linux/drivers/mtd/nand/raw/rockchip-nand-controller.c
Uwe Kleine-König ec185b18c2 mtd: nand: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is (mostly) ignored
and this typically results in resource leaks. To improve here there is a
quest to make the remove callback return void. In the first step of this
quest all drivers are converted to .remove_new() which already returns
void.

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Acked-by: Tudor Ambarus <tudor.ambarus@linaro.org>
Acked-by: Nicolas Ferre <nicolas.ferre@microchip.com> # atmel
Reviewed-by: Paul Cercueil <paul@crapouillou.net> # ingenic
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> # ingenic
Acked-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> # intel
Reviewed-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> # meson
Acked-by: Roger Quadros <rogerq@kernel.org> # omap_elm
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be> # renesas
Reviewed-by: Heiko Stuebner <heiko@sntech.de> # rockchip
Acked-by: Jernej Skrabec <jernej.skrabec@gmail.com> # sunxi
Acked-by: Thierry Reding <treding@nvidia.com> # tegra
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20230411113816.3472237-1-u.kleine-koenig@pengutronix.de
2023-04-11 15:42:24 +02:00

1491 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Rockchip NAND Flash controller driver.
* Copyright (C) 2020 Rockchip Inc.
* Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
/*
* NFC Page Data Layout:
* 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
* 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
* ......
* NAND Page Data Layout:
* 1024 * n data + m Bytes oob
* Original Bad Block Mask Location:
* First byte of oob(spare).
* nand_chip->oob_poi data layout:
* 4Bytes sys data + .... + 4Bytes sys data + ECC data.
*/
/* NAND controller register definition */
#define NFC_READ (0)
#define NFC_WRITE (1)
#define NFC_FMCTL (0x00)
#define FMCTL_CE_SEL_M 0xFF
#define FMCTL_CE_SEL(x) (1 << (x))
#define FMCTL_WP BIT(8)
#define FMCTL_RDY BIT(9)
#define NFC_FMWAIT (0x04)
#define FLCTL_RST BIT(0)
#define FLCTL_WR (1) /* 0: read, 1: write */
#define FLCTL_XFER_ST BIT(2)
#define FLCTL_XFER_EN BIT(3)
#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
#define FLCTL_XFER_READY BIT(20)
#define FLCTL_XFER_SECTOR (22)
#define FLCTL_TOG_FIX BIT(29)
#define BCHCTL_BANK_M (7 << 5)
#define BCHCTL_BANK (5)
#define DMA_ST BIT(0)
#define DMA_WR (1) /* 0: write, 1: read */
#define DMA_EN BIT(2)
#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
#define DMA_INC_NUM (9) /* 1 - 16 */
#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
(((x) >> (e).high) & (e).high_mask) << (e).low_bn)
#define INT_DMA BIT(0)
#define NFC_BANK (0x800)
#define NFC_BANK_STEP (0x100)
#define BANK_DATA (0x00)
#define BANK_ADDR (0x04)
#define BANK_CMD (0x08)
#define NFC_SRAM0 (0x1000)
#define NFC_SRAM1 (0x1400)
#define NFC_SRAM_SIZE (0x400)
#define NFC_TIMEOUT (500000)
#define NFC_MAX_OOB_PER_STEP 128
#define NFC_MIN_OOB_PER_STEP 64
#define MAX_DATA_SIZE 0xFFFC
#define MAX_ADDRESS_CYC 6
#define NFC_ECC_MAX_MODES 4
#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
enum nfc_type {
NFC_V6,
NFC_V8,
NFC_V9,
};
/**
* struct rk_ecc_cnt_status: represent a ecc status data.
* @err_flag_bit: error flag bit index at register.
* @low: ECC count low bit index at register.
* @low_mask: mask bit.
* @low_bn: ECC count low bit number.
* @high: ECC count high bit index at register.
