linux/drivers/gpu/drm/i915/i915_debugfs.c
Dave Airlie 6cf991611b Merge tag 'drm-intel-next-2020-05-15' of git://anongit.freedesktop.org/drm/drm-intel into drm-next
UAPI Changes:

- drm/i915: Show per-engine default property values in sysfs

    By providing the default values configured into the kernel via sysfs, it
    is much more convenient for userspace to restore those sane defaults, or
    at least know what are considered good baseline. This is useful, for
    example, to cleanup after any failed userspace prior to commencing new
    jobs.

Cross-subsystem Changes:

- video/hdmi: Add Unpack only function for DRM infoframe
- Includes pull request gvt-next-2020-05-12

Driver Changes:

- Restore Cherryview back to full-ppgtt (Chris, Mika)
- Document locking guidelines for i915 (Chris, Daniel, Joonas)
- Fix GitLab #1746: Handle idling during i915_gem_evict_something busy loops (Chris)
- Display WA #1105: Require linear fb stride to be multiple of 512 bytes on
  gen9/glk (Ville)
- Add Wa_14010685332 for ICP/ICL (Matt R)
- Restrict w/a 1607087056 for EHL/JSL (Swathi)
- Fix interrupt handling for DP AUX transactions on Tigerlake (Imre)
- Revert "drm/i915/tgl: Include ro parts of l3 to invalidate" (Mika)
- Fix HDC pipeline flush hardware bit on Gen12 (Mika)
- Flush L3 when flushing render on Gen12 (Mika)
- Invalidate aux table entries forcibly between BB on Gen12 (Mika)
- Add aux table invalidate for all engines on Gen12 (Mika)
- Force pte cacheline to main memory Gen8+ (Mika)
- Add and enable TGL+ SAGV support (Stanislav)
- Implement vm_ops->access on i915 mmaps for GDB (Chris, Kristian)
- Replace zero-length array with flexible-array (Gustavo)
- Improve batch buffer pool effectiveness to mitigate soft-rc6 hit (Chris)
- Remove wait priority boosting (Chris)
- Keep driver module referenced when PMU is active (Chris)
- Sanitize RPS interrupts upon resume (Chris)
- Extend pcode read timeout to 20 ms (Chris)
- Wait for ACT sent before enabling MST pipe (Ville)
- Extend support to async relocations to SNB (Chris)
- Remove CNL pre-prod workarounds (Ville)
- Don't enable WaIncreaseLatencyIPCEnabled when IPC is disabled (Sultan)
- Record the active CCID from before reset (Chris)
- Mark concurrent submissions with a weak-dependency (Chris)
- Peel dma-fence-chains for await to allow engine-to-engine sync (Lionel)
- Prevent using semaphores to chain up to external fences (Chris)
- Fix GLK watermark calculations (Ville)
- Emit await(batch) before MI_BB_START (Chris)
- Reset execlists registers before HWSP (Chris)
- Drop no-semaphore boosting in favor of fast timeslicing (Chris)
- Fix enabled infoframe states of lspcon (Gwan-gyeong)
- Program DP SDPs on pipe updates (Gwan-gyeong)
- Stop sending DP SDPs on ddi disable (Gwan-gyeong)
- Store CS timestamp frequency in Hz (Ville)

