) ? "EN" : "DIS");
if (!get_msr(base_cpu, MSR_MC6_DEMOTION_POLICY_CONFIG, &msr))
fprintf(outf, "cpu%d: MSR_MC6_DEMOTION_POLICY_CONFIG: 0x%08llx (%sable-MC6-Demotion)\n",
base_cpu, msr, msr & (1 << 0) ? "EN" : "DIS");
}
void print_dev_latency(void)
{
char *path = "/dev/cpu_dma_latency";
int fd;
int value;
int retval;
fd = open(path, O_RDONLY);
if (fd < 0) {
if (debug)
warnx("Read %s failed", path);
return;
}
retval = read(fd, (void *)&value, sizeof(int));
if (retval != sizeof(int)) {
warn("read failed %s", path);
close(fd);
return;
}
fprintf(outf, "/dev/cpu_dma_latency: %d usec (%s)\n", value, value == 2000000000 ? "default" : "constrained");
close(fd);
}
static int has_instr_count_access(void)
{
int fd;
int has_access;
if (no_perf)
return 0;
fd = open_perf_counter(base_cpu, PERF_TYPE_HARDWARE, PERF_COUNT_HW_INSTRUCTIONS, -1, 0);
has_access = fd != -1;
if (fd != -1)
close(fd);
if (!has_access)
warnx("Failed to access %s. Some of the counters may not be available\n"
"\tRun as root to enable them or use %s to disable the access explicitly",
"instructions retired perf counter", "--no-perf");
return has_access;
}
int add_rapl_perf_counter_(int cpu, struct rapl_counter_info_t *rci, const struct rapl_counter_arch_info *cai,
double *scale_, enum rapl_unit *unit_)
{
if (no_perf)
return -1;
const double scale = read_perf_scale(cai->perf_subsys, cai->perf_name);
if (scale == 0.0)
return -1;
const enum rapl_unit unit = read_perf_rapl_unit(cai->perf_subsys, cai->perf_name);
if (unit == RAPL_UNIT_INVALID)
return -1;
const unsigned int rapl_type = read_perf_type(cai->perf_subsys);
const unsigned int rapl_energy_pkg_config = read_perf_config(cai->perf_subsys, cai->perf_name);
const int fd_counter =
open_perf_counter(cpu, rapl_type, rapl_energy_pkg_config, rci->fd_perf, PERF_FORMAT_GROUP);
if (fd_counter == -1)
return -1;
/* If it's the first counter opened, make it a group descriptor */
if (rci->fd_perf == -1)
rci->fd_perf = fd_counter;
*scale_ = scale;
*unit_ = unit;
return fd_counter;
}
int add_rapl_perf_counter(int cpu, struct rapl_counter_info_t *rci, const struct rapl_counter_arch_info *cai,
double *scale, enum rapl_unit *unit)
{
int ret = add_rapl_perf_counter_(cpu, rci, cai, scale, unit);
if (debug >= 2)
fprintf(stderr, "%s: %d (cpu: %d)\n", __func__, ret, cpu);
return ret;
}
/*
* Linux-perf manages the HW instructions-retired counter
* by enabling when requested, and hiding rollover
*/
void linux_perf_init(void)
{
if (access("/proc/sys/kernel/perf_event_paranoid", F_OK))
return;
if (BIC_IS_ENABLED(BIC_IPC) && has_aperf) {
fd_instr_count_percpu = calloc(topo.max_cpu_num + 1, sizeof(int));
if (fd_instr_count_percpu == NULL)
err(-1, "calloc fd_instr_count_percpu");
}
}
void rapl_perf_init(void)
{
const unsigned int num_domains = (platform->has_per_core_rapl ? topo.max_core_id : topo.max_package_id) + 1;
bool *domain_visited = calloc(num_domains, sizeof(bool));
rapl_counter_info_perdomain = calloc(num_domains, sizeof(*rapl_counter_info_perdomain));
if (rapl_counter_info_perdomain == NULL)
err(-1, "calloc rapl_counter_info_percpu");
rapl_counter_info_perdomain_size = num_domains;
/*
* Initialize rapl_counter_info_percpu
*/
for (unsigned int domain_id = 0; domain_id < num_domains; ++domain_id) {
struct rapl_counter_info_t *rci = &rapl_counter_info_perdomain[domain_id];
rci->fd_perf = -1;
for (size_t i = 0; i < NUM_RAPL_COUNTERS; ++i) {
rci->data[i] = 0;
rci->source[i] = COUNTER_SOURCE_NONE;
}
}
/*
* Open/probe the counters
* If can't get it via perf, fallback to MSR
*/
for (size_t i = 0; i < ARRAY_SIZE(rapl_counter_arch_infos); ++i) {
const struct rapl_counter_arch_info *const cai = &rapl_counter_arch_infos[i];
bool has_counter = 0;
double scale;
enum rapl_unit unit;
unsigned int next_domain;
memset(domain_visited, 0, num_domains * sizeof(*domain_visited));
for (int cpu = 0; cpu < topo.max_cpu_num + 1; ++cpu) {
if (cpu_is_not_allowed(cpu))
continue;
/* Skip already seen and handled RAPL domains */
next_domain =
platform->has_per_core_rapl ? cpus[cpu].physical_core_id : cpus[cpu].physical_package_id;
assert(next_domain < num_domains);
if (domain_visited[next_domain])
continue;
domain_visited[next_domain] = 1;
struct rapl_counter_info_t *rci = &rapl_counter_info_perdomain[next_domain];
/* Check if the counter is enabled and accessible */
if (BIC_IS_ENABLED(cai->bic) && (platform->rapl_msrs & cai->feature_mask)) {
/* Use perf API for this counter */
if (!no_perf && cai->perf_name
&& add_rapl_perf_counter(cpu, rci, cai, &scale, &unit) != -1) {
rci->source[cai->rci_index] = COUNTER_SOURCE_PERF;
rci->scale[cai->rci_index] = scale * cai->compat_scale;
rci->unit[cai->rci_index] = unit;
rci->flags[cai->rci_index] = cai->flags;
/* Use MSR for this counter */
} else if (!no_msr && cai->msr && probe_msr(cpu, cai->msr) == 0) {
rci->source[cai->rci_index] = COUNTER_SOURCE_MSR;
rci->msr[cai->rci_index] = cai->msr;
rci->msr_mask[cai->rci_index] = cai->msr_mask;
rci->msr_shift[cai->rci_index] = cai->msr_shift;
rci->unit[cai->rci_index] = RAPL_UNIT_JOULES;
rci->scale[cai->rci_index] = *cai->platform_rapl_msr_scale * cai->compat_scale;
rci->flags[cai->rci_index] = cai->flags;
}
}
if (rci->source[cai->rci_index] != COUNTER_SOURCE_NONE)
has_counter = 1;
}
/* If any CPU has access to the counter, make it present */
if (has_counter)
BIC_PRESENT(cai->bic);
}
free(domain_visited);
}
/* Assumes msr_counter_info is populated */
static int has_amperf_access(void)
{
return msr_counter_arch_infos[MSR_ARCH_INFO_APERF_INDEX].present &&
msr_counter_arch_infos[MSR_ARCH_INFO_MPERF_INDEX].present;
}
int *get_cstate_perf_group_fd(struct cstate_counter_info_t *cci, const char *group_name)
{
if (strcmp(group_name, "cstate_core") == 0)
return &cci->fd_perf_core;
if (strcmp(group_name, "cstate_pkg") == 0)
return &cci->fd_perf_pkg;
return NULL;
}
int add_cstate_perf_counter_(int cpu, struct cstate_counter_info_t *cci, const struct cstate_counter_arch_info *cai)
{
if (no_perf)
return -1;
int *pfd_group = get_cstate_perf_group_fd(cci, cai->perf_subsys);
if (pfd_group == NULL)
return -1;
const unsigned int type = read_perf_type(cai->perf_subsys);
const unsigned int config = read_perf_config(cai->perf_subsys, cai->perf_name);
const int fd_counter = open_perf_counter(cpu, type, config, *pfd_group, PERF_FORMAT_GROUP);
if (fd_counter == -1)
return -1;
/* If it's the first counter opened, make it a group descriptor */
if (*pfd_group == -1)
*pfd_group = fd_counter;
return fd_counter;
}
int add_cstate_perf_counter(int cpu, struct cstate_counter_info_t *cci, const struct cstate_counter_arch_info *cai)
{
int ret = add_cstate_perf_counter_(cpu, cci, cai);
if (debug >= 2)
fprintf(stderr, "%s: %d (cpu: %d)\n", __func__, ret, cpu);
return ret;
}
int add_msr_perf_counter_(int cpu, struct msr_counter_info_t *cci, const struct msr_counter_arch_info *cai)
{
if (no_perf)
return -1;
const unsigned int type = read_perf_type(cai->perf_subsys);
const unsigned int config = read_perf_config(cai->perf_subsys, cai->perf_name);
const int fd_counter = open_perf_counter(cpu, type, config, cci->fd_perf, PERF_FORMAT_GROUP);
if (fd_counter == -1)
return -1;
/* If it's the first counter opened, make it a group descriptor */
if (cci->fd_perf == -1)
cci->fd_perf = fd_counter;
return fd_counter;
}
int add_msr_perf_counter(int cpu, struct msr_counter_info_t *cci, const struct msr_counter_arch_info *cai)
{
int ret = add_msr_perf_counter_(cpu, cci, cai);