* @high_mask: mask bit
*/
struct ecc_cnt_status {
u8 err_flag_bit;
u8 low;
u8 low_mask;
u8 low_bn;
u8 high;
u8 high_mask;
};
/**
* @type: NFC version
* @ecc_strengths: ECC strengths
* @ecc_cfgs: ECC config values
* @flctl_off: FLCTL register offset
* @bchctl_off: BCHCTL register offset
* @dma_data_buf_off: DMA_DATA_BUF register offset
* @dma_oob_buf_off: DMA_OOB_BUF register offset
* @dma_cfg_off: DMA_CFG register offset
* @dma_st_off: DMA_ST register offset
* @bch_st_off: BCG_ST register offset
* @randmz_off: RANDMZ register offset
* @int_en_off: interrupt enable register offset
* @int_clr_off: interrupt clean register offset
* @int_st_off: interrupt status register offset
* @oob0_off: oob0 register offset
* @oob1_off: oob1 register offset
* @ecc0: represent ECC0 status data
* @ecc1: represent ECC1 status data
*/
struct nfc_cfg {
enum nfc_type type;
u8 ecc_strengths[NFC_ECC_MAX_MODES];
u32 ecc_cfgs[NFC_ECC_MAX_MODES];
u32 flctl_off;
u32 bchctl_off;
u32 dma_cfg_off;
u32 dma_data_buf_off;
u32 dma_oob_buf_off;
u32 dma_st_off;
u32 bch_st_off;
u32 randmz_off;
u32 int_en_off;
u32 int_clr_off;
u32 int_st_off;
u32 oob0_off;
u32 oob1_off;
struct ecc_cnt_status ecc0;
struct ecc_cnt_status ecc1;
};
struct rk_nfc_nand_chip {
struct list_head node;
struct nand_chip chip;
u16 boot_blks;
u16 metadata_size;
u32 boot_ecc;
u32 timing;
u8 nsels;
u8 sels[];
/* Nothing after this field. */
};
struct rk_nfc {
struct nand_controller controller;
const struct nfc_cfg *cfg;
struct device *dev;
struct clk *nfc_clk;
struct clk *ahb_clk;
void __iomem *regs;
u32 selected_bank;
u32 band_offset;
u32 cur_ecc;
u32 cur_timing;
struct completion done;
struct list_head chips;
u8 *page_buf;
u32 *oob_buf;
u32 page_buf_size;
u32 oob_buf_size;
unsigned long assigned_cs;
};
static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
{
return container_of(chip, struct rk_nfc_nand_chip, chip);
}
static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
{
return (u8 *)p + i * chip->ecc.size;
}
static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
{
u8 *poi;
poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
return poi;
}
static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
{
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
u8 *poi;
poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
return poi;
}
static inline int rk_nfc_data_len(struct nand_chip *chip)
{
return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
}
static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
return nfc->page_buf + i * rk_nfc_data_len(chip);
}
static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
}
static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
u32 reg, i;
for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
if (strength == nfc->cfg->ecc_strengths[i]) {
reg = nfc->cfg->ecc_cfgs[i];
break;
}
}
if (i >= NFC_ECC_MAX_MODES)
return -EINVAL;
writel(reg, nfc->regs + nfc->cfg->bchctl_off);
/* Save chip ECC setting */
nfc->cur_ecc = strength;
return 0;
}
static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
u32 val;
if (cs < 0) {
nfc->selected_bank = -1;
/* Deselect the currently selected target. */
val = readl_relaxed(nfc->regs + NFC_FMCTL);
val &= ~FMCTL_CE_SEL_M;
writel(val, nfc->regs + NFC_FMCTL);
return;
}
nfc->selected_bank = rknand->sels[cs];
nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
val = readl_relaxed(nfc->regs + NFC_FMCTL);
val &= ~FMCTL_CE_SEL_M;
val |= FMCTL_CE_SEL(nfc->selected_bank);
writel(val, nfc->regs + NFC_FMCTL);
/*
* Compare current chip timing with selected chip timing and
* change if needed.
*/
if (nfc->cur_timing != rknand->timing) {
writel(rknand->timing, nfc->regs + NFC_FMWAIT);
nfc->cur_timing = rknand->timing;
}
/*
* Compare current chip ECC setting with selected chip ECC setting and
* change if needed.
