linux/drivers/mtd/nand/raw/stm32_fmc2_nand.c
Linus Torvalds eb8322d714 Core MTD changes:
* dt-bindings: Drop unneeded quotes
 * mtdblock: Tolerate corrected bit-flips
 * Use of_property_read_bool() for boolean properties
 * Avoid magic values
 * Avoid printing error messages on probe deferrals
 * Prepare mtd_otp_nvmem_add() to handle -EPROBE_DEFER
 * Fix error path for nvmem provider
 * Fix nvmem error reporting
 * Provide unique name for nvmem device
 
 MTD device changes:
 * lpddr_cmds: Remove unused words variable
 * bcm63xxpart: Remove MODULE_LICENSE in non-modules
 
 SPI NOR core changes:
 * Introduce Read While Write support for flashes featuring several banks
 * Set the 4-Byte Address Mode method based on SFDP data
 * Allow post_sfdp hook to return errors
 * Parse SCCR MC table and introduce support for multi-chip devices
 
 SPI NOR manufacturer drivers changes:
 * macronix: Add support for mx25uw51245g with RWW
 * spansion:
   - Determine current address mode at runtime as it can be changed in a
     non-volatile way and differ from factory defaults or from what SFDP
     advertises.
   - Enable JFFS2 write buffer mode for few ECC'd NOR flashes: S25FS256T,
     s25hx and s28hx
   - Add support for s25hl02gt and s25hs02gt
 
 Raw NAND core changes:
 * Convert to platform remove callback returning void
 * Fix spelling mistake waifunc() -> waitfunc()
 
 Raw NAND controller driver changes:
 * imx: Remove unused is_imx51_nfc and imx53_nfc functions
 * omap2: Drop obsolete dependency on COMPILE_TEST
 * orion: Use devm_platform_ioremap_resource()
 * qcom:
   - Use of_property_present() for testing DT property presence
   - Use devm_platform_get_and_ioremap_resource()
 * stm32_fmc2: Depends on ARCH_STM32 instead of MACH_STM32MP157
 * tmio: Remove reference to config MTD_NAND_TMIO in the parsers
 
 Raw NAND manufacturer driver changes:
 * hynix: Fix up bit 0 of sdr_timing_mode
 
 SPI-NAND changes:
 * Add support for ESMT F50x1G41LB
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEE9HuaYnbmDhq/XIDIJWrqGEe9VoQFAmRANmIACgkQJWrqGEe9
 VoRU2QgAl8XFkLs1h88wGi6ln/MSK0cQJZWUzteGgWuaBQCMNfgGFzqPHyJ7ygO9
 l4U4O1L/IvACvJx5QHm/lH5Mig23jym9J8YfV1Kf9aVYOlBKRNysbi+DdktESGG9
 6HmpS0nQfkC84qA8ouInOp+AZYjFEPRrBfp5UWkSRHiQJvcYnt2iS2oOLk3LNY6y
 zduBOno3mric2ZlBbg+ZCURhQzrr3k8c4VXV+LHSslqsmH/2sOFlg78hLJx922Y+
 FTfYnx82iLIvFAJttRi2bXWKuE1Yr2XWJ3iEHKxmOA2vPmYi6mDBHTYhnikGSpm+
 GhARHH+JhW7qzLbaq5ZC3HGH58aC/g==
 =aYlo
 -----END PGP SIGNATURE-----

Merge tag 'mtd/for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux

Pull mtd updates from Miquel Raynal:
 "Core MTD changes:
   - dt-bindings: Drop unneeded quotes
   - mtdblock: Tolerate corrected bit-flips
   - Use of_property_read_bool() for boolean properties
   - Avoid magic values
   - Avoid printing error messages on probe deferrals
   - Prepare mtd_otp_nvmem_add() to handle -EPROBE_DEFER
   - Fix error path for nvmem provider
   - Fix nvmem error reporting
   - Provide unique name for nvmem device

  MTD device changes:
   - lpddr_cmds: Remove unused words variable
   - bcm63xxpart: Remove MODULE_LICENSE in non-modules

  SPI NOR core changes:
   - Introduce Read While Write support for flashes featuring several
     banks
   - Set the 4-Byte Address Mode method based on SFDP data
   - Allow post_sfdp hook to return errors
   - Parse SCCR MC table and introduce support for multi-chip devices

  SPI NOR manufacturer drivers changes:
   - macronix: Add support for mx25uw51245g with RWW
   - spansion:
      - Determine current address mode at runtime as it can be changed
        in a non-volatile way and differ from factory defaults or from
        what SFDP advertises.
      - Enable JFFS2 write buffer mode for few ECC'd NOR flashes:
        S25FS256T, s25hx and s28hx
      - Add support for s25hl02gt and s25hs02gt

  Raw NAND core changes:
   - Convert to platform remove callback returning void
   - Fix spelling mistake waifunc() -> waitfunc()

  Raw NAND controller driver changes:
   - imx: Remove unused is_imx51_nfc and imx53_nfc functions
   - omap2: Drop obsolete dependency on COMPILE_TEST
   - orion: Use devm_platform_ioremap_resource()
   - qcom:
      - Use of_property_present() for testing DT property presence
      - Use devm_platform_get_and_ioremap_resource()
   - stm32_fmc2: Depends on ARCH_STM32 instead of MACH_STM32MP157
   - tmio: Remove reference to config MTD_NAND_TMIO in the parsers

  Raw NAND manufacturer driver changes:
   - hynix: Fix up bit 0 of sdr_timing_mode

  SPI-NAND changes:
   - Add support for ESMT F50x1G41LB"

* tag 'mtd/for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux: (55 commits)
  mtd: nand: Convert to platform remove callback returning void
  mtd: onenand: omap2: Drop obsolete dependency on COMPILE_TEST
  mtd: spi-nor: spansion: Add support for s25hl02gt and s25hs02gt
  mtd: spi-nor: spansion: Add a new ->ready() hook for multi-chip device
  mtd: spi-nor: spansion: Rework cypress_nor_quad_enable_volatile() for multi-chip device support
  mtd: spi-nor: spansion: Rework cypress_nor_get_page_size() for multi-chip device support
  mtd: spi-nor: sfdp: Add support for SCCR map for multi-chip device
  mtd: spi-nor: Extract volatile register offset from SCCR map
  mtd: spi-nor: Allow post_sfdp hook to return errors
  mtd: spi-nor: spansion: Rename method to cypress_nor_get_page_size
  mtd: spi-nor: spansion: Enable JFFS2 write buffer for S25FS256T
  mtd: spi-nor: spansion: Enable JFFS2 write buffer for Infineon s25hx SEMPER flash
  mtd: spi-nor: spansion: Enable JFFS2 write buffer for Infineon s28hx SEMPER flash
  mtd: spi-nor: spansion: Determine current address mode
  mtd: spi-nor: core: Introduce spi_nor_set_4byte_addr_mode()
  mtd: spi-nor: core: Update flash's current address mode when changing address mode
  mtd: spi-nor: Stop exporting spi_nor_restore()
  mtd: spi-nor: Set the 4-Byte Address Mode method based on SFDP data
  mtd: spi-nor: core: Make spi_nor_set_4byte_addr_mode_brwr public
  mtd: spi-nor: core: Update name and description of spi_nor_set_4byte_addr_mode
  ...
2023-04-25 17:23:42 -07:00