if (debug)
fprintf(stderr, "%s: %s/%s: %d (cpu: %d)\n", __func__, cai->perf_subsys, cai->perf_name, ret, cpu);
return ret;
}
void msr_perf_init_(void)
{
const int mci_num = topo.max_cpu_num + 1;
msr_counter_info = calloc(mci_num, sizeof(*msr_counter_info));
if (!msr_counter_info)
err(1, "calloc msr_counter_info");
msr_counter_info_size = mci_num;
for (int cpu = 0; cpu < mci_num; ++cpu)
msr_counter_info[cpu].fd_perf = -1;
for (int cidx = 0; cidx < NUM_MSR_COUNTERS; ++cidx) {
struct msr_counter_arch_info *cai = &msr_counter_arch_infos[cidx];
cai->present = false;
for (int cpu = 0; cpu < mci_num; ++cpu) {
struct msr_counter_info_t *const cci = &msr_counter_info[cpu];
if (cpu_is_not_allowed(cpu))
continue;
if (cai->needed) {
/* Use perf API for this counter */
if (!no_perf && cai->perf_name && add_msr_perf_counter(cpu, cci, cai) != -1) {
cci->source[cai->rci_index] = COUNTER_SOURCE_PERF;
cai->present = true;
/* User MSR for this counter */
} else if (!no_msr && cai->msr && probe_msr(cpu, cai->msr) == 0) {
cci->source[cai->rci_index] = COUNTER_SOURCE_MSR;
cci->msr[cai->rci_index] = cai->msr;
cci->msr_mask[cai->rci_index] = cai->msr_mask;
cai->present = true;
}
}
}
}
}
/* Initialize data for reading perf counters from the MSR group. */
void msr_perf_init(void)
{
bool need_amperf = false, need_smi = false;
const bool need_soft_c1 = (!platform->has_msr_core_c1_res) && (platform->supported_cstates & CC1);
need_amperf = BIC_IS_ENABLED(BIC_Avg_MHz) || BIC_IS_ENABLED(BIC_Busy) || BIC_IS_ENABLED(BIC_Bzy_MHz)
|| BIC_IS_ENABLED(BIC_IPC) || need_soft_c1;
if (BIC_IS_ENABLED(BIC_SMI))
need_smi = true;
/* Enable needed counters */
msr_counter_arch_infos[MSR_ARCH_INFO_APERF_INDEX].needed = need_amperf;
msr_counter_arch_infos[MSR_ARCH_INFO_MPERF_INDEX].needed = need_amperf;
msr_counter_arch_infos[MSR_ARCH_INFO_SMI_INDEX].needed = need_smi;
msr_perf_init_();
const bool has_amperf = has_amperf_access();
const bool has_smi = msr_counter_arch_infos[MSR_ARCH_INFO_SMI_INDEX].present;
has_aperf_access = has_amperf;
if (has_amperf) {
BIC_PRESENT(BIC_Avg_MHz);
BIC_PRESENT(BIC_Busy);
BIC_PRESENT(BIC_Bzy_MHz);
BIC_PRESENT(BIC_SMI);
}
if (has_smi)
BIC_PRESENT(BIC_SMI);
}
void cstate_perf_init_(bool soft_c1)
{
bool has_counter;
bool *cores_visited = NULL, *pkg_visited = NULL;
const int cores_visited_elems = topo.max_core_id + 1;
const int pkg_visited_elems = topo.max_package_id + 1;
const int cci_num = topo.max_cpu_num + 1;
ccstate_counter_info = calloc(cci_num, sizeof(*ccstate_counter_info));
if (!ccstate_counter_info)
err(1, "calloc ccstate_counter_arch_info");
ccstate_counter_info_size = cci_num;
cores_visited = calloc(cores_visited_elems, sizeof(*cores_visited));
if (!cores_visited)
err(1, "calloc cores_visited");
pkg_visited = calloc(pkg_visited_elems, sizeof(*pkg_visited));
if (!pkg_visited)
err(1, "calloc pkg_visited");
/* Initialize cstate_counter_info_percpu */
for (int cpu = 0; cpu < cci_num; ++cpu) {
ccstate_counter_info[cpu].fd_perf_core = -1;
ccstate_counter_info[cpu].fd_perf_pkg = -1;
}
for (int cidx = 0; cidx < NUM_CSTATE_COUNTERS; ++cidx) {
has_counter = false;
memset(cores_visited, 0, cores_visited_elems * sizeof(*cores_visited));
memset(pkg_visited, 0, pkg_visited_elems * sizeof(*pkg_visited));
const struct cstate_counter_arch_info *cai = &ccstate_counter_arch_infos[cidx];
for (int cpu = 0; cpu < cci_num; ++cpu) {
struct cstate_counter_info_t *const cci = &ccstate_counter_info[cpu];
if (cpu_is_not_allowed(cpu))
continue;
const int core_id = cpus[cpu].physical_core_id;
const int pkg_id = cpus[cpu].physical_package_id;
assert(core_id < cores_visited_elems);
assert(pkg_id < pkg_visited_elems);
const bool per_thread = cai->flags & CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD;
const bool per_core = cai->flags & CSTATE_COUNTER_FLAG_COLLECT_PER_CORE;
if (!per_thread && cores_visited[core_id])
continue;
if (!per_core && pkg_visited[pkg_id])
continue;
const bool counter_needed = BIC_IS_ENABLED(cai->bic) ||
(soft_c1 && (cai->flags & CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY));
const bool counter_supported = (platform->supported_cstates & cai->feature_mask);
if (counter_needed && counter_supported) {
/* Use perf API for this counter */
if (!no_perf && cai->perf_name && add_cstate_perf_counter(cpu, cci, cai) != -1) {
cci->source[cai->rci_index] = COUNTER_SOURCE_PERF;
/* User MSR for this counter */
} else if (!no_msr && cai->msr && pkg_cstate_limit >= cai->pkg_cstate_limit
&& probe_msr(cpu, cai->msr) == 0) {
cci->source[cai->rci_index] = COUNTER_SOURCE_MSR;
cci->msr[cai->rci_index] = cai->msr;
}
}
if (cci->source[cai->rci_index] != COUNTER_SOURCE_NONE) {
has_counter = true;
cores_visited[core_id] = true;
pkg_visited[pkg_id] = true;
}
}
/* If any CPU has access to the counter, make it present */
if (has_counter)
BIC_PRESENT(cai->bic);
}
free(cores_visited);
free(pkg_visited);
}
void cstate_perf_init(void)
{
/*
* If we don't have a C1 residency MSR, we calculate it "in software",
* but we need APERF, MPERF too.
*/
const bool soft_c1 = !platform->has_msr_core_c1_res && has_amperf_access()
&& platform->supported_cstates & CC1;
if (soft_c1)
BIC_PRESENT(BIC_CPU_c1);
cstate_perf_init_(soft_c1);
}
void probe_cstates(void)
{
probe_cst_limit();
if (platform->has_msr_module_c6_res_ms)
BIC_PRESENT(BIC_Mod_c6);
if (platform->has_ext_cst_msrs && !no_msr) {
BIC_PRESENT(BIC_Totl_c0);
BIC_PRESENT(BIC_Any_c0);
BIC_PRESENT(BIC_GFX_c0);
BIC_PRESENT(BIC_CPUGFX);
}
if (quiet)
return;
dump_power_ctl();
dump_cst_cfg();
decode_c6_demotion_policy_msr();
print_dev_latency();
dump_sysfs_cstate_config();
print_irtl();
}
void probe_lpi(void)
{
if (!access("/sys/devices/system/cpu/cpuidle/low_power_idle_cpu_residency_us", R_OK))
BIC_PRESENT(BIC_CPU_LPI);
else
BIC_NOT_PRESENT(BIC_CPU_LPI);
if (!access(sys_lpi_file_sysfs, R_OK)) {
sys_lpi_file = sys_lpi_file_sysfs;
BIC_PRESENT(BIC_SYS_LPI);
} else if (!access(sys_lpi_file_debugfs, R_OK)) {
sys_lpi_file = sys_lpi_file_debugfs;
BIC_PRESENT(BIC_SYS_LPI);
} else {
sys_lpi_file_sysfs = NULL;
BIC_NOT_PRESENT(BIC_SYS_LPI);
}
}
void probe_pstates(void)
{
probe_bclk();
if (quiet)
return;
dump_platform_info();
dump_turbo_ratio_info();
dump_sysfs_pstate_config();
decode_misc_pwr_mgmt_msr();
for_all_cpus(print_hwp, ODD_COUNTERS);
for_all_cpus(print_epb, ODD_COUNTERS);
for_all_cpus(print_perf_limit, ODD_COUNTERS);
}
void process_cpuid()
{
unsigned int eax, ebx, ecx, edx;
unsigned int fms, family, model, stepping, ecx_flags, edx_flags;
unsigned long long ucode_patch = 0;
bool ucode_patch_valid = false;
eax = ebx = ecx = edx = 0;
__cpuid(0, max_level, ebx, ecx, edx);
if (ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69)
genuine_intel = 1;
else if (ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65)
authentic_amd = 1;
else if (ebx == 0x6f677948 && ecx == 0x656e6975 && edx == 0x6e65476e)
hygon_genuine = 1;
if (!quiet)
fprintf(outf, "CPUID(0): %.4s%.4s%.4s 0x%x CPUID levels\n",
(char *)&ebx, (char *)&edx, (char *)&ecx, max_level);
__cpuid(1, fms, ebx, ecx, edx);
family = (fms >> 8) & 0xf;
model = (fms >> 4) & 0xf;
stepping = fms & 0xf;
if (family == 0xf)
family += (fms >> 20) & 0xff;
if (family >= 6)
model += ((fms >> 16) & 0xf) << 4;
ecx_flags = ecx;
edx_flags = edx;
if (!no_msr) {
if (get_msr(sched_getcpu(), MSR_IA32_UCODE_REV, &ucode_patch))
warnx("get_msr(UCODE)");
else
ucode_patch_valid = true;
}
/*
* check max extended function levels of CPUID.