*/
if (nfc->cur_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, ecc->strength);
}
static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
{
int rc;
u32 val;
rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
val & FMCTL_RDY, 10, NFC_TIMEOUT);
return rc;
}
static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
{
int i;
for (i = 0; i < len; i++)
buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
BANK_DATA);
}
static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
{
int i;
for (i = 0; i < len; i++)
writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
}
static int rk_nfc_cmd(struct nand_chip *chip,
const struct nand_subop *subop)
{
struct rk_nfc *nfc = nand_get_controller_data(chip);
unsigned int i, j, remaining, start;
int reg_offset = nfc->band_offset;
u8 *inbuf = NULL;
const u8 *outbuf;
u32 cnt = 0;
int ret = 0;
for (i = 0; i < subop->ninstrs; i++) {
const struct nand_op_instr *instr = &subop->instrs[i];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writeb(instr->ctx.cmd.opcode,
nfc->regs + reg_offset + BANK_CMD);
break;
case NAND_OP_ADDR_INSTR:
remaining = nand_subop_get_num_addr_cyc(subop, i);
start = nand_subop_get_addr_start_off(subop, i);
for (j = 0; j < 8 && j + start < remaining; j++)
writeb(instr->ctx.addr.addrs[j + start],
nfc->regs + reg_offset + BANK_ADDR);
break;
case NAND_OP_DATA_IN_INSTR:
case NAND_OP_DATA_OUT_INSTR:
start = nand_subop_get_data_start_off(subop, i);
cnt = nand_subop_get_data_len(subop, i);
if (instr->type == NAND_OP_DATA_OUT_INSTR) {
outbuf = instr->ctx.data.buf.out + start;
rk_nfc_write_buf(nfc, outbuf, cnt);
} else {
inbuf = instr->ctx.data.buf.in + start;
rk_nfc_read_buf(nfc, inbuf, cnt);
}
break;
case NAND_OP_WAITRDY_INSTR:
if (rk_nfc_wait_ioready(nfc) < 0) {
ret = -ETIMEDOUT;
dev_err(nfc->dev, "IO not ready\n");
}
break;
}
}
return ret;
}
static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
NAND_OP_PARSER_PATTERN(
rk_nfc_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
NAND_OP_PARSER_PATTERN(
rk_nfc_cmd,
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
NAND_OP_PARSER_PAT_CMD_ELEM(true),
NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
);
static int rk_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
if (!check_only)
rk_nfc_select_chip(chip, op->cs);
return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
check_only);
}
static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
const struct nand_interface_config *conf)
{
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
const struct nand_sdr_timings *timings;
u32 rate, tc2rw, trwpw, trw2c;
u32 temp;
if (target < 0)
return 0;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
return -EOPNOTSUPP;
if (IS_ERR(nfc->nfc_clk))
rate = clk_get_rate(nfc->ahb_clk);
else
rate = clk_get_rate(nfc->nfc_clk);
/* Turn clock rate into kHz. */
rate /= 1000;
tc2rw = 1;
trw2c = 1;
trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
temp = timings->tREA_max / 1000;
temp = DIV_ROUND_UP(temp * rate, 1000000);
if (trwpw < temp)
trwpw = temp;
/*
* ACCON: access timing control register
* -------------------------------------
* 31:18: reserved
* 17:12: csrw, clock cycles from the falling edge of CSn to the
* falling edge of RDn or WRn
* 11:11: reserved
* 10:05: rwpw, the width of RDn or WRn in processor clock cycles
* 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
* rising edge of CSn
*/
/* Save chip timing */
rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
return 0;
}
static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
dma_addr_t dma_data, dma_addr_t dma_oob)
{
u32 dma_reg, fl_reg, bch_reg;
dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
(7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
(n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
(nfc->selected_bank << BCHCTL_BANK);
writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
}
writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
fl_reg |= FLCTL_XFER_ST;
writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
}
static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
{
void __iomem *ptr;
u32 reg;
ptr = nfc->regs + nfc->cfg->flctl_off;
return readl_relaxed_poll_timeout(ptr, reg,
reg & FLCTL_XFER_READY,
10, NFC_TIMEOUT);
}
static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
int oob_on, int page)
{
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int i, pages_per_blk;
pages_per_blk = mtd->erasesize / mtd->writesize;
if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
(page < (pages_per_blk * rknand->boot_blks)) &&
rknand->boot_ecc != ecc->strength) {
/*
* There's currently no method to notify the MTD framework that
* a different ECC strength is in use for the boot blocks.
*/
return -EIO;
}
if (!buf)
memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
for (i = 0; i < ecc->steps; i++) {
/* Copy data to the NFC buffer. */
if (buf)
memcpy(rk_nfc_data_ptr(chip, i),
rk_nfc_buf_to_data_ptr(chip, buf, i),
ecc->size);
/*
* The first four bytes of OOB are reserved for the
* boot ROM. In some debugging cases, such as with a
* read, erase and write back test these 4 bytes stored
* in OOB also need to be written back.
*
* The function nand_block_bad detects bad blocks like:
*
* bad = chip->oob_poi[chip->badblockpos];
*
* chip->badblockpos == 0 for a large page NAND Flash,
* so chip->oob_poi[0] is the bad block mask (BBM).