2120 lines
54 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018
* Author: Christophe Kerello <christophe.kerello@st.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mtd/rawnand.h>
#include <linux/of_address.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/reset.h>
/* Bad block marker length */
#define FMC2_BBM_LEN 2
/* ECC step size */
#define FMC2_ECC_STEP_SIZE 512
/* BCHDSRx registers length */
#define FMC2_BCHDSRS_LEN 20
/* HECCR length */
#define FMC2_HECCR_LEN 4
/* Max requests done for a 8k nand page size */
#define FMC2_MAX_SG 16
/* Max chip enable */
#define FMC2_MAX_CE 2
/* Max ECC buffer length */
#define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
#define FMC2_TIMEOUT_MS 5000
/* Timings */
#define FMC2_THIZ 1
#define FMC2_TIO 8000
#define FMC2_TSYNC 3000
#define FMC2_PCR_TIMING_MASK 0xf
#define FMC2_PMEM_PATT_TIMING_MASK 0xff
/* FMC2 Controller Registers */
#define FMC2_BCR1 0x0
#define FMC2_PCR 0x80
#define FMC2_SR 0x84
#define FMC2_PMEM 0x88
#define FMC2_PATT 0x8c
#define FMC2_HECCR 0x94
#define FMC2_ISR 0x184
#define FMC2_ICR 0x188
#define FMC2_CSQCR 0x200
#define FMC2_CSQCFGR1 0x204
#define FMC2_CSQCFGR2 0x208
#define FMC2_CSQCFGR3 0x20c
#define FMC2_CSQAR1 0x210
#define FMC2_CSQAR2 0x214
#define FMC2_CSQIER 0x220
#define FMC2_CSQISR 0x224
#define FMC2_CSQICR 0x228
#define FMC2_CSQEMSR 0x230
#define FMC2_BCHIER 0x250
#define FMC2_BCHISR 0x254
#define FMC2_BCHICR 0x258
#define FMC2_BCHPBR1 0x260
#define FMC2_BCHPBR2 0x264
#define FMC2_BCHPBR3 0x268
#define FMC2_BCHPBR4 0x26c
#define FMC2_BCHDSR0 0x27c
#define FMC2_BCHDSR1 0x280
#define FMC2_BCHDSR2 0x284
#define FMC2_BCHDSR3 0x288
#define FMC2_BCHDSR4 0x28c
/* Register: FMC2_BCR1 */
#define FMC2_BCR1_FMC2EN BIT(31)
/* Register: FMC2_PCR */
#define FMC2_PCR_PWAITEN BIT(1)
#define FMC2_PCR_PBKEN BIT(2)
#define FMC2_PCR_PWID GENMASK(5, 4)
#define FMC2_PCR_PWID_BUSWIDTH_8 0
#define FMC2_PCR_PWID_BUSWIDTH_16 1
#define FMC2_PCR_ECCEN BIT(6)
#define FMC2_PCR_ECCALG BIT(8)
#define FMC2_PCR_TCLR GENMASK(12, 9)
#define FMC2_PCR_TCLR_DEFAULT 0xf
#define FMC2_PCR_TAR GENMASK(16, 13)
#define FMC2_PCR_TAR_DEFAULT 0xf
#define FMC2_PCR_ECCSS GENMASK(19, 17)
#define FMC2_PCR_ECCSS_512 1
#define FMC2_PCR_ECCSS_2048 3
#define FMC2_PCR_BCHECC BIT(24)
#define FMC2_PCR_WEN BIT(25)
/* Register: FMC2_SR */
#define FMC2_SR_NWRF BIT(6)
/* Register: FMC2_PMEM */
#define FMC2_PMEM_MEMSET GENMASK(7, 0)
#define FMC2_PMEM_MEMWAIT GENMASK(15, 8)
#define FMC2_PMEM_MEMHOLD GENMASK(23, 16)
#define FMC2_PMEM_MEMHIZ GENMASK(31, 24)
#define FMC2_PMEM_DEFAULT 0x0a0a0a0a
/* Register: FMC2_PATT */
#define FMC2_PATT_ATTSET GENMASK(7, 0)
#define FMC2_PATT_ATTWAIT GENMASK(15, 8)
#define FMC2_PATT_ATTHOLD GENMASK(23, 16)
#define FMC2_PATT_ATTHIZ GENMASK(31, 24)
#define FMC2_PATT_DEFAULT 0x0a0a0a0a
/* Register: FMC2_ISR */
#define FMC2_ISR_IHLF BIT(1)
/* Register: FMC2_ICR */
#define FMC2_ICR_CIHLF BIT(1)
/* Register: FMC2_CSQCR */
#define FMC2_CSQCR_CSQSTART BIT(0)
/* Register: FMC2_CSQCFGR1 */
#define FMC2_CSQCFGR1_CMD2EN BIT(1)
#define FMC2_CSQCFGR1_DMADEN BIT(2)
#define FMC2_CSQCFGR1_ACYNBR GENMASK(6, 4)
#define FMC2_CSQCFGR1_CMD1 GENMASK(15, 8)
#define FMC2_CSQCFGR1_CMD2 GENMASK(23, 16)
#define FMC2_CSQCFGR1_CMD1T BIT(24)
#define FMC2_CSQCFGR1_CMD2T BIT(25)
/* Register: FMC2_CSQCFGR2 */
#define FMC2_CSQCFGR2_SQSDTEN BIT(0)
#define FMC2_CSQCFGR2_RCMD2EN BIT(1)
#define FMC2_CSQCFGR2_DMASEN BIT(2)
#define FMC2_CSQCFGR2_RCMD1 GENMASK(15, 8)
#define FMC2_CSQCFGR2_RCMD2 GENMASK(23, 16)
#define FMC2_CSQCFGR2_RCMD1T BIT(24)
#define FMC2_CSQCFGR2_RCMD2T BIT(25)
/* Register: FMC2_CSQCFGR3 */
#define FMC2_CSQCFGR3_SNBR GENMASK(13, 8)
#define FMC2_CSQCFGR3_AC1T BIT(16)
#define FMC2_CSQCFGR3_AC2T BIT(17)
#define FMC2_CSQCFGR3_AC3T BIT(18)
#define FMC2_CSQCFGR3_AC4T BIT(19)
#define FMC2_CSQCFGR3_AC5T BIT(20)
#define FMC2_CSQCFGR3_SDT BIT(21)
#define FMC2_CSQCFGR3_RAC1T BIT(22)
#define FMC2_CSQCFGR3_RAC2T BIT(23)
/* Register: FMC2_CSQCAR1 */
#define FMC2_CSQCAR1_ADDC1 GENMASK(7, 0)
#define FMC2_CSQCAR1_ADDC2 GENMASK(15, 8)
#define FMC2_CSQCAR1_ADDC3 GENMASK(23, 16)
#define FMC2_CSQCAR1_ADDC4 GENMASK(31, 24)
/* Register: FMC2_CSQCAR2 */
#define FMC2_CSQCAR2_ADDC5 GENMASK(7, 0)
#define FMC2_CSQCAR2_NANDCEN GENMASK(11, 10)
#define FMC2_CSQCAR2_SAO GENMASK(31, 16)
/* Register: FMC2_CSQIER */
#define FMC2_CSQIER_TCIE BIT(0)
/* Register: FMC2_CSQICR */
#define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0)
/* Register: FMC2_CSQEMSR */
#define FMC2_CSQEMSR_SEM GENMASK(15, 0)
/* Register: FMC2_BCHIER */
#define FMC2_BCHIER_DERIE BIT(1)
#define FMC2_BCHIER_EPBRIE BIT(4)
/* Register: FMC2_BCHICR */
#define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0)
/* Register: FMC2_BCHDSR0 */
#define FMC2_BCHDSR0_DUE BIT(0)
#define FMC2_BCHDSR0_DEF BIT(1)
#define FMC2_BCHDSR0_DEN GENMASK(7, 4)
/* Register: FMC2_BCHDSR1 */
#define FMC2_BCHDSR1_EBP1 GENMASK(12, 0)
#define FMC2_BCHDSR1_EBP2 GENMASK(28, 16)
/* Register: FMC2_BCHDSR2 */
#define FMC2_BCHDSR2_EBP3 GENMASK(12, 0)
#define FMC2_BCHDSR2_EBP4 GENMASK(28, 16)
/* Register: FMC2_BCHDSR3 */
#define FMC2_BCHDSR3_EBP5 GENMASK(12, 0)
#define FMC2_BCHDSR3_EBP6 GENMASK(28, 16)
/* Register: FMC2_BCHDSR4 */
#define FMC2_BCHDSR4_EBP7 GENMASK(12, 0)
#define FMC2_BCHDSR4_EBP8 GENMASK(28, 16)
enum stm32_fmc2_ecc {
FMC2_ECC_HAM = 1,
FMC2_ECC_BCH4 = 4,
FMC2_ECC_BCH8 = 8
};
enum stm32_fmc2_irq_state {
FMC2_IRQ_UNKNOWN = 0,
FMC2_IRQ_BCH,
FMC2_IRQ_SEQ
};
struct stm32_fmc2_timings {
u8 tclr;
u8 tar;
u8 thiz;
u8 twait;
u8 thold_mem;
u8 tset_mem;
u8 thold_att;
u8 tset_att;
};
struct stm32_fmc2_nand {
struct nand_chip chip;
struct gpio_desc *wp_gpio;
struct stm32_fmc2_timings timings;
int ncs;
int cs_used[FMC2_MAX_CE];
};
static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
{
return container_of(chip, struct stm32_fmc2_nand, chip);
}
struct stm32_fmc2_nfc {
struct nand_controller base;
struct stm32_fmc2_nand nand;
struct device *dev;
struct device *cdev;
struct regmap *regmap;
void __iomem *data_base[FMC2_MAX_CE];
void __iomem *cmd_base[FMC2_MAX_CE];
void __iomem *addr_base[FMC2_MAX_CE];
phys_addr_t io_phys_addr;
phys_addr_t data_phys_addr[FMC2_MAX_CE];
struct clk *clk;
u8 irq_state;
struct dma_chan *dma_tx_ch;
struct dma_chan *dma_rx_ch;
struct dma_chan *dma_ecc_ch;
struct sg_table dma_data_sg;
struct sg_table dma_ecc_sg;
u8 *ecc_buf;
int dma_ecc_len;
struct completion complete;
struct completion dma_data_complete;
struct completion dma_ecc_complete;
u8 cs_assigned;
int cs_sel;
};
static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
{