* This is needed to check for invariant TSC.
* This check is valid for both Intel and AMD.
*/
ebx = ecx = edx = 0;
__cpuid(0x80000000, max_extended_level, ebx, ecx, edx);
if (!quiet) {
fprintf(outf, "CPUID(1): family:model:stepping 0x%x:%x:%x (%d:%d:%d)",
family, model, stepping, family, model, stepping);
if (ucode_patch_valid)
fprintf(outf, " microcode 0x%x", (unsigned int)((ucode_patch >> 32) & 0xFFFFFFFF));
fputc('\n', outf);
fprintf(outf, "CPUID(0x80000000): max_extended_levels: 0x%x\n", max_extended_level);
fprintf(outf, "CPUID(1): %s %s %s %s %s %s %s %s %s %s\n",
ecx_flags & (1 << 0) ? "SSE3" : "-",
ecx_flags & (1 << 3) ? "MONITOR" : "-",
ecx_flags & (1 << 6) ? "SMX" : "-",
ecx_flags & (1 << 7) ? "EIST" : "-",
ecx_flags & (1 << 8) ? "TM2" : "-",
edx_flags & (1 << 4) ? "TSC" : "-",
edx_flags & (1 << 5) ? "MSR" : "-",
edx_flags & (1 << 22) ? "ACPI-TM" : "-",
edx_flags & (1 << 28) ? "HT" : "-", edx_flags & (1 << 29) ? "TM" : "-");
}
probe_platform_features(family, model);
if (!(edx_flags & (1 << 5)))
errx(1, "CPUID: no MSR");
if (max_extended_level >= 0x80000007) {
/*
* Non-Stop TSC is advertised by CPUID.EAX=0x80000007: EDX.bit8
* this check is valid for both Intel and AMD
*/
__cpuid(0x80000007, eax, ebx, ecx, edx);
has_invariant_tsc = edx & (1 << 8);
}
/*
* APERF/MPERF is advertised by CPUID.EAX=0x6: ECX.bit0
* this check is valid for both Intel and AMD
*/
__cpuid(0x6, eax, ebx, ecx, edx);
has_aperf = ecx & (1 << 0);
do_dts = eax & (1 << 0);
if (do_dts)
BIC_PRESENT(BIC_CoreTmp);
has_turbo = eax & (1 << 1);
do_ptm = eax & (1 << 6);
if (do_ptm)
BIC_PRESENT(BIC_PkgTmp);
has_hwp = eax & (1 << 7);
has_hwp_notify = eax & (1 << 8);
has_hwp_activity_window = eax & (1 << 9);
has_hwp_epp = eax & (1 << 10);
has_hwp_pkg = eax & (1 << 11);
has_epb = ecx & (1 << 3);
if (!quiet)
fprintf(outf, "CPUID(6): %sAPERF, %sTURBO, %sDTS, %sPTM, %sHWP, "
"%sHWPnotify, %sHWPwindow, %sHWPepp, %sHWPpkg, %sEPB\n",
has_aperf ? "" : "No-",
has_turbo ? "" : "No-",
do_dts ? "" : "No-",
do_ptm ? "" : "No-",
has_hwp ? "" : "No-",
has_hwp_notify ? "" : "No-",
has_hwp_activity_window ? "" : "No-",
has_hwp_epp ? "" : "No-", has_hwp_pkg ? "" : "No-", has_epb ? "" : "No-");
if (!quiet)
decode_misc_enable_msr();
if (max_level >= 0x7 && !quiet) {
int has_sgx;
ecx = 0;
__cpuid_count(0x7, 0, eax, ebx, ecx, edx);
has_sgx = ebx & (1 << 2);
is_hybrid = edx & (1 << 15);
fprintf(outf, "CPUID(7): %sSGX %sHybrid\n", has_sgx ? "" : "No-", is_hybrid ? "" : "No-");
if (has_sgx)
decode_feature_control_msr();
}
if (max_level >= 0x15) {
unsigned int eax_crystal;
unsigned int ebx_tsc;
/*
* CPUID 15H TSC/Crystal ratio, possibly Crystal Hz
*/
eax_crystal = ebx_tsc = crystal_hz = edx = 0;
__cpuid(0x15, eax_crystal, ebx_tsc, crystal_hz, edx);
if (ebx_tsc != 0) {
if (!quiet && (ebx != 0))
fprintf(outf, "CPUID(0x15): eax_crystal: %d ebx_tsc: %d ecx_crystal_hz: %d\n",
eax_crystal, ebx_tsc, crystal_hz);
if (crystal_hz == 0)
crystal_hz = platform->crystal_freq;
if (crystal_hz) {
tsc_hz = (unsigned long long)crystal_hz *ebx_tsc / eax_crystal;
if (!quiet)
fprintf(outf, "TSC: %lld MHz (%d Hz * %d / %d / 1000000)\n",
tsc_hz / 1000000, crystal_hz, ebx_tsc, eax_crystal);
}
}
}
if (max_level >= 0x16) {
unsigned int base_mhz, max_mhz, bus_mhz, edx;
/*
* CPUID 16H Base MHz, Max MHz, Bus MHz
*/
base_mhz = max_mhz = bus_mhz = edx = 0;
__cpuid(0x16, base_mhz, max_mhz, bus_mhz, edx);
bclk = bus_mhz;
base_hz = base_mhz * 1000000;
has_base_hz = 1;
if (platform->enable_tsc_tweak)
tsc_tweak = base_hz / tsc_hz;
if (!quiet)
fprintf(outf, "CPUID(0x16): base_mhz: %d max_mhz: %d bus_mhz: %d\n",
base_mhz, max_mhz, bus_mhz);
}
if (has_aperf)
aperf_mperf_multiplier = platform->need_perf_multiplier ? 1024 : 1;
BIC_PRESENT(BIC_IRQ);
BIC_PRESENT(BIC_TSC_MHz);
}
static void counter_info_init(void)
{
for (int i = 0; i < NUM_CSTATE_COUNTERS; ++i) {
struct cstate_counter_arch_info *const cai = &ccstate_counter_arch_infos[i];
if (platform->has_msr_knl_core_c6_residency && cai->msr == MSR_CORE_C6_RESIDENCY)
cai->msr = MSR_KNL_CORE_C6_RESIDENCY;
if (!platform->has_msr_core_c1_res && cai->msr == MSR_CORE_C1_RES)
cai->msr = 0;
if (platform->has_msr_atom_pkg_c6_residency && cai->msr == MSR_PKG_C6_RESIDENCY)
cai->msr = MSR_ATOM_PKG_C6_RESIDENCY;
}
for (int i = 0; i < NUM_MSR_COUNTERS; ++i) {
msr_counter_arch_infos[i].present = false;
msr_counter_arch_infos[i].needed = false;
}
}
void probe_pm_features(void)
{
probe_pstates();
probe_cstates();
probe_lpi();
probe_intel_uncore_frequency();
probe_graphics();
probe_rapl();
probe_thermal();
if (platform->has_nhm_msrs && !no_msr)
BIC_PRESENT(BIC_SMI);
if (!quiet)
decode_misc_feature_control();
}
/*
* in /dev/cpu/ return success for names that are numbers
* ie. filter out ".", "..", "microcode".
*/
int dir_filter(const struct dirent *dirp)
{
if (isdigit(dirp->d_name[0]))
return 1;
else
return 0;
}
void topology_probe(bool startup)
{
int i;
int max_core_id = 0;
int max_package_id = 0;
int max_siblings = 0;
/* Initialize num_cpus, max_cpu_num */
set_max_cpu_num();
topo.num_cpus = 0;
for_all_proc_cpus(count_cpus);
if (!summary_only && topo.num_cpus > 1)
BIC_PRESENT(BIC_CPU);
if (debug > 1)
fprintf(outf, "num_cpus %d max_cpu_num %d\n", topo.num_cpus, topo.max_cpu_num);
cpus = calloc(1, (topo.max_cpu_num + 1) * sizeof(struct cpu_topology));
if (cpus == NULL)
err(1, "calloc cpus");
/*
* Allocate and initialize cpu_present_set
*/
cpu_present_set = CPU_ALLOC((topo.max_cpu_num + 1));
if (cpu_present_set == NULL)
err(3, "CPU_ALLOC");
cpu_present_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1));
CPU_ZERO_S(cpu_present_setsize, cpu_present_set);
for_all_proc_cpus(mark_cpu_present);
/*
* Allocate and initialize cpu_effective_set
*/
cpu_effective_set = CPU_ALLOC((topo.max_cpu_num + 1));
if (cpu_effective_set == NULL)
err(3, "CPU_ALLOC");
cpu_effective_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1));
CPU_ZERO_S(cpu_effective_setsize, cpu_effective_set);
update_effective_set(startup);
/*
* Allocate and initialize cpu_allowed_set
*/
cpu_allowed_set = CPU_ALLOC((topo.max_cpu_num + 1));
if (cpu_allowed_set == NULL)
err(3, "CPU_ALLOC");
cpu_allowed_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1));
CPU_ZERO_S(cpu_allowed_setsize, cpu_allowed_set);
/*
* Validate and update cpu_allowed_set.