*
* The OOB data layout on the NFC is:
*
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
*
* or
*
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
*
* The code here just swaps the first 4 bytes with the last
* 4 bytes without losing any data.
*
* The chip->oob_poi data layout:
*
* BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
*
* The rk_nfc_ooblayout_free() function already has reserved
* these 4 bytes with:
*
* oob_region->offset = NFC_SYS_DATA_SIZE + 2;
*/
if (!i)
memcpy(rk_nfc_oob_ptr(chip, i),
rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
NFC_SYS_DATA_SIZE);
else
memcpy(rk_nfc_oob_ptr(chip, i),
rk_nfc_buf_to_oob_ptr(chip, i - 1),
NFC_SYS_DATA_SIZE);
/* Copy ECC data to the NFC buffer. */
memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
rk_nfc_buf_to_oob_ecc_ptr(chip, i),
ecc->bytes);
}
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
return nand_prog_page_end_op(chip);
}
static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
int oob_on, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
NFC_MIN_OOB_PER_STEP;
int pages_per_blk = mtd->erasesize / mtd->writesize;
int ret = 0, i, boot_rom_mode = 0;
dma_addr_t dma_data, dma_oob;
u32 reg;
u8 *oob;
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (buf)
memcpy(nfc->page_buf, buf, mtd->writesize);
else
memset(nfc->page_buf, 0xFF, mtd->writesize);
/*
* The first blocks (4, 8 or 16 depending on the device) are used
* by the boot ROM and the first 32 bits of OOB need to link to
* the next page address in the same block. We can't directly copy
* OOB data from the MTD framework, because this page address
* conflicts for example with the bad block marker (BBM),
* so we shift all OOB data including the BBM with 4 byte positions.
* As a consequence the OOB size available to the MTD framework is
* also reduced with 4 bytes.
*
* PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
*
* If a NAND is not a boot medium or the page is not a boot block,
* the first 4 bytes are left untouched by writing 0xFF to them.
*
* 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
*
* Configure the ECC algorithm supported by the boot ROM.
*/
if ((page < (pages_per_blk * rknand->boot_blks)) &&
(chip->options & NAND_IS_BOOT_MEDIUM)) {
boot_rom_mode = 1;
if (rknand->boot_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
}
for (i = 0; i < ecc->steps; i++) {
if (!i) {
reg = 0xFFFFFFFF;
} else {
oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
oob[3] << 24;
}
if (!i && boot_rom_mode)
reg = (page & (pages_per_blk - 1)) * 4;
if (nfc->cfg->type == NFC_V9)
nfc->oob_buf[i] = reg;
else
nfc->oob_buf[i * (oob_step / 4)] = reg;
}
dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
mtd->writesize, DMA_TO_DEVICE);
dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
ecc->steps * oob_step,
DMA_TO_DEVICE);
reinit_completion(&nfc->done);
writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
dma_oob);
ret = wait_for_completion_timeout(&nfc->done,
msecs_to_jiffies(100));
if (!ret)
dev_warn(nfc->dev, "write: wait dma done timeout.\n");
/*
* Whether the DMA transfer is completed or not. The driver
* needs to check the NFC`s status register to see if the data
* transfer was completed.
*/
ret = rk_nfc_wait_for_xfer_done(nfc);
dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
DMA_TO_DEVICE);
dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
DMA_TO_DEVICE);
if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, ecc->strength);
if (ret) {
dev_err(nfc->dev, "write: wait transfer done timeout.\n");
return -ETIMEDOUT;
}
return nand_prog_page_end_op(chip);
}
static int rk_nfc_write_oob(struct nand_chip *chip, int page)
{
return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
}
static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
int page)
{
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int i, pages_per_blk;
pages_per_blk = mtd->erasesize / mtd->writesize;
if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
(page < (pages_per_blk * rknand->boot_blks)) &&
rknand->boot_ecc != ecc->strength) {
/*
* There's currently no method to notify the MTD framework that
* a different ECC strength is in use for the boot blocks.
*/
return -EIO;
}
nand_read_page_op(chip, page, 0, NULL, 0);
rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
for (i = 0; i < ecc->steps; i++) {
/*
* The first four bytes of OOB are reserved for the
* boot ROM. In some debugging cases, such as with a read,
* erase and write back test, these 4 bytes also must be
* saved somewhere, otherwise this information will be
* lost during a write back.