return container_of(base, struct stm32_fmc2_nfc, base);
}
static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct stm32_fmc2_timings *timings = &nand->timings;
u32 pmem, patt;
/* Set tclr/tar timings */
regmap_update_bits(nfc->regmap, FMC2_PCR,
FMC2_PCR_TCLR | FMC2_PCR_TAR,
FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
FIELD_PREP(FMC2_PCR_TAR, timings->tar));
/* Set tset/twait/thold/thiz timings in common bank */
pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
regmap_write(nfc->regmap, FMC2_PMEM, pmem);
/* Set tset/twait/thold/thiz timings in attribut bank */
patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
regmap_write(nfc->regmap, FMC2_PATT, patt);
}
static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
u32 pcr = 0, pcr_mask;
/* Configure ECC algorithm (default configuration is Hamming) */
pcr_mask = FMC2_PCR_ECCALG;
pcr_mask |= FMC2_PCR_BCHECC;
if (chip->ecc.strength == FMC2_ECC_BCH8) {
pcr |= FMC2_PCR_ECCALG;
pcr |= FMC2_PCR_BCHECC;
} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
pcr |= FMC2_PCR_ECCALG;
}
/* Set buswidth */
pcr_mask |= FMC2_PCR_PWID;
if (chip->options & NAND_BUSWIDTH_16)
pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
/* Set ECC sector size */
pcr_mask |= FMC2_PCR_ECCSS;
pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
}
static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct dma_slave_config dma_cfg;
int ret;
if (nand->cs_used[chipnr] == nfc->cs_sel)
return 0;
nfc->cs_sel = nand->cs_used[chipnr];
stm32_fmc2_nfc_setup(chip);
stm32_fmc2_nfc_timings_init(chip);
if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
memset(&dma_cfg, 0, sizeof(dma_cfg));
dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_cfg.src_maxburst = 32;
dma_cfg.dst_maxburst = 32;
ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
if (ret) {
dev_err(nfc->dev, "tx DMA engine slave config failed\n");
return ret;
}
ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
if (ret) {
dev_err(nfc->dev, "rx DMA engine slave config failed\n");
return ret;
}
}
if (nfc->dma_ecc_ch) {
/*
* Hamming: we read HECCR register
* BCH4/BCH8: we read BCHDSRSx registers
*/
memset(&dma_cfg, 0, sizeof(dma_cfg));
dma_cfg.src_addr = nfc->io_phys_addr;
dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
FMC2_HECCR : FMC2_BCHDSR0;
dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
if (ret) {
dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
return ret;
}
/* Calculate ECC length needed for one sector */
nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
}
return 0;
}
static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
{
u32 pcr;
pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
}
static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
{
regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
enable ? FMC2_PCR_ECCEN : 0);
}
static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
{
nfc->irq_state = FMC2_IRQ_SEQ;
regmap_update_bits(nfc->regmap, FMC2_CSQIER,
FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
}
static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
{
regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
nfc->irq_state = FMC2_IRQ_UNKNOWN;
}
static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
{
regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
}
static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
{
nfc->irq_state = FMC2_IRQ_BCH;
if (mode == NAND_ECC_WRITE)
regmap_update_bits(nfc->regmap, FMC2_BCHIER,
FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
else
regmap_update_bits(nfc->regmap, FMC2_BCHIER,
FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
}
static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
{
regmap_update_bits(nfc->regmap, FMC2_BCHIER,
FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
nfc->irq_state = FMC2_IRQ_UNKNOWN;
}
static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
{
regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
}
/*
* Enable ECC logic and reset syndrome/parity bits previously calculated
* Syndrome/parity bits is cleared by setting the ECCEN bit to 0
*/
static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
stm32_fmc2_nfc_set_ecc(nfc, false);
if (chip->ecc.strength != FMC2_ECC_HAM) {
regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
reinit_completion(&nfc->complete);
stm32_fmc2_nfc_clear_bch_irq(nfc);
stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
}
stm32_fmc2_nfc_set_ecc(nfc, true);
}
/*
* ECC Hamming calculation
* ECC is 3 bytes for 512 bytes of data (supports error correction up to
* max of 1-bit)
*/
static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
{
ecc[0] = ecc_sta;
ecc[1] = ecc_sta >> 8;
ecc[2] = ecc_sta >> 16;
}
static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
u8 *ecc)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
u32 sr, heccr;
int ret;
ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
sr & FMC2_SR_NWRF, 1,
1000 * FMC2_TIMEOUT_MS);
if (ret) {
dev_err(nfc->dev, "ham timeout\n");
return ret;
}
regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
stm32_fmc2_nfc_set_ecc(nfc, false);
return 0;
}
static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
u8 *read_ecc, u8 *calc_ecc)
{
u8 bit_position = 0, b0, b1, b2;
u32 byte_addr = 0, b;
u32 i, shifting = 1;
/* Indicate which bit and byte is faulty (if any) */
b0 = read_ecc[0] ^ calc_ecc[0];
b1 = read_ecc[1] ^ calc_ecc[1];
b2 = read_ecc[2] ^ calc_ecc[2];
b = b0 | (b1 << 8) | (b2 << 16);
/* No errors */
if (likely(!b))
return 0;
/* Calculate bit position */
for (i = 0; i < 3; i++) {
switch (b % 4) {
case 2:
bit_position += shifting;
break;
case 1:
break;
default:
return -EBADMSG;
}
shifting <<= 1;
b >>= 2;
}
/* Calculate byte position */
shifting = 1;
for (i = 0; i < 9; i++) {
switch (b % 4) {
case 2:
byte_addr += shifting;
break;
case 1:
break;
default:
return -EBADMSG;
}
shifting <<= 1;
b >>= 2;
}
/* Flip the bit */
dat[byte_addr] ^= (1 << bit_position);
return 1;
}
/*
* ECC BCH calculation and correction
* ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
* max of 4-bit/8-bit)
*/
static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
u8 *ecc)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
u32 bchpbr;
/* Wait until the BCH code is ready */
if (!wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(nfc->dev, "bch timeout\n");
stm32_fmc2_nfc_disable_bch_irq(nfc);
return -ETIMEDOUT;
}
/* Read parity bits */
regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
ecc[0] = bchpbr;
ecc[1] = bchpbr >> 8;
ecc[2] = bchpbr >> 16;