*
* Make sure all cpus in cpu_subset are also in cpu_present_set during startup.
* Give a warning when cpus in cpu_subset become unavailable at runtime.
* Give a warning when cpus are not effective because of cgroup setting.
*
* cpu_allowed_set is the intersection of cpu_present_set/cpu_effective_set/cpu_subset.
*/
for (i = 0; i < CPU_SUBSET_MAXCPUS; ++i) {
if (cpu_subset && !CPU_ISSET_S(i, cpu_subset_size, cpu_subset))
continue;
if (!CPU_ISSET_S(i, cpu_present_setsize, cpu_present_set)) {
if (cpu_subset) {
/* cpus in cpu_subset must be in cpu_present_set during startup */
if (startup)
err(1, "cpu%d not present", i);
else
fprintf(stderr, "cpu%d not present\n", i);
}
continue;
}
if (CPU_COUNT_S(cpu_effective_setsize, cpu_effective_set)) {
if (!CPU_ISSET_S(i, cpu_effective_setsize, cpu_effective_set)) {
fprintf(stderr, "cpu%d not effective\n", i);
continue;
}
}
CPU_SET_S(i, cpu_allowed_setsize, cpu_allowed_set);
}
if (!CPU_COUNT_S(cpu_allowed_setsize, cpu_allowed_set))
err(-ENODEV, "No valid cpus found");
sched_setaffinity(0, cpu_allowed_setsize, cpu_allowed_set);
/*
* Allocate and initialize cpu_affinity_set
*/
cpu_affinity_set = CPU_ALLOC((topo.max_cpu_num + 1));
if (cpu_affinity_set == NULL)
err(3, "CPU_ALLOC");
cpu_affinity_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1));
CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set);
for_all_proc_cpus(init_thread_id);
/*
* For online cpus
* find max_core_id, max_package_id
*/
for (i = 0; i <= topo.max_cpu_num; ++i) {
int siblings;
if (cpu_is_not_present(i)) {
if (debug > 1)
fprintf(outf, "cpu%d NOT PRESENT\n", i);
continue;
}
cpus[i].logical_cpu_id = i;
/* get package information */
cpus[i].physical_package_id = get_physical_package_id(i);
if (cpus[i].physical_package_id > max_package_id)
max_package_id = cpus[i].physical_package_id;
/* get die information */
cpus[i].die_id = get_die_id(i);
if (cpus[i].die_id > topo.max_die_id)
topo.max_die_id = cpus[i].die_id;
/* get numa node information */
cpus[i].physical_node_id = get_physical_node_id(&cpus[i]);
if (cpus[i].physical_node_id > topo.max_node_num)
topo.max_node_num = cpus[i].physical_node_id;
/* get core information */
cpus[i].physical_core_id = get_core_id(i);
if (cpus[i].physical_core_id > max_core_id)
max_core_id = cpus[i].physical_core_id;
/* get thread information */
siblings = get_thread_siblings(&cpus[i]);
if (siblings > max_siblings)
max_siblings = siblings;
if (cpus[i].thread_id == 0)
topo.num_cores++;
}
topo.max_core_id = max_core_id;
topo.max_package_id = max_package_id;
topo.cores_per_node = max_core_id + 1;
if (debug > 1)
fprintf(outf, "max_core_id %d, sizing for %d cores per package\n", max_core_id, topo.cores_per_node);
if (!summary_only && topo.cores_per_node > 1)
BIC_PRESENT(BIC_Core);
topo.num_die = topo.max_die_id + 1;
if (debug > 1)
fprintf(outf, "max_die_id %d, sizing for %d die\n", topo.max_die_id, topo.num_die);
if (!summary_only && topo.num_die > 1)
BIC_PRESENT(BIC_Die);
topo.num_packages = max_package_id + 1;
if (debug > 1)
fprintf(outf, "max_package_id %d, sizing for %d packages\n", max_package_id, topo.num_packages);
if (!summary_only && topo.num_packages > 1)
BIC_PRESENT(BIC_Package);
set_node_data();
if (debug > 1)
fprintf(outf, "nodes_per_pkg %d\n", topo.nodes_per_pkg);
if (!summary_only && topo.nodes_per_pkg > 1)
BIC_PRESENT(BIC_Node);
topo.threads_per_core = max_siblings;
if (debug > 1)
fprintf(outf, "max_siblings %d\n", max_siblings);
if (debug < 1)
return;
for (i = 0; i <= topo.max_cpu_num; ++i) {
if (cpu_is_not_present(i))
continue;
fprintf(outf,
"cpu %d pkg %d die %d node %d lnode %d core %d thread %d\n",
i, cpus[i].physical_package_id, cpus[i].die_id,
cpus[i].physical_node_id, cpus[i].logical_node_id, cpus[i].physical_core_id, cpus[i].thread_id);
}
}
void allocate_counters(struct thread_data **t, struct core_data **c, struct pkg_data **p)
{
int i;
int num_cores = topo.cores_per_node * topo.nodes_per_pkg * topo.num_packages;
int num_threads = topo.threads_per_core * num_cores;
*t = calloc(num_threads, sizeof(struct thread_data));
if (*t == NULL)
goto error;
for (i = 0; i < num_threads; i++)
(*t)[i].cpu_id = -1;
*c = calloc(num_cores, sizeof(struct core_data));
if (*c == NULL)
goto error;
for (i = 0; i < num_cores; i++) {
(*c)[i].core_id = -1;
(*c)[i].base_cpu = -1;
}
*p = calloc(topo.num_packages, sizeof(struct pkg_data));
if (*p == NULL)
goto error;
for (i = 0; i < topo.num_packages; i++) {
(*p)[i].package_id = i;
(*p)[i].base_cpu = -1;
}
return;
error:
err(1, "calloc counters");
}
/*
* init_counter()
*
* set FIRST_THREAD_IN_CORE and FIRST_CORE_IN_PACKAGE
*/
void init_counter(struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base, int cpu_id)
{
int pkg_id = cpus[cpu_id].physical_package_id;
int node_id = cpus[cpu_id].logical_node_id;
int core_id = cpus[cpu_id].physical_core_id;
int thread_id = cpus[cpu_id].thread_id;
struct thread_data *t;
struct core_data *c;
struct pkg_data *p;
/* Workaround for systems where physical_node_id==-1
* and logical_node_id==(-1 - topo.num_cpus)
*/
if (node_id < 0)
node_id = 0;
t = GET_THREAD(thread_base, thread_id, core_id, node_id, pkg_id);
c = GET_CORE(core_base, core_id, node_id, pkg_id);
p = GET_PKG(pkg_base, pkg_id);
t->cpu_id = cpu_id;
if (!cpu_is_not_allowed(cpu_id)) {
if (c->base_cpu < 0)
c->base_cpu = t->cpu_id;
if (p->base_cpu < 0)
p->base_cpu = t->cpu_id;
}
c->core_id = core_id;
p->package_id = pkg_id;
}
int initialize_counters(int cpu_id)
{
init_counter(EVEN_COUNTERS, cpu_id);
init_counter(ODD_COUNTERS, cpu_id);
return 0;
}
void allocate_output_buffer()
{
output_buffer = calloc(1, (1 + topo.num_cpus) * 2048);
outp = output_buffer;
if (outp == NULL)
err(-1, "calloc output buffer");
}
void allocate_fd_percpu(void)
{
fd_percpu = calloc(topo.max_cpu_num + 1, sizeof(int));
if (fd_percpu == NULL)
err(-1, "calloc fd_percpu");
}
void allocate_irq_buffers(void)
{
irq_column_2_cpu = calloc(topo.num_cpus, sizeof(int));
if (irq_column_2_cpu == NULL)
err(-1, "calloc %d", topo.num_cpus);
irqs_per_cpu = calloc(topo.max_cpu_num + 1, sizeof(int));
if (irqs_per_cpu == NULL)
err(-1, "calloc %d", topo.max_cpu_num + 1);
}
int update_topo(struct thread_data *t, struct core_data *c, struct pkg_data *p)
{
topo.allowed_cpus++;
if ((int)t->cpu_id == c->base_cpu)
topo.allowed_cores++;
if ((int)t->cpu_id == p->base_cpu)
topo.allowed_packages++;
return 0;
}
void topology_update(void)
{
topo.allowed_cpus = 0;
topo.allowed_cores = 0;
topo.allowed_packages = 0;
for_all_cpus(update_topo, ODD_COUNTERS);
}
void setup_all_buffers(bool startup)
{
topology_probe(startup);
allocate_irq_buffers();
allocate_fd_percpu();
allocate_counters(&thread_even, &core_even, &package_even);
allocate_counters(&thread_odd, &core_odd, &package_odd);
allocate_output_buffer();
for_all_proc_cpus(initialize_counters);
topology_update();
}
void set_base_cpu(void)
{
int i;
for (i = 0; i < topo.max_cpu_num + 1; ++i) {
if (cpu_is_not_allowed(i))
continue;
base_cpu = i;
if (debug > 1)
fprintf(outf, "base_cpu = %d\n", base_cpu);
return;
}
err(-ENODEV, "No valid cpus found");
}
bool has_added_counters(void)
{
/*
* It only makes sense to call this after the command line is parsed,
* otherwise sys structure is not populated.