*/
if (!i)
memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
rk_nfc_oob_ptr(chip, i),
NFC_SYS_DATA_SIZE);
else
memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
rk_nfc_oob_ptr(chip, i),
NFC_SYS_DATA_SIZE);
/* Copy ECC data from the NFC buffer. */
memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
ecc->bytes);
/* Copy data from the NFC buffer. */
if (buf)
memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
rk_nfc_data_ptr(chip, i),
ecc->size);
}
return 0;
}
static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
NFC_MIN_OOB_PER_STEP;
int pages_per_blk = mtd->erasesize / mtd->writesize;
dma_addr_t dma_data, dma_oob;
int ret = 0, i, cnt, boot_rom_mode = 0;
int max_bitflips = 0, bch_st, ecc_fail = 0;
u8 *oob;
u32 tmp;
nand_read_page_op(chip, page, 0, NULL, 0);
dma_data = dma_map_single(nfc->dev, nfc->page_buf,
mtd->writesize,
DMA_FROM_DEVICE);
dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
ecc->steps * oob_step,
DMA_FROM_DEVICE);
/*
* The first blocks (4, 8 or 16 depending on the device)
* are used by the boot ROM.
* Configure the ECC algorithm supported by the boot ROM.
*/
if ((page < (pages_per_blk * rknand->boot_blks)) &&
(chip->options & NAND_IS_BOOT_MEDIUM)) {
boot_rom_mode = 1;
if (rknand->boot_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
}
reinit_completion(&nfc->done);
writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
dma_oob);
ret = wait_for_completion_timeout(&nfc->done,
msecs_to_jiffies(100));
if (!ret)
dev_warn(nfc->dev, "read: wait dma done timeout.\n");
/*
* Whether the DMA transfer is completed or not. The driver
* needs to check the NFC`s status register to see if the data
* transfer was completed.
*/
ret = rk_nfc_wait_for_xfer_done(nfc);
dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
DMA_FROM_DEVICE);
dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
DMA_FROM_DEVICE);
if (ret) {
ret = -ETIMEDOUT;
dev_err(nfc->dev, "read: wait transfer done timeout.\n");
goto timeout_err;
}
for (i = 1; i < ecc->steps; i++) {
oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
if (nfc->cfg->type == NFC_V9)
tmp = nfc->oob_buf[i];
else
tmp = nfc->oob_buf[i * (oob_step / 4)];
*oob++ = (u8)tmp;
*oob++ = (u8)(tmp >> 8);
*oob++ = (u8)(tmp >> 16);
*oob++ = (u8)(tmp >> 24);
}
for (i = 0; i < (ecc->steps / 2); i++) {
bch_st = readl_relaxed(nfc->regs +
nfc->cfg->bch_st_off + i * 4);
if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
mtd->ecc_stats.failed++;
ecc_fail = 1;
} else {
cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
mtd->ecc_stats.corrected += cnt;
max_bitflips = max_t(u32, max_bitflips, cnt);
cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
mtd->ecc_stats.corrected += cnt;
max_bitflips = max_t(u32, max_bitflips, cnt);
}
}
if (buf)
memcpy(buf, nfc->page_buf, mtd->writesize);
timeout_err:
if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
rk_nfc_hw_ecc_setup(chip, ecc->strength);
if (ret)
return ret;
if (ecc_fail) {
dev_err(nfc->dev, "read page: %x ecc error!\n", page);
return 0;
}
return max_bitflips;
}
static int rk_nfc_read_oob(struct nand_chip *chip, int page)
{
return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
}
static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
{
/* Disable flash wp. */
writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
/* Config default timing 40ns at 150 Mhz NFC clock. */
writel(0x1081, nfc->regs + NFC_FMWAIT);
nfc->cur_timing = 0x1081;
/* Disable randomizer and DMA. */
writel(0, nfc->regs + nfc->cfg->randmz_off);
writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
}
static irqreturn_t rk_nfc_irq(int irq, void *id)
{
struct rk_nfc *nfc = id;
u32 sta, ien;
sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
if (!(sta & ien))
return IRQ_NONE;
writel(sta, nfc->regs + nfc->cfg->int_clr_off);
writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