ecc[3] = bchpbr >> 24;
regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
ecc[4] = bchpbr;
ecc[5] = bchpbr >> 8;
ecc[6] = bchpbr >> 16;
if (chip->ecc.strength == FMC2_ECC_BCH8) {
ecc[7] = bchpbr >> 24;
regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
ecc[8] = bchpbr;
ecc[9] = bchpbr >> 8;
ecc[10] = bchpbr >> 16;
ecc[11] = bchpbr >> 24;
regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
ecc[12] = bchpbr;
}
stm32_fmc2_nfc_set_ecc(nfc, false);
return 0;
}
static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
{
u32 bchdsr0 = ecc_sta[0];
u32 bchdsr1 = ecc_sta[1];
u32 bchdsr2 = ecc_sta[2];
u32 bchdsr3 = ecc_sta[3];
u32 bchdsr4 = ecc_sta[4];
u16 pos[8];
int i, den;
unsigned int nb_errs = 0;
/* No errors found */
if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
return 0;
/* Too many errors detected */
if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
return -EBADMSG;
pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
for (i = 0; i < den; i++) {
if (pos[i] < eccsize * 8) {
change_bit(pos[i], (unsigned long *)dat);
nb_errs++;
}
}
return nb_errs;
}
static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
u8 *read_ecc, u8 *calc_ecc)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
u32 ecc_sta[5];
/* Wait until the decoding error is ready */
if (!wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(nfc->dev, "bch timeout\n");
stm32_fmc2_nfc_disable_bch_irq(nfc);
return -ETIMEDOUT;
}
regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
stm32_fmc2_nfc_set_ecc(nfc, false);
return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
}
static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret, i, s, stat, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
int eccstrength = chip->ecc.strength;
u8 *p = buf;
u8 *ecc_calc = chip->ecc.calc_buf;
u8 *ecc_code = chip->ecc.code_buf;
unsigned int max_bitflips = 0;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
s++, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(chip, NAND_ECC_READ);
/* Read the nand page sector (512 bytes) */
ret = nand_change_read_column_op(chip, s * eccsize, p,
eccsize, false);
if (ret)
return ret;
/* Read the corresponding ECC bytes */
ret = nand_change_read_column_op(chip, i, ecc_code,
eccbytes, false);
if (ret)
return ret;
/* Correct the data */
stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
if (stat == -EBADMSG)
/* Check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, eccsize,
ecc_code, eccbytes,
NULL, 0,
eccstrength);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
/* Read oob */
if (oob_required) {
ret = nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return max_bitflips;
}
/* Sequencer read/write configuration */
static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
int raw, bool write_data)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
/*
* cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
* cfg[3] => csqar1, cfg[4] => csqar2
*/
u32 cfg[5];
regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
write_data ? FMC2_PCR_WEN : 0);
/*
* - Set Program Page/Page Read command
* - Enable DMA request data
* - Set timings
*/
cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
if (write_data)
cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
else
cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
FMC2_CSQCFGR1_CMD2EN |
FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
FMC2_CSQCFGR1_CMD2T;
/*
* - Set Random Data Input/Random Data Read command
* - Enable the sequencer to access the Spare data area
* - Enable DMA request status decoding for read
* - Set timings
*/
if (write_data)
cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
else
cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
FMC2_CSQCFGR2_RCMD2EN |
FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
FMC2_CSQCFGR2_RCMD1T |
FMC2_CSQCFGR2_RCMD2T;
if (!raw) {
cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
}
/*
* - Set the number of sectors to be written
* - Set timings
*/
cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
if (write_data) {
cfg[2] |= FMC2_CSQCFGR3_RAC2T;
if (chip->options & NAND_ROW_ADDR_3)
cfg[2] |= FMC2_CSQCFGR3_AC5T;
else
cfg[2] |= FMC2_CSQCFGR3_AC4T;
}
/*
* Set the fourth first address cycles
* Byte 1 and byte 2 => column, we start at 0x0
* Byte 3 and byte 4 => page
*/
cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
/*
* - Set chip enable number
* - Set ECC byte offset in the spare area
* - Calculate the number of address cycles to be issued
* - Set byte 5 of address cycle if needed
*/
cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
if (chip->options & NAND_BUSWIDTH_16)
cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
else
cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
if (chip->options & NAND_ROW_ADDR_3) {
cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
} else {
cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
}
regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
}
static void stm32_fmc2_nfc_dma_callback(void *arg)
{
complete((struct completion *)arg);
}
/* Read/write data from/to a page */
static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
int raw, bool write_data)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct dma_async_tx_descriptor *desc_data, *desc_ecc;
struct scatterlist *sg;
struct dma_chan *dma_ch = nfc->dma_rx_ch;
enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
int eccsteps = chip->ecc.steps;
int eccsize = chip->ecc.size;
unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
const u8 *p = buf;
int s, ret;
/* Configure DMA data */
if (write_data) {
dma_data_dir = DMA_TO_DEVICE;
dma_transfer_dir = DMA_MEM_TO_DEV;
dma_ch = nfc->dma_tx_ch;
}
for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
sg_set_buf(sg, p, eccsize);
p += eccsize;
}
ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
eccsteps, dma_data_dir);
if (!ret)
return -EIO;
desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
eccsteps, dma_transfer_dir,
DMA_PREP_INTERRUPT);
if (!desc_data) {
ret = -ENOMEM;
goto err_unmap_data;
}
reinit_completion(&nfc->dma_data_complete);
reinit_completion(&nfc->complete);
desc_data->callback = stm32_fmc2_nfc_dma_callback;
desc_data->callback_param = &nfc->dma_data_complete;
ret = dma_submit_error(dmaengine_submit(desc_data));
if (ret)
goto err_unmap_data;
dma_async_issue_pending(dma_ch);
if (!write_data && !raw) {
/* Configure DMA ECC status */
p = nfc->ecc_buf;
for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
sg_set_buf(sg, p, nfc->dma_ecc_len);
p += nfc->dma_ecc_len;