*/
return sys.added_core_counters | sys.added_thread_counters | sys.added_package_counters;
}
void check_msr_access(void)
{
check_dev_msr();
check_msr_permission();
if (no_msr)
bic_disable_msr_access();
}
void check_perf_access(void)
{
if (no_perf || !BIC_IS_ENABLED(BIC_IPC) || !has_instr_count_access())
bic_enabled &= ~BIC_IPC;
}
int added_perf_counters_init_(struct perf_counter_info *pinfo)
{
size_t num_domains = 0;
unsigned int next_domain;
bool *domain_visited;
unsigned int perf_type, perf_config;
double perf_scale;
int fd_perf;
if (!pinfo)
return 0;
const size_t max_num_domains = MAX(topo.max_cpu_num + 1, MAX(topo.max_core_id + 1, topo.max_package_id + 1));
domain_visited = calloc(max_num_domains, sizeof(*domain_visited));
while (pinfo) {
switch (pinfo->scope) {
case SCOPE_CPU:
num_domains = topo.max_cpu_num + 1;
break;
case SCOPE_CORE:
num_domains = topo.max_core_id + 1;
break;
case SCOPE_PACKAGE:
num_domains = topo.max_package_id + 1;
break;
}
/* Allocate buffer for file descriptor for each domain. */
pinfo->fd_perf_per_domain = calloc(num_domains, sizeof(*pinfo->fd_perf_per_domain));
if (!pinfo->fd_perf_per_domain)
errx(1, "%s: alloc %s", __func__, "fd_perf_per_domain");
for (size_t i = 0; i < num_domains; ++i)
pinfo->fd_perf_per_domain[i] = -1;
pinfo->num_domains = num_domains;
pinfo->scale = 1.0;
memset(domain_visited, 0, max_num_domains * sizeof(*domain_visited));
for (int cpu = 0; cpu < topo.max_cpu_num + 1; ++cpu) {
next_domain = cpu_to_domain(pinfo, cpu);
assert(next_domain < num_domains);
if (cpu_is_not_allowed(cpu))
continue;
if (domain_visited[next_domain])
continue;
perf_type = read_perf_type(pinfo->device);
if (perf_type == (unsigned int)-1) {
warnx("%s: perf/%s/%s: failed to read %s",
__func__, pinfo->device, pinfo->event, "type");
continue;
}
perf_config = read_perf_config(pinfo->device, pinfo->event);
if (perf_config == (unsigned int)-1) {
warnx("%s: perf/%s/%s: failed to read %s",
__func__, pinfo->device, pinfo->event, "config");
continue;
}
/* Scale is not required, some counters just don't have it. */
perf_scale = read_perf_scale(pinfo->device, pinfo->event);
if (perf_scale == 0.0)
perf_scale = 1.0;
fd_perf = open_perf_counter(cpu, perf_type, perf_config, -1, 0);
if (fd_perf == -1) {
warnx("%s: perf/%s/%s: failed to open counter on cpu%d",
__func__, pinfo->device, pinfo->event, cpu);
continue;
}
domain_visited[next_domain] = 1;
pinfo->fd_perf_per_domain[next_domain] = fd_perf;
pinfo->scale = perf_scale;
if (debug)
fprintf(stderr, "Add perf/%s/%s cpu%d: %d\n",
pinfo->device, pinfo->event, cpu, pinfo->fd_perf_per_domain[next_domain]);
}
pinfo = pinfo->next;
}
free(domain_visited);
return 0;
}
void added_perf_counters_init(void)
{
if (added_perf_counters_init_(sys.perf_tp))
errx(1, "%s: %s", __func__, "thread");
if (added_perf_counters_init_(sys.perf_cp))
errx(1, "%s: %s", __func__, "core");
if (added_perf_counters_init_(sys.perf_pp))
errx(1, "%s: %s", __func__, "package");
}
int parse_telem_info_file(int fd_dir, const char *info_filename, const char *format, unsigned long *output)
{
int fd_telem_info;
FILE *file_telem_info;
unsigned long value;
fd_telem_info = openat(fd_dir, info_filename, O_RDONLY);
if (fd_telem_info == -1)
return -1;
file_telem_info = fdopen(fd_telem_info, "r");
if (file_telem_info == NULL) {
close(fd_telem_info);
return -1;
}
if (fscanf(file_telem_info, format, &value) != 1) {
fclose(file_telem_info);
return -1;
}
fclose(file_telem_info);
*output = value;
return 0;
}
struct pmt_mmio *pmt_mmio_open(unsigned int target_guid)
{
DIR *dirp;
struct dirent *entry;
struct stat st;
unsigned int telem_idx;
int fd_telem_dir, fd_pmt;
unsigned long guid, size, offset;
size_t mmap_size;
void *mmio;
struct pmt_mmio *ret = NULL;
if (stat(SYSFS_TELEM_PATH, &st) == -1)
return NULL;
dirp = opendir(SYSFS_TELEM_PATH);
if (dirp == NULL)
return NULL;
for (;;) {
entry = readdir(dirp);
if (entry == NULL)
break;
if (strcmp(entry->d_name, ".") == 0)
continue;
if (strcmp(entry->d_name, "..") == 0)
continue;
if (sscanf(entry->d_name, "telem%u", &telem_idx) != 1)
continue;
if (fstatat(dirfd(dirp), entry->d_name, &st, 0) == -1) {
break;
}
if (!S_ISDIR(st.st_mode))
continue;
fd_telem_dir = openat(dirfd(dirp), entry->d_name, O_RDONLY);
if (fd_telem_dir == -1) {
break;
}
if (parse_telem_info_file(fd_telem_dir, "guid", "%lx", &guid)) {
close(fd_telem_dir);
break;
}
if (parse_telem_info_file(fd_telem_dir, "size", "%lu", &size)) {
close(fd_telem_dir);
break;
}
if (guid != target_guid) {
close(fd_telem_dir);
continue;
}
if (parse_telem_info_file(fd_telem_dir, "offset", "%lu", &offset)) {
close(fd_telem_dir);
break;
}
assert(offset == 0);
fd_pmt = openat(fd_telem_dir, "telem", O_RDONLY);
if (fd_pmt == -1)
goto loop_cleanup_and_break;
mmap_size = (size + 0x1000UL) & (~0x1000UL);
mmio = mmap(0, mmap_size, PROT_READ, MAP_SHARED, fd_pmt, 0);
if (mmio != MAP_FAILED) {
if (debug)
fprintf(stderr, "%s: 0x%lx mmaped at: %p\n", __func__, guid, mmio);
ret = calloc(1, sizeof(*ret));
if (!ret) {
fprintf(stderr, "%s: Failed to allocate pmt_mmio\n", __func__);
exit(1);
}
ret->guid = guid;
ret->mmio_base = mmio;
ret->pmt_offset = offset;
ret->size = size;
ret->next = pmt_mmios;
pmt_mmios = ret;
}
loop_cleanup_and_break:
close(fd_pmt);
close(fd_telem_dir);
break;
}
closedir(dirp);
return ret;
}
struct pmt_mmio *pmt_mmio_find(unsigned int guid)
{
struct pmt_mmio *pmmio = pmt_mmios;
while (pmmio) {
if (pmmio->guid == guid)
return pmmio;
pmmio = pmmio->next;
}
return NULL;
}
void *pmt_get_counter_pointer(struct pmt_mmio *pmmio, unsigned long counter_offset)
{
char *ret;
/* Get base of mmaped PMT file. */
ret = (char *)pmmio->mmio_base;
/*
* Apply PMT MMIO offset to obtain beginning of the mmaped telemetry data.
* It's not guaranteed that the mmaped memory begins with the telemetry data
* - we might have to apply the offset first.