complete(&nfc->done);
return IRQ_HANDLED;
}
static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
{
int ret;
if (!IS_ERR(nfc->nfc_clk)) {
ret = clk_prepare_enable(nfc->nfc_clk);
if (ret) {
dev_err(dev, "failed to enable NFC clk\n");
return ret;
}
}
ret = clk_prepare_enable(nfc->ahb_clk);
if (ret) {
dev_err(dev, "failed to enable ahb clk\n");
clk_disable_unprepare(nfc->nfc_clk);
return ret;
}
return 0;
}
static void rk_nfc_disable_clks(struct rk_nfc *nfc)
{
clk_disable_unprepare(nfc->nfc_clk);
clk_disable_unprepare(nfc->ahb_clk);
}
static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oob_region)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
if (section)
return -ERANGE;
/*
* The beginning of the OOB area stores the reserved data for the NFC,
* the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
*/
oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
oob_region->offset = NFC_SYS_DATA_SIZE + 2;
return 0;
}
static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oob_region)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
if (section)
return -ERANGE;
oob_region->length = mtd->oobsize - rknand->metadata_size;
oob_region->offset = rknand->metadata_size;
return 0;
}
static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
.free = rk_nfc_ooblayout_free,
.ecc = rk_nfc_ooblayout_ecc,
};
static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
const u8 *strengths = nfc->cfg->ecc_strengths;
u8 max_strength, nfc_max_strength;
int i;
nfc_max_strength = nfc->cfg->ecc_strengths[0];
/* If optional dt settings not present. */
if (!ecc->size || !ecc->strength ||
ecc->strength > nfc_max_strength) {
chip->ecc.size = 1024;
ecc->steps = mtd->writesize / ecc->size;
/*
* HW ECC always requests the number of ECC bytes per 1024 byte
* blocks. The first 4 OOB bytes are reserved for sys data.
*/
max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
fls(8 * 1024);
if (max_strength > nfc_max_strength)
max_strength = nfc_max_strength;
for (i = 0; i < 4; i++) {
if (max_strength >= strengths[i])
break;
}
if (i >= 4) {
dev_err(nfc->dev, "unsupported ECC strength\n");
return -EOPNOTSUPP;
}
ecc->strength = strengths[i];
}
ecc->steps = mtd->writesize / ecc->size;
ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
return 0;
}
static int rk_nfc_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct device *dev = mtd->dev.parent;
struct rk_nfc *nfc = nand_get_controller_data(chip);
struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
struct nand_ecc_ctrl *ecc = &chip->ecc;
int new_page_len, new_oob_len;
void *buf;
int ret;
if (chip->options & NAND_BUSWIDTH_16) {
dev_err(dev, "16 bits bus width not supported");
return -EINVAL;
}
if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
return 0;
ret = rk_nfc_ecc_init(dev, mtd);
if (ret)
return ret;
rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
dev_err(dev,
"driver needs at least %d bytes of meta data\n",
NFC_SYS_DATA_SIZE + 2);
return -EIO;
}
/* Check buffer first, avoid duplicate alloc buffer. */
new_page_len = mtd->writesize + mtd->oobsize;
if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
buf = krealloc(nfc->page_buf, new_page_len,
GFP_KERNEL | GFP_DMA);
if (!buf)
return -ENOMEM;
nfc->page_buf = buf;
nfc->page_buf_size = new_page_len;
}
new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
buf = krealloc(nfc->oob_buf, new_oob_len,
GFP_KERNEL | GFP_DMA);
if (!buf) {
kfree(nfc->page_buf);
nfc->page_buf = NULL;
return -ENOMEM;
}
nfc->oob_buf = buf;
nfc->oob_buf_size = new_oob_len;
}
if (!nfc->page_buf) {
nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
if (!nfc->page_buf)
return -ENOMEM;
nfc->page_buf_size = new_page_len;
}
if (!nfc->oob_buf) {
nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
if (!nfc->oob_buf) {
kfree(nfc->page_buf);
nfc->page_buf = NULL;
return -ENOMEM;
}
nfc->oob_buf_size = new_oob_len;
}