}
ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
eccsteps, dma_data_dir);
if (!ret) {
ret = -EIO;
goto err_unmap_data;
}
desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
nfc->dma_ecc_sg.sgl,
eccsteps, dma_transfer_dir,
DMA_PREP_INTERRUPT);
if (!desc_ecc) {
ret = -ENOMEM;
goto err_unmap_ecc;
}
reinit_completion(&nfc->dma_ecc_complete);
desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
desc_ecc->callback_param = &nfc->dma_ecc_complete;
ret = dma_submit_error(dmaengine_submit(desc_ecc));
if (ret)
goto err_unmap_ecc;
dma_async_issue_pending(nfc->dma_ecc_ch);
}
stm32_fmc2_nfc_clear_seq_irq(nfc);
stm32_fmc2_nfc_enable_seq_irq(nfc);
/* Start the transfer */
regmap_update_bits(nfc->regmap, FMC2_CSQCR,
FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
/* Wait end of sequencer transfer */
if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
dev_err(nfc->dev, "seq timeout\n");
stm32_fmc2_nfc_disable_seq_irq(nfc);
dmaengine_terminate_all(dma_ch);
if (!write_data && !raw)
dmaengine_terminate_all(nfc->dma_ecc_ch);
ret = -ETIMEDOUT;
goto err_unmap_ecc;
}
/* Wait DMA data transfer completion */
if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
dev_err(nfc->dev, "data DMA timeout\n");
dmaengine_terminate_all(dma_ch);
ret = -ETIMEDOUT;
}
/* Wait DMA ECC transfer completion */
if (!write_data && !raw) {
if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
timeout)) {
dev_err(nfc->dev, "ECC DMA timeout\n");
dmaengine_terminate_all(nfc->dma_ecc_ch);
ret = -ETIMEDOUT;
}
}
err_unmap_ecc:
if (!write_data && !raw)
dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
eccsteps, dma_data_dir);
err_unmap_data:
dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
return ret;
}
static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
int oob_required, int page, int raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
/* Configure the sequencer */
stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
/* Write the page */
ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
if (ret)
return ret;
/* Write oob */
if (oob_required) {
ret = nand_change_write_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
int ret;
ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
if (ret)
return ret;
return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
}
static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
int ret;
ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
if (ret)
return ret;
return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
}
/* Get a status indicating which sectors have errors */
static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
{
u32 csqemsr;
regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
}
static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
u8 *read_ecc, u8 *calc_ecc)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
int eccstrength = chip->ecc.strength;
int i, s, eccsize = chip->ecc.size;
u32 *ecc_sta = (u32 *)nfc->ecc_buf;
u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
unsigned int max_bitflips = 0;
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
int stat = 0;
if (eccstrength == FMC2_ECC_HAM) {
/* Ecc_sta = FMC2_HECCR */
if (sta_map & BIT(s)) {
stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
&calc_ecc[i]);
stat = stm32_fmc2_nfc_ham_correct(chip, dat,
&read_ecc[i],
&calc_ecc[i]);
}
ecc_sta++;
} else {
/*
* Ecc_sta[0] = FMC2_BCHDSR0
* Ecc_sta[1] = FMC2_BCHDSR1
* Ecc_sta[2] = FMC2_BCHDSR2
* Ecc_sta[3] = FMC2_BCHDSR3
* Ecc_sta[4] = FMC2_BCHDSR4
*/
if (sta_map & BIT(s))
stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
ecc_sta);
ecc_sta += 5;
}
if (stat == -EBADMSG)
/* Check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(dat, eccsize,
&read_ecc[i],
eccbytes,
NULL, 0,
eccstrength);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
u8 *ecc_calc = chip->ecc.calc_buf;
u8 *ecc_code = chip->ecc.code_buf;
u16 sta_map;
int ret;
ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
if (ret)
return ret;
/* Configure the sequencer */
stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
/* Read the page */
ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
if (ret)
return ret;
sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
/* Check if errors happen */
if (likely(!sta_map)) {
if (oob_required)
return nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi,
mtd->oobsize, false);
return 0;
}
/* Read oob */
ret = nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
/* Correct data */
return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
}
static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
if (ret)
return ret;
/* Configure the sequencer */
stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
/* Read the page */
ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
if (ret)
return ret;
/* Read oob */
if (oob_required)
return nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
return 0;
}
static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
{
struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
if (nfc->irq_state == FMC2_IRQ_SEQ)
/* Sequencer is used */
stm32_fmc2_nfc_disable_seq_irq(nfc);
else if (nfc->irq_state == FMC2_IRQ_BCH)
/* BCH is used */
stm32_fmc2_nfc_disable_bch_irq(nfc);
complete(&nfc->complete);
return IRQ_HANDLED;
}
static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
unsigned int len, bool force_8bit)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
/* Reconfigure bus width to 8-bit */
stm32_fmc2_nfc_set_buswidth_16(nfc, false);
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
*(u8 *)buf = readb_relaxed(io_addr_r);
buf += sizeof(u8);
len -= sizeof(u8);
}
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
len >= sizeof(u16)) {
*(u16 *)buf = readw_relaxed(io_addr_r);
buf += sizeof(u16);
len -= sizeof(u16);
}
}
/* Buf is aligned */
while (len >= sizeof(u32)) {
*(u32 *)buf = readl_relaxed(io_addr_r);
buf += sizeof(u32);
len -= sizeof(u32);
}
/* Read remaining bytes */
if (len >= sizeof(u16)) {
*(u16 *)buf = readw_relaxed(io_addr_r);
buf += sizeof(u16);
len -= sizeof(u16);
}
if (len)
*(u8 *)buf = readb_relaxed(io_addr_r);
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
/* Reconfigure bus width to 16-bit */
stm32_fmc2_nfc_set_buswidth_16(nfc, true);
}
static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
unsigned int len, bool force_8bit)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
/* Reconfigure bus width to 8-bit */
stm32_fmc2_nfc_set_buswidth_16(nfc, false);
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