*/
ret += pmmio->pmt_offset;
/* Apply the counter offset to get the address to the mmaped counter. */
ret += counter_offset;
return ret;
}
struct pmt_mmio *pmt_add_guid(unsigned int guid)
{
struct pmt_mmio *ret;
ret = pmt_mmio_find(guid);
if (!ret)
ret = pmt_mmio_open(guid);
return ret;
}
enum pmt_open_mode {
PMT_OPEN_TRY, /* Open failure is not an error. */
PMT_OPEN_REQUIRED, /* Open failure is a fatal error. */
};
struct pmt_counter *pmt_find_counter(struct pmt_counter *pcounter, const char *name)
{
while (pcounter) {
if (strcmp(pcounter->name, name) == 0)
break;
pcounter = pcounter->next;
}
return pcounter;
}
struct pmt_counter **pmt_get_scope_root(enum counter_scope scope)
{
switch (scope) {
case SCOPE_CPU:
return &sys.pmt_tp;
case SCOPE_CORE:
return &sys.pmt_cp;
case SCOPE_PACKAGE:
return &sys.pmt_pp;
}
__builtin_unreachable();
}
void pmt_counter_add_domain(struct pmt_counter *pcounter, unsigned long *pmmio, unsigned int domain_id)
{
/* Make sure the new domain fits. */
if (domain_id >= pcounter->num_domains)
pmt_counter_resize(pcounter, domain_id + 1);
assert(pcounter->domains);
assert(domain_id < pcounter->num_domains);
pcounter->domains[domain_id].pcounter = pmmio;
}
int pmt_add_counter(unsigned int guid, const char *name, enum pmt_datatype type,
unsigned int lsb, unsigned int msb, unsigned int offset, enum counter_scope scope,
enum counter_format format, unsigned int domain_id, enum pmt_open_mode mode)
{
struct pmt_mmio *mmio;
struct pmt_counter *pcounter;
struct pmt_counter **const pmt_root = pmt_get_scope_root(scope);
bool new_counter = false;
int conflict = 0;
if (lsb > msb) {
fprintf(stderr, "%s: %s: `%s` must be satisfied\n", __func__, "lsb <= msb", name);
exit(1);
}
if (msb >= 64) {
fprintf(stderr, "%s: %s: `%s` must be satisfied\n", __func__, "msb < 64", name);
exit(1);
}
mmio = pmt_add_guid(guid);
if (!mmio) {
if (mode != PMT_OPEN_TRY) {
fprintf(stderr, "%s: failed to map PMT MMIO for guid %x\n", __func__, guid);
exit(1);
}
return 1;
}
if (offset >= mmio->size) {
if (mode != PMT_OPEN_TRY) {
fprintf(stderr, "%s: offset %u outside of PMT MMIO size %u\n", __func__, offset, mmio->size);
exit(1);
}
return 1;
}
pcounter = pmt_find_counter(*pmt_root, name);
if (!pcounter) {
pcounter = calloc(1, sizeof(*pcounter));
new_counter = true;
}
if (new_counter) {
strncpy(pcounter->name, name, ARRAY_SIZE(pcounter->name) - 1);
pcounter->type = type;
pcounter->scope = scope;
pcounter->lsb = lsb;
pcounter->msb = msb;
pcounter->format = format;
} else {
conflict += pcounter->type != type;
conflict += pcounter->scope != scope;
conflict += pcounter->lsb != lsb;
conflict += pcounter->msb != msb;
conflict += pcounter->format != format;
}
if (conflict) {
fprintf(stderr, "%s: conflicting parameters for the PMT counter with the same name %s\n",
__func__, name);
exit(1);
}
pmt_counter_add_domain(pcounter, pmt_get_counter_pointer(mmio, offset), domain_id);
if (new_counter) {
pcounter->next = *pmt_root;
*pmt_root = pcounter;
}
return 0;
}
void pmt_init(void)
{
if (BIC_IS_ENABLED(BIC_Diec6)) {
pmt_add_counter(PMT_MTL_DC6_GUID, "Die%c6", PMT_TYPE_XTAL_TIME, PMT_COUNTER_MTL_DC6_LSB,
PMT_COUNTER_MTL_DC6_MSB, PMT_COUNTER_MTL_DC6_OFFSET, SCOPE_PACKAGE, FORMAT_DELTA,
0, PMT_OPEN_TRY);
}
}
void turbostat_init()
{
setup_all_buffers(true);
set_base_cpu();
check_msr_access();
check_perf_access();
process_cpuid();
counter_info_init();
probe_pm_features();
msr_perf_init();
linux_perf_init();
rapl_perf_init();
cstate_perf_init();
added_perf_counters_init();
pmt_init();
for_all_cpus(get_cpu_type, ODD_COUNTERS);
for_all_cpus(get_cpu_type, EVEN_COUNTERS);
if (BIC_IS_ENABLED(BIC_IPC) && has_aperf_access && get_instr_count_fd(base_cpu) != -1)
BIC_PRESENT(BIC_IPC);
/*
* If TSC tweak is needed, but couldn't get it,
* disable more BICs, since it can't be reported accurately.
*/
if (platform->enable_tsc_tweak && !has_base_hz) {
bic_enabled &= ~BIC_Busy;
bic_enabled &= ~BIC_Bzy_MHz;
}
}
int fork_it(char **argv)
{
pid_t child_pid;
int status;
snapshot_proc_sysfs_files();
status = for_all_cpus(get_counters, EVEN_COUNTERS);
first_counter_read = 0;
if (status)
exit(status);
gettimeofday(&tv_even, (struct timezone *)NULL);
child_pid = fork();
if (!child_pid) {
/* child */
execvp(argv[0], argv);
err(errno, "exec %s", argv[0]);
} else {
/* parent */
if (child_pid == -1)
err(1, "fork");
signal(SIGINT, SIG_IGN);
signal(SIGQUIT, SIG_IGN);
if (waitpid(child_pid, &status, 0) == -1)
err(status, "waitpid");
if (WIFEXITED(status))
status = WEXITSTATUS(status);
}
/*
* n.b. fork_it() does not check for errors from for_all_cpus()
* because re-starting is problematic when forking
*/
snapshot_proc_sysfs_files();
for_all_cpus(get_counters, ODD_COUNTERS);
gettimeofday(&tv_odd, (struct timezone *)NULL);
timersub(&tv_odd, &tv_even, &tv_delta);
if (for_all_cpus_2(delta_cpu, ODD_COUNTERS, EVEN_COUNTERS))
fprintf(outf, "%s: Counter reset detected\n", progname);
else {
compute_average(EVEN_COUNTERS);
format_all_counters(EVEN_COUNTERS);
}
fprintf(outf, "%.6f sec\n", tv_delta.tv_sec + tv_delta.tv_usec / 1000000.0);
flush_output_stderr();
return status;
}
int get_and_dump_counters(void)
{
int status;
snapshot_proc_sysfs_files();
status = for_all_cpus(get_counters, ODD_COUNTERS);
if (status)
return status;
status = for_all_cpus(dump_counters, ODD_COUNTERS);
if (status)
return status;
flush_output_stdout();
return status;
}
void print_version()
{
fprintf(outf, "turbostat version 2024.07.26 - Len Brown <lenb@kernel.org>\n");
}
#define COMMAND_LINE_SIZE 2048
void print_bootcmd(void)
{
char bootcmd[COMMAND_LINE_SIZE];
FILE *fp;
int ret;
memset(bootcmd, 0, COMMAND_LINE_SIZE);
fp = fopen("/proc/cmdline", "r");
if (!fp)
return;
ret = fread(bootcmd, sizeof(char), COMMAND_LINE_SIZE - 1, fp);
if (ret) {
bootcmd[ret] = '\0';
/* the last character is already '\n' */
fprintf(outf, "Kernel command line: %s", bootcmd);
}
fclose(fp);
}
struct msr_counter *find_msrp_by_name(struct msr_counter *head, char *name)
{
struct msr_counter *mp;
for (mp = head; mp; mp = mp->next) {
if (debug)
fprintf(stderr, "%s: %s %s\n", __func__, name, mp->name);
if (!strncmp(name, mp->name, strlen(mp->name)))
return mp;
}
return NULL;
}
int add_counter(unsigned int msr_num, char *path, char *name,
unsigned int width, enum counter_scope scope,
enum counter_type type, enum counter_format format, int flags, int id)
{
struct msr_counter *msrp;
if (no_msr && msr_num)
errx(1, "Requested MSR counter 0x%x, but in --no-msr mode", msr_num);
if (debug)
fprintf(stderr, "%s(msr%d, %s, %s, width%d, scope%d, type%d, format%d, flags%x, id%d)\n",
__func__, msr_num, path, name, width, scope, type, format, flags, id);
switch (scope) {
case SCOPE_CPU:
msrp = find_msrp_by_name(sys.tp, name);
if (msrp) {
if (debug)
fprintf(stderr, "%s: %s FOUND\n", __func__, name);
break;
}
if (sys.added_thread_counters++ >= MAX_ADDED_THREAD_COUNTERS) {
warnx("ignoring thread counter %s", name);
return -1;
}
break;
case SCOPE_CORE:
msrp = find_msrp_by_name(sys.cp, name);
if (msrp) {
if (debug)
fprintf(stderr, "%s: %s FOUND\n", __func__, name);
break;
}
if (sys.added_core_counters++ >= MAX_ADDED_CORE_COUNTERS) {
warnx("ignoring core counter %s", name);
return -1;
}
break;
case SCOPE_PACKAGE:
msrp = find_msrp_by_name(sys.pp, name);
if (msrp) {
if (debug)
fprintf(stderr, "%s: %s FOUND\n", __func__, name);
break;
}
if (sys.added_package_counters++ >= MAX_ADDED_PACKAGE_COUNTERS) {
warnx("ignoring package counter %s", name);
return -1;
}
break;
default:
warnx("ignoring counter %s with unknown scope", name);
return -1;
}
if (msrp == NULL) {
msrp = calloc(1, sizeof(struct msr_counter));
if (msrp == NULL)
err(-1, "calloc msr_counter");
msrp->msr_num = msr_num;
strncpy(msrp->name, name, NAME_BYTES - 1);
msrp->width = width;
msrp->type = type;
msrp->format = format;
msrp->flags = flags;
switch (scope) {
case SCOPE_CPU:
msrp->next = sys.tp;
sys.tp = msrp;
break;
case SCOPE_CORE:
msrp->next = sys.cp;
sys.cp = msrp;
break;
case SCOPE_PACKAGE:
msrp->next = sys.pp;
sys.pp = msrp;
break;
}
}
if (path) {
struct sysfs_path *sp;
sp = calloc(1, sizeof(struct sysfs_path));
if (sp == NULL) {
perror("calloc");
exit(1);
}
strncpy(sp->path, path, PATH_BYTES - 1);
sp->id = id;
sp->next = msrp->sp;
msrp->sp = sp;
}
return 0;
}
/*
* Initialize the fields used for identifying and opening the counter.
*
* Defer the initialization of any runtime buffers for actually reading
* the counters for when we initialize all perf counters, so we can later
* easily call re_initialize().