chip->ecc.write_page_raw = rk_nfc_write_page_raw;
chip->ecc.write_page = rk_nfc_write_page_hwecc;
chip->ecc.write_oob = rk_nfc_write_oob;
chip->ecc.read_page_raw = rk_nfc_read_page_raw;
chip->ecc.read_page = rk_nfc_read_page_hwecc;
chip->ecc.read_oob = rk_nfc_read_oob;
return 0;
}
static const struct nand_controller_ops rk_nfc_controller_ops = {
.attach_chip = rk_nfc_attach_chip,
.exec_op = rk_nfc_exec_op,
.setup_interface = rk_nfc_setup_interface,
};
static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
struct device_node *np)
{
struct rk_nfc_nand_chip *rknand;
struct nand_chip *chip;
struct mtd_info *mtd;
int nsels;
u32 tmp;
int ret;
int i;
if (!of_get_property(np, "reg", &nsels))
return -ENODEV;
nsels /= sizeof(u32);
if (!nsels || nsels > NFC_MAX_NSELS) {
dev_err(dev, "invalid reg property size %d\n", nsels);
return -EINVAL;
}
rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
GFP_KERNEL);
if (!rknand)
return -ENOMEM;
rknand->nsels = nsels;
for (i = 0; i < nsels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &tmp);
if (ret) {
dev_err(dev, "reg property failure : %d\n", ret);
return ret;
}
if (tmp >= NFC_MAX_NSELS) {
dev_err(dev, "invalid CS: %u\n", tmp);
return -EINVAL;
}
if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
dev_err(dev, "CS %u already assigned\n", tmp);
return -EINVAL;
}
rknand->sels[i] = tmp;
}
chip = &rknand->chip;
chip->controller = &nfc->controller;
nand_set_flash_node(chip, np);
nand_set_controller_data(chip, nfc);
chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
/* Set default mode in case dt entry is missing. */
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
mtd = nand_to_mtd(chip);
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
if (!mtd->name) {
dev_err(nfc->dev, "NAND label property is mandatory\n");
return -EINVAL;
}
mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
rk_nfc_hw_init(nfc);
ret = nand_scan(chip, nsels);
if (ret)
return ret;
if (chip->options & NAND_IS_BOOT_MEDIUM) {
ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
rknand->boot_blks = ret ? 0 : tmp;
ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
&tmp);
rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(dev, "MTD parse partition error\n");
nand_cleanup(chip);
return ret;
}
list_add_tail(&rknand->node, &nfc->chips);
return 0;
}
static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
{
struct rk_nfc_nand_chip *rknand, *tmp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
chip = &rknand->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&rknand->node);
}
}
static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
{
struct device_node *np = dev->of_node, *nand_np;
int nchips = of_get_child_count(np);
int ret;
if (!nchips || nchips > NFC_MAX_NSELS) {
dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
nchips);
return -EINVAL;
}
for_each_child_of_node(np, nand_np) {
ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
if (ret) {
of_node_put(nand_np);
rk_nfc_chips_cleanup(nfc);
return ret;
}
}
return 0;
}
static struct nfc_cfg nfc_v6_cfg = {
.type = NFC_V6,
.ecc_strengths = {60, 40, 24, 16},
.ecc_cfgs = {
0x00040011, 0x00040001, 0x00000011, 0x00000001,
},
.flctl_off = 0x08,
.bchctl_off = 0x0C,
.dma_cfg_off = 0x10,
.dma_data_buf_off = 0x14,
.dma_oob_buf_off = 0x18,
.dma_st_off = 0x1C,
.bch_st_off = 0x20,
.randmz_off = 0x150,
.int_en_off = 0x16C,
.int_clr_off = 0x170,
.int_st_off = 0x174,
.oob0_off = 0x200,
.oob1_off = 0x230,
.ecc0 = {
.err_flag_bit = 2,
.low = 3,
.low_mask = 0x1F,
.low_bn = 5,
.high = 27,
.high_mask = 0x1,
},
.ecc1 = {
.err_flag_bit = 15,
.low = 16,
.low_mask = 0x1F,
.low_bn = 5,
.high = 29,
.high_mask = 0x1,
},
};
static struct nfc_cfg nfc_v8_cfg = {
.type = NFC_V8,
.ecc_strengths = {16, 16, 16, 16},
.ecc_cfgs = {
0x00000001, 0x00000001, 0x00000001, 0x00000001,
},
.flctl_off = 0x08,
.bchctl_off = 0x0C,
.dma_cfg_off = 0x10,
.dma_data_buf_off = 0x14,