writeb_relaxed(*(u8 *)buf, io_addr_w);
buf += sizeof(u8);
len -= sizeof(u8);
}
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
len >= sizeof(u16)) {
writew_relaxed(*(u16 *)buf, io_addr_w);
buf += sizeof(u16);
len -= sizeof(u16);
}
}
/* Buf is aligned */
while (len >= sizeof(u32)) {
writel_relaxed(*(u32 *)buf, io_addr_w);
buf += sizeof(u32);
len -= sizeof(u32);
}
/* Write remaining bytes */
if (len >= sizeof(u16)) {
writew_relaxed(*(u16 *)buf, io_addr_w);
buf += sizeof(u16);
len -= sizeof(u16);
}
if (len)
writeb_relaxed(*(u8 *)buf, io_addr_w);
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
/* Reconfigure bus width to 16-bit */
stm32_fmc2_nfc_set_buswidth_16(nfc, true);
}
static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
unsigned long timeout_ms)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
const struct nand_sdr_timings *timings;
u32 isr, sr;
/* Check if there is no pending requests to the NAND flash */
if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
sr & FMC2_SR_NWRF, 1,
1000 * FMC2_TIMEOUT_MS))
dev_warn(nfc->dev, "Waitrdy timeout\n");
/* Wait tWB before R/B# signal is low */
timings = nand_get_sdr_timings(nand_get_interface_config(chip));
ndelay(PSEC_TO_NSEC(timings->tWB_max));
/* R/B# signal is low, clear high level flag */
regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
/* Wait R/B# signal is high */
return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
isr & FMC2_ISR_IHLF, 5,
1000 * FMC2_TIMEOUT_MS);
}
static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
const struct nand_op_instr *instr = NULL;
unsigned int op_id, i, timeout;
int ret;
if (check_only)
return 0;
ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
if (ret)
return ret;
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writeb_relaxed(instr->ctx.cmd.opcode,
nfc->cmd_base[nfc->cs_sel]);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++)
writeb_relaxed(instr->ctx.addr.addrs[i],
nfc->addr_base[nfc->cs_sel]);
break;
case NAND_OP_DATA_IN_INSTR:
stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
instr->ctx.data.len,
instr->ctx.data.force_8bit);
break;
case NAND_OP_DATA_OUT_INSTR:
stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
instr->ctx.data.len,
instr->ctx.data.force_8bit);
break;
case NAND_OP_WAITRDY_INSTR:
timeout = instr->ctx.waitrdy.timeout_ms;
ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
break;
}
}
return ret;
}
static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
{
u32 pcr;
regmap_read(nfc->regmap, FMC2_PCR, &pcr);
/* Set CS used to undefined */
nfc->cs_sel = -1;
/* Enable wait feature and nand flash memory bank */
pcr |= FMC2_PCR_PWAITEN;
pcr |= FMC2_PCR_PBKEN;
/* Set buswidth to 8 bits mode for identification */
pcr &= ~FMC2_PCR_PWID;
/* ECC logic is disabled */
pcr &= ~FMC2_PCR_ECCEN;
/* Default mode */
pcr &= ~FMC2_PCR_ECCALG;
pcr &= ~FMC2_PCR_BCHECC;
pcr &= ~FMC2_PCR_WEN;
/* Set default ECC sector size */
pcr &= ~FMC2_PCR_ECCSS;
pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
/* Set default tclr/tar timings */
pcr &= ~FMC2_PCR_TCLR;
pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
pcr &= ~FMC2_PCR_TAR;
pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
/* Enable FMC2 controller */
if (nfc->dev == nfc->cdev)
regmap_update_bits(nfc->regmap, FMC2_BCR1,
FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
regmap_write(nfc->regmap, FMC2_PCR, pcr);
regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
}
static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
const struct nand_sdr_timings *sdrt)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct stm32_fmc2_timings *tims = &nand->timings;
unsigned long hclk = clk_get_rate(nfc->clk);
unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
unsigned long timing, tar, tclr, thiz, twait;
unsigned long tset_mem, tset_att, thold_mem, thold_att;
tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
timing = DIV_ROUND_UP(tar, hclkp) - 1;
tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
timing = DIV_ROUND_UP(tclr, hclkp) - 1;
tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
tims->thiz = FMC2_THIZ;
thiz = (tims->thiz + 1) * hclkp;
/*
* tWAIT > tRP
* tWAIT > tWP
* tWAIT > tREA + tIO
*/
twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
twait = max_t(unsigned long, twait, sdrt->tWP_min);
twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
timing = DIV_ROUND_UP(twait, hclkp);
tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_MEM > tCS - tWAIT
* tSETUP_MEM > tALS - tWAIT
* tSETUP_MEM > tDS - (tWAIT - tHIZ)
*/
tset_mem = hclkp;
if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
tset_mem = sdrt->tCS_min - twait;
if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
tset_mem = sdrt->tALS_min - twait;
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
(tset_mem < sdrt->tDS_min - (twait - thiz)))
tset_mem = sdrt->tDS_min - (twait - thiz);
timing = DIV_ROUND_UP(tset_mem, hclkp);
tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_MEM > tCH
* tHOLD_MEM > tREH - tSETUP_MEM
* tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
*/
thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
if (sdrt->tREH_min > tset_mem &&
(thold_mem < sdrt->tREH_min - tset_mem))
thold_mem = sdrt->tREH_min - tset_mem;
if ((sdrt->tRC_min > tset_mem + twait) &&
(thold_mem < sdrt->tRC_min - (tset_mem + twait)))
thold_mem = sdrt->tRC_min - (tset_mem + twait);
if ((sdrt->tWC_min > tset_mem + twait) &&
(thold_mem < sdrt->tWC_min - (tset_mem + twait)))
thold_mem = sdrt->tWC_min - (tset_mem + twait);
timing = DIV_ROUND_UP(thold_mem, hclkp);
tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_ATT > tCS - tWAIT
* tSETUP_ATT > tCLS - tWAIT
* tSETUP_ATT > tALS - tWAIT
* tSETUP_ATT > tRHW - tHOLD_MEM
* tSETUP_ATT > tDS - (tWAIT - tHIZ)
*/
tset_att = hclkp;
if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
tset_att = sdrt->tCS_min - twait;
if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
tset_att = sdrt->tCLS_min - twait;
if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
tset_att = sdrt->tALS_min - twait;
if (sdrt->tRHW_min > thold_mem &&
(tset_att < sdrt->tRHW_min - thold_mem))
tset_att = sdrt->tRHW_min - thold_mem;
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
(tset_att < sdrt->tDS_min - (twait - thiz)))
tset_att = sdrt->tDS_min - (twait - thiz);
timing = DIV_ROUND_UP(tset_att, hclkp);
tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_ATT > tALH
* tHOLD_ATT > tCH
* tHOLD_ATT > tCLH
* tHOLD_ATT > tCOH
* tHOLD_ATT > tDH
* tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