*/
struct perf_counter_info *make_perf_counter_info(const char *perf_device,
const char *perf_event,
const char *name,
unsigned int width,
enum counter_scope scope,
enum counter_type type, enum counter_format format)
{
struct perf_counter_info *pinfo;
pinfo = calloc(1, sizeof(*pinfo));
if (!pinfo)
errx(1, "%s: Failed to allocate %s/%s\n", __func__, perf_device, perf_event);
strncpy(pinfo->device, perf_device, ARRAY_SIZE(pinfo->device) - 1);
strncpy(pinfo->event, perf_event, ARRAY_SIZE(pinfo->event) - 1);
strncpy(pinfo->name, name, ARRAY_SIZE(pinfo->name) - 1);
pinfo->width = width;
pinfo->scope = scope;
pinfo->type = type;
pinfo->format = format;
return pinfo;
}
int add_perf_counter(const char *perf_device, const char *perf_event, const char *name_buffer, unsigned int width,
enum counter_scope scope, enum counter_type type, enum counter_format format)
{
struct perf_counter_info *pinfo;
switch (scope) {
case SCOPE_CPU:
if (sys.added_thread_perf_counters >= MAX_ADDED_THREAD_COUNTERS) {
warnx("ignoring thread counter perf/%s/%s", perf_device, perf_event);
return -1;
}
break;
case SCOPE_CORE:
if (sys.added_core_perf_counters >= MAX_ADDED_CORE_COUNTERS) {
warnx("ignoring core counter perf/%s/%s", perf_device, perf_event);
return -1;
}
break;
case SCOPE_PACKAGE:
if (sys.added_package_perf_counters >= MAX_ADDED_PACKAGE_COUNTERS) {
warnx("ignoring package counter perf/%s/%s", perf_device, perf_event);
return -1;
}
break;
}
pinfo = make_perf_counter_info(perf_device, perf_event, name_buffer, width, scope, type, format);
if (!pinfo)
return -1;
switch (scope) {
case SCOPE_CPU:
pinfo->next = sys.perf_tp;
sys.perf_tp = pinfo;
++sys.added_thread_perf_counters;
break;
case SCOPE_CORE:
pinfo->next = sys.perf_cp;
sys.perf_cp = pinfo;
++sys.added_core_perf_counters;
break;
case SCOPE_PACKAGE:
pinfo->next = sys.perf_pp;
sys.perf_pp = pinfo;
++sys.added_package_perf_counters;
break;
}
// FIXME: we might not have debug here yet
if (debug)
fprintf(stderr, "%s: %s/%s, name: %s, scope%d\n",
__func__, pinfo->device, pinfo->event, pinfo->name, pinfo->scope);
return 0;
}
void parse_add_command_msr(char *add_command)
{
int msr_num = 0;
char *path = NULL;
char perf_device[PERF_DEV_NAME_BYTES] = "";
char perf_event[PERF_EVT_NAME_BYTES] = "";
char name_buffer[PERF_NAME_BYTES] = "";
int width = 64;
int fail = 0;
enum counter_scope scope = SCOPE_CPU;
enum counter_type type = COUNTER_CYCLES;
enum counter_format format = FORMAT_DELTA;
while (add_command) {
if (sscanf(add_command, "msr0x%x", &msr_num) == 1)
goto next;
if (sscanf(add_command, "msr%d", &msr_num) == 1)
goto next;
BUILD_BUG_ON(ARRAY_SIZE(perf_device) <= 31);
BUILD_BUG_ON(ARRAY_SIZE(perf_event) <= 31);
if (sscanf(add_command, "perf/%31[^/]/%31[^,]", &perf_device[0], &perf_event[0]) == 2)
goto next;
if (*add_command == '/') {
path = add_command;
goto next;
}
if (sscanf(add_command, "u%d", &width) == 1) {
if ((width == 32) || (width == 64))
goto next;
width = 64;
}
if (!strncmp(add_command, "cpu", strlen("cpu"))) {
scope = SCOPE_CPU;
goto next;
}
if (!strncmp(add_command, "core", strlen("core"))) {
scope = SCOPE_CORE;
goto next;
}
if (!strncmp(add_command, "package", strlen("package"))) {
scope = SCOPE_PACKAGE;
goto next;
}
if (!strncmp(add_command, "cycles", strlen("cycles"))) {
type = COUNTER_CYCLES;
goto next;
}
if (!strncmp(add_command, "seconds", strlen("seconds"))) {
type = COUNTER_SECONDS;
goto next;
}
if (!strncmp(add_command, "usec", strlen("usec"))) {
type = COUNTER_USEC;
goto next;
}
if (!strncmp(add_command, "raw", strlen("raw"))) {
format = FORMAT_RAW;
goto next;
}
if (!strncmp(add_command, "delta", strlen("delta"))) {
format = FORMAT_DELTA;
goto next;
}
if (!strncmp(add_command, "percent", strlen("percent"))) {
format = FORMAT_PERCENT;
goto next;
}
BUILD_BUG_ON(ARRAY_SIZE(name_buffer) <= 18);
if (sscanf(add_command, "%18s,%*s", name_buffer) == 1) {
char *eos;
eos = strchr(name_buffer, ',');
if (eos)
*eos = '\0';
goto next;
}
next:
add_command = strchr(add_command, ',');
if (add_command) {
*add_command = '\0';
add_command++;
}
}
if ((msr_num == 0) && (path == NULL) && (perf_device[0] == '\0' || perf_event[0] == '\0')) {
fprintf(stderr, "--add: (msrDDD | msr0xXXX | /path_to_counter | perf/device/event ) required\n");
fail++;
}
/* Test for non-empty perf_device and perf_event */
const bool is_perf_counter = perf_device[0] && perf_event[0];
/* generate default column header */
if (*name_buffer == '\0') {
if (is_perf_counter) {
snprintf(name_buffer, ARRAY_SIZE(name_buffer), "perf/%s", perf_event);
} else {
if (width == 32)
sprintf(name_buffer, "M0x%x%s", msr_num, format == FORMAT_PERCENT ? "%" : "");
else
sprintf(name_buffer, "M0X%x%s", msr_num, format == FORMAT_PERCENT ? "%" : "");
}
}
if (is_perf_counter) {
if (add_perf_counter(perf_device, perf_event, name_buffer, width, scope, type, format))
fail++;
} else {
if (add_counter(msr_num, path, name_buffer, width, scope, type, format, 0, 0))
fail++;
}
if (fail) {
help();
exit(1);
}
}
bool starts_with(const char *str, const char *prefix)
{
return strncmp(prefix, str, strlen(prefix)) == 0;
}
void parse_add_command_pmt(char *add_command)
{
char *name = NULL;
char *type_name = NULL;
char *format_name = NULL;
unsigned int offset;
unsigned int lsb;
unsigned int msb;
unsigned int guid;
unsigned int domain_id;
enum counter_scope scope = 0;
enum pmt_datatype type = PMT_TYPE_RAW;
enum counter_format format = FORMAT_RAW;
bool has_offset = false;
bool has_lsb = false;
bool has_msb = false;
bool has_format = true; /* Format has a default value. */
bool has_guid = false;
bool has_scope = false;
bool has_type = true; /* Type has a default value. */
/* Consume the "pmt," prefix. */
add_command = strchr(add_command, ',');
if (!add_command) {
help();
exit(1);
}
++add_command;
while (add_command) {
if (starts_with(add_command, "name=")) {
name = add_command + strlen("name=");
goto next;
}
if (starts_with(add_command, "type=")) {
type_name = add_command + strlen("type=");
goto next;
}
if (starts_with(add_command, "domain=")) {
const size_t prefix_len = strlen("domain=");
if (sscanf(add_command + prefix_len, "cpu%u", &domain_id) == 1) {
scope = SCOPE_CPU;
has_scope = true;
} else if (sscanf(add_command + prefix_len, "core%u", &domain_id) == 1) {
scope = SCOPE_CORE;
has_scope = true;
} else if (sscanf(add_command + prefix_len, "package%u", &domain_id) == 1) {
scope = SCOPE_PACKAGE;
has_scope = true;
}
if (!has_scope) {
printf("%s: invalid value for scope. Expected cpu%%u, core%%u or package%%u.\n",
__func__);
exit(1);
}
goto next;
}
if (starts_with(add_command, "format=")) {
format_name = add_command + strlen("format=");
goto next;
}
if (sscanf(add_command, "offset=%u", &offset) == 1) {
has_offset = true;
goto next;
}
if (sscanf(add_command, "lsb=%u", &lsb) == 1) {
has_lsb = true;
goto next;
}
if (sscanf(add_command, "msb=%u", &msb) == 1) {
has_msb = true;
goto next;
}
if (sscanf(add_command, "guid=%x", &guid) == 1) {
has_guid = true;
goto next;
}
next:
add_command = strchr(add_command, ',');
if (add_command) {
*add_command = '\0';
add_command++;
}
}
if (!name) {
printf("%s: missing %s\n", __func__, "name");
exit(1);
}
if (strlen(name) >= PMT_COUNTER_NAME_SIZE_BYTES) {
printf("%s: name has to be at most %d characters long\n", __func__, PMT_COUNTER_NAME_SIZE_BYTES);
exit(1);
}
if (format_name) {
has_format = false;
if (strcmp("raw", format_name) == 0) {
format = FORMAT_RAW;
has_format = true;
}
if (strcmp("delta", format_name) == 0) {
format = FORMAT_DELTA;
has_format = true;
}
if (!has_format) {
fprintf(stderr, "%s: Invalid format %s. Expected raw or delta\n", __func__, format_name);
exit(1);
}
}
if (type_name) {
has_type = false;
if (strcmp("raw", type_name) == 0) {
type = PMT_TYPE_RAW;
has_type = true;
}
if (strcmp("txtal_time", type_name) == 0) {