.dma_oob_buf_off = 0x18,
.dma_st_off = 0x1C,
.bch_st_off = 0x20,
.randmz_off = 0x150,
.int_en_off = 0x16C,
.int_clr_off = 0x170,
.int_st_off = 0x174,
.oob0_off = 0x200,
.oob1_off = 0x230,
.ecc0 = {
.err_flag_bit = 2,
.low = 3,
.low_mask = 0x1F,
.low_bn = 5,
.high = 27,
.high_mask = 0x1,
},
.ecc1 = {
.err_flag_bit = 15,
.low = 16,
.low_mask = 0x1F,
.low_bn = 5,
.high = 29,
.high_mask = 0x1,
},
};
static struct nfc_cfg nfc_v9_cfg = {
.type = NFC_V9,
.ecc_strengths = {70, 60, 40, 16},
.ecc_cfgs = {
0x00000001, 0x06000001, 0x04000001, 0x02000001,
},
.flctl_off = 0x10,
.bchctl_off = 0x20,
.dma_cfg_off = 0x30,
.dma_data_buf_off = 0x34,
.dma_oob_buf_off = 0x38,
.dma_st_off = 0x3C,
.bch_st_off = 0x150,
.randmz_off = 0x208,
.int_en_off = 0x120,
.int_clr_off = 0x124,
.int_st_off = 0x128,
.oob0_off = 0x200,
.oob1_off = 0x204,
.ecc0 = {
.err_flag_bit = 2,
.low = 3,
.low_mask = 0x7F,
.low_bn = 7,
.high = 0,
.high_mask = 0x0,
},
.ecc1 = {
.err_flag_bit = 18,
.low = 19,
.low_mask = 0x7F,
.low_bn = 7,
.high = 0,
.high_mask = 0x0,
},
};
static const struct of_device_id rk_nfc_id_table[] = {
{
.compatible = "rockchip,px30-nfc",
.data = &nfc_v9_cfg
},
{
.compatible = "rockchip,rk2928-nfc",
.data = &nfc_v6_cfg
},
{
.compatible = "rockchip,rv1108-nfc",
.data = &nfc_v8_cfg
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
static int rk_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rk_nfc *nfc;
int ret, irq;
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nand_controller_init(&nfc->controller);
INIT_LIST_HEAD(&nfc->chips);
nfc->controller.ops = &rk_nfc_controller_ops;
nfc->cfg = of_device_get_match_data(dev);
nfc->dev = dev;
init_completion(&nfc->done);
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->regs)) {
ret = PTR_ERR(nfc->regs);
goto release_nfc;
}
nfc->nfc_clk = devm_clk_get(dev, "nfc");
if (IS_ERR(nfc->nfc_clk)) {
dev_dbg(dev, "no NFC clk\n");
/* Some earlier models, such as rk3066, have no NFC clk. */
}
nfc->ahb_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(nfc->ahb_clk)) {
dev_err(dev, "no ahb clk\n");
ret = PTR_ERR(nfc->ahb_clk);
goto release_nfc;
}
ret = rk_nfc_enable_clks(dev, nfc);
if (ret)
goto release_nfc;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -EINVAL;
goto clk_disable;
}
writel(0, nfc->regs + nfc->cfg->int_en_off);
ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
if (ret) {
dev_err(dev, "failed to request NFC irq\n");
goto clk_disable;
}
platform_set_drvdata(pdev, nfc);
ret = rk_nfc_nand_chips_init(dev, nfc);
if (ret) {
dev_err(dev, "failed to init NAND chips\n");
goto clk_disable;
}
return 0;
clk_disable:
rk_nfc_disable_clks(nfc);
release_nfc:
return ret;
}
static void rk_nfc_remove(struct platform_device *pdev)
{
struct rk_nfc *nfc = platform_get_drvdata(pdev);
kfree(nfc->page_buf);
kfree(nfc->oob_buf);
rk_nfc_chips_cleanup(nfc);
rk_nfc_disable_clks(nfc);
}
static int __maybe_unused rk_nfc_suspend(struct device *dev)
{
struct rk_nfc *nfc = dev_get_drvdata(dev);
rk_nfc_disable_clks(nfc);
return 0;
}
static int __maybe_unused rk_nfc_resume(struct device *dev)
{
struct rk_nfc *nfc = dev_get_drvdata(dev);
struct rk_nfc_nand_chip *rknand;
struct nand_chip *chip;
int ret;
u32 i;
ret = rk_nfc_enable_clks(dev, nfc);
if (ret)
return ret;
/* Reset NAND chip if VCC was powered off. */
list_for_each_entry(rknand, &nfc->chips, node) {
chip = &rknand->chip;
for (i = 0; i < rknand->nsels; i++)
nand_reset(chip, i);
}
return 0;
}
static const struct dev_pm_ops rk_nfc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
};
static struct platform_driver rk_nfc_driver = {
.probe = rk_nfc_probe,
.remove_new = rk_nfc_remove,
.driver = {
.name = "rockchip-nfc",
.of_match_table = rk_nfc_id_table,
.pm = &rk_nfc_pm_ops,
},
};
module_platform_driver(rk_nfc_driver);
MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
MODULE_ALIAS("platform:rockchip-nand-controller");