* tHOLD_ATT > tADL - tSETUP_MEM
* tHOLD_ATT > tWH - tSETUP_MEM
* tHOLD_ATT > tWHR - tSETUP_MEM
* tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
* tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
*/
thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
(thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
if (sdrt->tADL_min > tset_mem &&
(thold_att < sdrt->tADL_min - tset_mem))
thold_att = sdrt->tADL_min - tset_mem;
if (sdrt->tWH_min > tset_mem &&
(thold_att < sdrt->tWH_min - tset_mem))
thold_att = sdrt->tWH_min - tset_mem;
if (sdrt->tWHR_min > tset_mem &&
(thold_att < sdrt->tWHR_min - tset_mem))
thold_att = sdrt->tWHR_min - tset_mem;
if ((sdrt->tRC_min > tset_att + twait) &&
(thold_att < sdrt->tRC_min - (tset_att + twait)))
thold_att = sdrt->tRC_min - (tset_att + twait);
if ((sdrt->tWC_min > tset_att + twait) &&
(thold_att < sdrt->tWC_min - (tset_att + twait)))
thold_att = sdrt->tWC_min - (tset_att + twait);
timing = DIV_ROUND_UP(thold_att, hclkp);
tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
}
static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
const struct nand_interface_config *conf)
{
const struct nand_sdr_timings *sdrt;
sdrt = nand_get_sdr_timings(conf);
if (IS_ERR(sdrt))
return PTR_ERR(sdrt);
if (conf->timings.mode > 3)
return -EOPNOTSUPP;
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
stm32_fmc2_nfc_calc_timings(chip, sdrt);
stm32_fmc2_nfc_timings_init(chip);
return 0;
}
static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
{
int ret = 0;
nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
if (IS_ERR(nfc->dma_tx_ch)) {
ret = PTR_ERR(nfc->dma_tx_ch);
if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(nfc->dev,
"failed to request tx DMA channel: %d\n", ret);
nfc->dma_tx_ch = NULL;
goto err_dma;
}
nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
if (IS_ERR(nfc->dma_rx_ch)) {
ret = PTR_ERR(nfc->dma_rx_ch);
if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(nfc->dev,
"failed to request rx DMA channel: %d\n", ret);
nfc->dma_rx_ch = NULL;
goto err_dma;
}
nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
if (IS_ERR(nfc->dma_ecc_ch)) {
ret = PTR_ERR(nfc->dma_ecc_ch);
if (ret != -ENODEV && ret != -EPROBE_DEFER)
dev_err(nfc->dev,
"failed to request ecc DMA channel: %d\n", ret);
nfc->dma_ecc_ch = NULL;
goto err_dma;
}
ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
if (ret)
return ret;
/* Allocate a buffer to store ECC status registers */
nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
if (!nfc->ecc_buf)
return -ENOMEM;
ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
if (ret)
return ret;
init_completion(&nfc->dma_data_complete);
init_completion(&nfc->dma_ecc_complete);
return 0;
err_dma:
if (ret == -ENODEV) {
dev_warn(nfc->dev,
"DMAs not defined in the DT, polling mode is used\n");
ret = 0;
}
return ret;
}
static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
/*
* Specific callbacks to read/write a page depending on
* the mode (polling/sequencer) and the algo used (Hamming, BCH).
*/
if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
/* DMA => use sequencer mode callbacks */
chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
} else {
/* No DMA => use polling mode callbacks */
chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
if (chip->ecc.strength == FMC2_ECC_HAM) {
/* Hamming is used */
chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
} else {
/* BCH is used */
chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
chip->ecc.read_page = stm32_fmc2_nfc_read_page;
}
}
/* Specific configurations depending on the algo used */
if (chip->ecc.strength == FMC2_ECC_HAM)
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
else if (chip->ecc.strength == FMC2_ECC_BCH8)
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
else
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
}
static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section)
return -ERANGE;
oobregion->length = ecc->total;
oobregion->offset = FMC2_BBM_LEN;
return 0;
}
static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section)
return -ERANGE;
oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
oobregion->offset = ecc->total + FMC2_BBM_LEN;
return 0;
}
static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
.ecc = stm32_fmc2_nfc_ooblayout_ecc,
.free = stm32_fmc2_nfc_ooblayout_free,
};
static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
{
/* Hamming */
if (strength == FMC2_ECC_HAM)
return 4;
/* BCH8 */
if (strength == FMC2_ECC_BCH8)
return 14;
/* BCH4 */
return 8;
}
NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
FMC2_ECC_STEP_SIZE,
FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
/*
* Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
* Hamming => ecc.strength = 1
* BCH4 => ecc.strength = 4
* BCH8 => ecc.strength = 8
* ECC sector size = 512
*/
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
dev_err(nfc->dev,
"nand_ecc_engine_type is not well defined in the DT\n");
return -EINVAL;
}
/* Default ECC settings in case they are not set in the device tree */
if (!chip->ecc.size)
chip->ecc.size = FMC2_ECC_STEP_SIZE;
if (!chip->ecc.strength)
chip->ecc.strength = FMC2_ECC_BCH8;
ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
mtd->oobsize - FMC2_BBM_LEN);
if (ret) {
dev_err(nfc->dev, "no valid ECC settings set\n");
return ret;
}
if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
dev_err(nfc->dev, "nand page size is not supported\n");
return -EINVAL;
}
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
stm32_fmc2_nfc_nand_callbacks_setup(chip);
mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
stm32_fmc2_nfc_setup(chip);
return 0;
}
static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
.attach_chip = stm32_fmc2_nfc_attach_chip,
.exec_op = stm32_fmc2_nfc_exec_op,
.setup_interface = stm32_fmc2_nfc_setup_interface,
};
static void stm32_fmc2_nfc_wp_enable(struct stm32_fmc2_nand *nand)
{
if (nand->wp_gpio)
gpiod_set_value(nand->wp_gpio, 1);
}
static void stm32_fmc2_nfc_wp_disable(struct stm32_fmc2_nand *nand)
{
if (nand->wp_gpio)
gpiod_set_value(nand->wp_gpio, 0);
}
static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
struct device_node *dn)
{
struct stm32_fmc2_nand *nand = &nfc->nand;
u32 cs;
int ret, i;
if (!of_get_property(dn, "reg", &nand->ncs))
return -EINVAL;
nand->ncs /= sizeof(u32);
if (!nand->ncs) {
dev_err(nfc->dev, "invalid reg property size\n");
return -EINVAL;
}
for (i = 0; i < nand->ncs; i++) {
ret = of_property_read_u32_index(dn, "reg", i, &cs);