type = PMT_TYPE_XTAL_TIME;
has_type = true;
}
if (!has_type) {
printf("%s: invalid %s: %s\n", __func__, "type", type_name);
exit(1);
}
}
if (!has_offset) {
printf("%s : missing %s\n", __func__, "offset");
exit(1);
}
if (!has_lsb) {
printf("%s: missing %s\n", __func__, "lsb");
exit(1);
}
if (!has_msb) {
printf("%s: missing %s\n", __func__, "msb");
exit(1);
}
if (!has_guid) {
printf("%s: missing %s\n", __func__, "guid");
exit(1);
}
if (!has_scope) {
printf("%s: missing %s\n", __func__, "scope");
exit(1);
}
if (lsb > msb) {
printf("%s: lsb > msb doesn't make sense\n", __func__);
exit(1);
}
pmt_add_counter(guid, name, type, lsb, msb, offset, scope, format, domain_id, PMT_OPEN_REQUIRED);
}
void parse_add_command(char *add_command)
{
if (strncmp(add_command, "pmt", strlen("pmt")) == 0)
return parse_add_command_pmt(add_command);
return parse_add_command_msr(add_command);
}
int is_deferred_add(char *name)
{
int i;
for (i = 0; i < deferred_add_index; ++i)
if (!strcmp(name, deferred_add_names[i]))
return 1;
return 0;
}
int is_deferred_skip(char *name)
{
int i;
for (i = 0; i < deferred_skip_index; ++i)
if (!strcmp(name, deferred_skip_names[i]))
return 1;
return 0;
}
void probe_sysfs(void)
{
char path[64];
char name_buf[16];
FILE *input;
int state;
char *sp;
for (state = 10; state >= 0; --state) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name", base_cpu, state);
input = fopen(path, "r");
if (input == NULL)
continue;
if (!fgets(name_buf, sizeof(name_buf), input))
err(1, "%s: failed to read file", path);
/* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */
sp = strchr(name_buf, '-');
if (!sp)
sp = strchrnul(name_buf, '\n');
*sp = '%';
*(sp + 1) = '\0';
remove_underbar(name_buf);
fclose(input);
sprintf(path, "cpuidle/state%d/time", state);
if (!DO_BIC(BIC_sysfs) && !is_deferred_add(name_buf))
continue;
if (is_deferred_skip(name_buf))
continue;
add_counter(0, path, name_buf, 64, SCOPE_CPU, COUNTER_USEC, FORMAT_PERCENT, SYSFS_PERCPU, 0);
}
for (state = 10; state >= 0; --state) {
sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name", base_cpu, state);
input = fopen(path, "r");
if (input == NULL)
continue;
if (!fgets(name_buf, sizeof(name_buf), input))
err(1, "%s: failed to read file", path);
/* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */
sp = strchr(name_buf, '-');
if (!sp)
sp = strchrnul(name_buf, '\n');
*sp = '\0';
fclose(input);
remove_underbar(name_buf);
sprintf(path, "cpuidle/state%d/usage", state);
if (!DO_BIC(BIC_sysfs) && !is_deferred_add(name_buf))
continue;
if (is_deferred_skip(name_buf))
continue;
add_counter(0, path, name_buf, 64, SCOPE_CPU, COUNTER_ITEMS, FORMAT_DELTA, SYSFS_PERCPU, 0);
}
}
/*
* parse cpuset with following syntax
* 1,2,4..6,8-10 and set bits in cpu_subset
*/
void parse_cpu_command(char *optarg)
{
if (!strcmp(optarg, "core")) {
if (cpu_subset)
goto error;
show_core_only++;
return;
}
if (!strcmp(optarg, "package")) {
if (cpu_subset)
goto error;
show_pkg_only++;
return;
}
if (show_core_only || show_pkg_only)
goto error;
cpu_subset = CPU_ALLOC(CPU_SUBSET_MAXCPUS);
if (cpu_subset == NULL)
err(3, "CPU_ALLOC");
cpu_subset_size = CPU_ALLOC_SIZE(CPU_SUBSET_MAXCPUS);
CPU_ZERO_S(cpu_subset_size, cpu_subset);
if (parse_cpu_str(optarg, cpu_subset, cpu_subset_size))
goto error;
return;
error:
fprintf(stderr, "\"--cpu %s\" malformed\n", optarg);
help();
exit(-1);
}
void cmdline(int argc, char **argv)
{
int opt;
int option_index = 0;
static struct option long_options[] = {
{ "add", required_argument, 0, 'a' },
{ "cpu", required_argument, 0, 'c' },
{ "Dump", no_argument, 0, 'D' },
{ "debug", no_argument, 0, 'd' }, /* internal, not documented */
{ "enable", required_argument, 0, 'e' },
{ "interval", required_argument, 0, 'i' },
{ "IPC", no_argument, 0, 'I' },
{ "num_iterations", required_argument, 0, 'n' },
{ "header_iterations", required_argument, 0, 'N' },
{ "help", no_argument, 0, 'h' },
{ "hide", required_argument, 0, 'H' }, // meh, -h taken by --help
{ "Joules", no_argument, 0, 'J' },
{ "list", no_argument, 0, 'l' },
{ "out", required_argument, 0, 'o' },
{ "quiet", no_argument, 0, 'q' },
{ "no-msr", no_argument, 0, 'M' },
{ "no-perf", no_argument, 0, 'P' },
{ "show", required_argument, 0, 's' },
{ "Summary", no_argument, 0, 'S' },
{ "TCC", required_argument, 0, 'T' },
{ "version", no_argument, 0, 'v' },
{ 0, 0, 0, 0 }
};
progname = argv[0];
/*
* Parse some options early, because they may make other options invalid,
* like adding the MSR counter with --add and at the same time using --no-msr.
*/
while ((opt = getopt_long_only(argc, argv, "MPn:", long_options, &option_index)) != -1) {
switch (opt) {
case 'M':
no_msr = 1;
break;
case 'P':
no_perf = 1;
break;
default:
break;
}
}
optind = 0;
while ((opt = getopt_long_only(argc, argv, "+C:c:Dde:hi:Jn:o:qMST:v", long_options, &option_index)) != -1) {
switch (opt) {
case 'a':
parse_add_command(optarg);
break;
case 'c':
parse_cpu_command(optarg);
break;
case 'D':
dump_only++;
break;
case 'e':
/* --enable specified counter */
bic_enabled = bic_enabled | bic_lookup(optarg, SHOW_LIST);
break;
case 'd':
debug++;
ENABLE_BIC(BIC_DISABLED_BY_DEFAULT);
break;
case 'H':
/*
* --hide: do not show those specified
* multiple invocations simply clear more bits in enabled mask
*/
bic_enabled &= ~bic_lookup(optarg, HIDE_LIST);
break;
case 'h':
default:
help();
exit(1);
case 'i':
{
double interval = strtod(optarg, NULL);
if (interval < 0.001) {
fprintf(outf, "interval %f seconds is too small\n", interval);
exit(2);
}
interval_tv.tv_sec = interval_ts.tv_sec = interval;
interval_tv.tv_usec = (interval - interval_tv.tv_sec) * 1000000;
interval_ts.tv_nsec = (interval - interval_ts.tv_sec) * 1000000000;
}
break;
case 'J':
rapl_joules++;
break;
case 'l':
ENABLE_BIC(BIC_DISABLED_BY_DEFAULT);
list_header_only++;
quiet++;
break;
case 'o':
outf = fopen_or_die(optarg, "w");
break;
case 'q':
quiet = 1;
break;
case 'M':
case 'P':
/* Parsed earlier */
break;
case 'n':
num_iterations = strtod(optarg, NULL);
if (num_iterations <= 0) {
fprintf(outf, "iterations %d should be positive number\n", num_iterations);
exit(2);
}
break;
case 'N':
header_iterations = strtod(optarg, NULL);
if (header_iterations <= 0) {
fprintf(outf, "iterations %d should be positive number\n", header_iterations);
exit(2);
}
break;
case 's':
/*
* --show: show only those specified
* The 1st invocation will clear and replace the enabled mask
* subsequent invocations can add to it.
*/
if (shown == 0)
bic_enabled = bic_lookup(optarg, SHOW_LIST);
else
bic_enabled |= bic_lookup(optarg, SHOW_LIST);
shown = 1;
break;
case 'S':
summary_only++;
break;
case 'T':
tj_max_override = atoi(optarg);
break;
case 'v':
print_version();
exit(0);
break;
}
}
}
void set_rlimit(void)
{
struct rlimit limit;
if (getrlimit(RLIMIT_NOFILE, &limit) < 0)
err(1, "Failed to get rlimit");
if (limit.rlim_max < MAX_NOFILE)
limit.rlim_max = MAX_NOFILE;
if (limit.rlim_cur < MAX_NOFILE)
limit.rlim_cur = MAX_NOFILE;
if (setrlimit(RLIMIT_NOFILE, &limit) < 0)
err(1, "Failed to set rlimit");
}
int main(int argc, char **argv)
{
int fd, ret;
fd = open("/sys/fs/cgroup/cgroup.procs", O_WRONLY);
if (fd < 0)
goto skip_cgroup_setting;
ret = write(fd, "0\n", 2);
if (ret == -1)
perror("Can't update cgroup\n");
close(fd);
skip_cgroup_setting:
outf = stderr;
cmdline(argc, argv);
if (!quiet) {
print_version();
print_bootcmd();
}
probe_sysfs();
if (!getuid())
set_rlimit();
turbostat_init();
if (!no_msr)
msr_sum_record();
/* dump counters and exit */
if (dump_only)
return get_and_dump_counters();
/* list header and exit */
if (list_header_only) {
print_header(",");
flush_output_stdout();
return 0;
}
/*
* if any params left, it must be a command to fork
*/
if (argc - optind)
return fork_it(argv + optind);
else
turbostat_loop();
return 0;
}