if (ret) {
dev_err(nfc->dev, "could not retrieve reg property: %d\n",
ret);
return ret;
}
if (cs >= FMC2_MAX_CE) {
dev_err(nfc->dev, "invalid reg value: %d\n", cs);
return -EINVAL;
}
if (nfc->cs_assigned & BIT(cs)) {
dev_err(nfc->dev, "cs already assigned: %d\n", cs);
return -EINVAL;
}
nfc->cs_assigned |= BIT(cs);
nand->cs_used[i] = cs;
}
nand->wp_gpio = devm_fwnode_gpiod_get(nfc->dev, of_fwnode_handle(dn),
"wp", GPIOD_OUT_HIGH, "wp");
if (IS_ERR(nand->wp_gpio)) {
ret = PTR_ERR(nand->wp_gpio);
if (ret != -ENOENT)
return dev_err_probe(nfc->dev, ret,
"failed to request WP GPIO\n");
nand->wp_gpio = NULL;
}
nand_set_flash_node(&nand->chip, dn);
return 0;
}
static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
{
struct device_node *dn = nfc->dev->of_node;
struct device_node *child;
int nchips = of_get_child_count(dn);
int ret = 0;
if (!nchips) {
dev_err(nfc->dev, "NAND chip not defined\n");
return -EINVAL;
}
if (nchips > 1) {
dev_err(nfc->dev, "too many NAND chips defined\n");
return -EINVAL;
}
for_each_child_of_node(dn, child) {
ret = stm32_fmc2_nfc_parse_child(nfc, child);
if (ret < 0) {
of_node_put(child);
return ret;
}
}
return ret;
}
static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
{
struct device *dev = nfc->dev;
bool ebi_found = false;
if (dev->parent && of_device_is_compatible(dev->parent->of_node,
"st,stm32mp1-fmc2-ebi"))
ebi_found = true;
if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
if (ebi_found) {
nfc->cdev = dev->parent;
return 0;
}
return -EINVAL;
}
if (ebi_found)
return -EINVAL;
nfc->cdev = dev;
return 0;
}
static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct reset_control *rstc;
struct stm32_fmc2_nfc *nfc;
struct stm32_fmc2_nand *nand;
struct resource *res;
struct mtd_info *mtd;
struct nand_chip *chip;
struct resource cres;
int chip_cs, mem_region, ret, irq;
int start_region = 0;
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->dev = dev;
nand_controller_init(&nfc->base);
nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
ret = stm32_fmc2_nfc_set_cdev(nfc);
if (ret)
return ret;
ret = stm32_fmc2_nfc_parse_dt(nfc);
if (ret)
return ret;
ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
if (ret)
return ret;
nfc->io_phys_addr = cres.start;
nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
if (IS_ERR(nfc->regmap))
return PTR_ERR(nfc->regmap);
if (nfc->dev == nfc->cdev)
start_region = 1;
for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
chip_cs++, mem_region += 3) {
if (!(nfc->cs_assigned & BIT(chip_cs)))
continue;
res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res);
if (IS_ERR(nfc->data_base[chip_cs]))
return PTR_ERR(nfc->data_base[chip_cs]);
nfc->data_phys_addr[chip_cs] = res->start;
nfc->cmd_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 1);
if (IS_ERR(nfc->cmd_base[chip_cs]))
return PTR_ERR(nfc->cmd_base[chip_cs]);
nfc->addr_base[chip_cs] = devm_platform_ioremap_resource(pdev, mem_region + 2);
if (IS_ERR(nfc->addr_base[chip_cs]))
return PTR_ERR(nfc->addr_base[chip_cs]);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
dev_name(dev), nfc);
if (ret) {
dev_err(dev, "failed to request irq\n");
return ret;
}
init_completion(&nfc->complete);
nfc->clk = devm_clk_get(nfc->cdev, NULL);
if (IS_ERR(nfc->clk))
return PTR_ERR(nfc->clk);
ret = clk_prepare_enable(nfc->clk);
if (ret) {
dev_err(dev, "can not enable the clock\n");
return ret;
}
rstc = devm_reset_control_get(dev, NULL);
if (IS_ERR(rstc)) {
ret = PTR_ERR(rstc);
if (ret == -EPROBE_DEFER)
goto err_clk_disable;
} else {
reset_control_assert(rstc);
reset_control_deassert(rstc);
}
ret = stm32_fmc2_nfc_dma_setup(nfc);
if (ret)
goto err_release_dma;
stm32_fmc2_nfc_init(nfc);
nand = &nfc->nand;
chip = &nand->chip;
mtd = nand_to_mtd(chip);
mtd->dev.parent = dev;
chip->controller = &nfc->base;
chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
NAND_USES_DMA;
stm32_fmc2_nfc_wp_disable(nand);
/* Scan to find existence of the device */
ret = nand_scan(chip, nand->ncs);
if (ret)
goto err_wp_enable;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_nand_cleanup;
platform_set_drvdata(pdev, nfc);
return 0;
err_nand_cleanup:
nand_cleanup(chip);
err_wp_enable:
stm32_fmc2_nfc_wp_enable(nand);
err_release_dma:
if (nfc->dma_ecc_ch)
dma_release_channel(nfc->dma_ecc_ch);
if (nfc->dma_tx_ch)
dma_release_channel(nfc->dma_tx_ch);
if (nfc->dma_rx_ch)
dma_release_channel(nfc->dma_rx_ch);
sg_free_table(&nfc->dma_data_sg);
sg_free_table(&nfc->dma_ecc_sg);
err_clk_disable:
clk_disable_unprepare(nfc->clk);
return ret;
}
static void stm32_fmc2_nfc_remove(struct platform_device *pdev)
{
struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
struct stm32_fmc2_nand *nand = &nfc->nand;
struct nand_chip *chip = &nand->chip;
int ret;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
if (nfc->dma_ecc_ch)
dma_release_channel(nfc->dma_ecc_ch);
if (nfc->dma_tx_ch)
dma_release_channel(nfc->dma_tx_ch);
if (nfc->dma_rx_ch)
dma_release_channel(nfc->dma_rx_ch);
sg_free_table(&nfc->dma_data_sg);
sg_free_table(&nfc->dma_ecc_sg);
clk_disable_unprepare(nfc->clk);
stm32_fmc2_nfc_wp_enable(nand);
}
static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
{
struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
struct stm32_fmc2_nand *nand = &nfc->nand;
clk_disable_unprepare(nfc->clk);
stm32_fmc2_nfc_wp_enable(nand);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
{
struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
struct stm32_fmc2_nand *nand = &nfc->nand;
int chip_cs, ret;
pinctrl_pm_select_default_state(dev);
ret = clk_prepare_enable(nfc->clk);
if (ret) {
dev_err(dev, "can not enable the clock\n");
return ret;
}
stm32_fmc2_nfc_init(nfc);
stm32_fmc2_nfc_wp_disable(nand);
for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
if (!(nfc->cs_assigned & BIT(chip_cs)))
continue;
nand_reset(&nand->chip, chip_cs);
}
return 0;
}
static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
stm32_fmc2_nfc_resume);
static const struct of_device_id stm32_fmc2_nfc_match[] = {
{.compatible = "st,stm32mp15-fmc2"},
{.compatible = "st,stm32mp1-fmc2-nfc"},
{}
};
MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
static struct platform_driver stm32_fmc2_nfc_driver = {
.probe = stm32_fmc2_nfc_probe,
.remove_new = stm32_fmc2_nfc_remove,
.driver = {
.name = "stm32_fmc2_nfc",
.of_match_table = stm32_fmc2_nfc_match,
.pm = &stm32_fmc2_nfc_pm_ops,
},
};
module_platform_driver(stm32_fmc2_nfc_driver);
MODULE_ALIAS("platform:stm32_fmc2_nfc");
MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
MODULE_LICENSE("GPL v2");