- Remove unused HAS_FWTABLE macro (Pascal)
- Use batchbuffer chaining for relocations to save ring space (Chris)
- Try different engines for relocs if MI ops not supported (Chris, Tvrtko)
- Lazily acquire the device wakeref for freeing objects (Chris)
- Streamline display code arithmetics around rounding etc. (Ville)
- Use bw state for per crtc SAGV evaluation (Stanislav)
- Track active_pipes in bw_state (Stanislav)
- Nuke mode.vrefresh usage (Ville)
- Warn if the FBC is still writing to stolen on removal (Chris)
- Added new PCode commands prepping for QGV rescricting (Stansilav)
- Stop holding onto the pinned_default_state (Chris)
- Propagate error from completed fences (Chris)
- Ignore submit-fences on the same timeline (Chris)
- Pull waiting on an external dma-fence into its routine (Chris)
- Replace the hardcoded I915_FENCE_TIMEOUT with Kconfig (Chris)
- Mark up the racy read of execlists->context_tag (Chris)
- Tidy up the return handling for completed dma-fences (Chris)
- Introduce skl_plane_wm_level accessor (Stanislav)
- Extract SKL SAGV checking (Stanislav)
- Make active_pipes check skl specific (Stanislav)
- Suspend tasklets before resume sanitization (Chris)
- Remove redundant exec_fence (Chris)
- Mark the addition of the initial-breadcrumb in the request (Chris)
- Transfer old virtual breadcrumbs to irq_worker (Chris)
- Read the DP SDPs from the video DIP (Gwan-gyeong)
- Program DP SDPs with computed configs (Gwan-gyeong)
- Add state readout for DP VSC and DP HDR Metadata Infoframe SDP
  (Gwan-gyeong)
- Add compute routine for DP PSR VSC SDP (Gwan-gyeong)
- Use new DP VSC SDP compute routine on PSR (Gwan-gyeong)
- Restrict qgv points which don't have enough bandwidth. (Stanislav)
- Nuke pointless div by 64bit (Ville)

- Static checker code fixes (Nathan, Mika, Chris)
- Add logging function for DP VSC SDP (Gwan-gyeong)
- Include HDMI DRM infoframe, DP HDR metadata and DP VSC SDP in the
  crtc state dump (Gwan-gyeong)
- Make timeslicing explicit engine property (Chris, Tvrtko)
- Selftest and debugging improvements (Chris)
- Align variable names with BSpec (Ville)
- Tidy up gen8+ breadcrumb emission code (Chris)
- Turn intel_digital_port_connected() in a vfunc (Ville)
- Use stashed away hpd isr bits in intel_digital_port_connected() (Ville)
- Extract i915_cs_timestamp_{ns_to_ticks,tick_to_ns}() (Ville)

Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200515160703.GA19043@jlahtine-desk.ger.corp.intel.com
2020-05-20 13:36:45 +10:00

1922 lines
54 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/sched/mm.h>
#include <linux/sort.h>
#include <drm/drm_debugfs.h>
#include "gem/i915_gem_context.h"
#include "gt/intel_gt_buffer_pool.h"
#include "gt/intel_gt_clock_utils.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_gt_requests.h"
#include "gt/intel_reset.h"
#include "gt/intel_rc6.h"
#include "gt/intel_rps.h"
#include "i915_debugfs.h"
#include "i915_debugfs_params.h"
#include "i915_irq.h"
#include "i915_trace.h"
#include "intel_pm.h"
#include "intel_sideband.h"
static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
{
return to_i915(node->minor->dev);
}
static int i915_capabilities(struct seq_file *m, void *data)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
struct drm_printer p = drm_seq_file_printer(m);
seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(i915));
intel_device_info_print_static(INTEL_INFO(i915), &p);
intel_device_info_print_runtime(RUNTIME_INFO(i915), &p);
intel_driver_caps_print(&i915->caps, &p);
kernel_param_lock(THIS_MODULE);
i915_params_dump(&i915_modparams, &p);
kernel_param_unlock(THIS_MODULE);
return 0;
}
static char get_tiling_flag(struct drm_i915_gem_object *obj)
{
switch (i915_gem_object_get_tiling(obj)) {
default:
case I915_TILING_NONE: return ' ';
case I915_TILING_X: return 'X';
case I915_TILING_Y: return 'Y';
}
}
static char get_global_flag(struct drm_i915_gem_object *obj)
{
return READ_ONCE(obj->userfault_count) ? 'g' : ' ';
}
static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
{
return obj->mm.mapping ? 'M' : ' ';
}
static const char *
stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
{
size_t x = 0;
switch (page_sizes) {
case 0:
return "";
case I915_GTT_PAGE_SIZE_4K:
return "4K";
case I915_GTT_PAGE_SIZE_64K:
return "64K";
case I915_GTT_PAGE_SIZE_2M:
return "2M";
default:
if (!buf)
return "M";
if (page_sizes & I915_GTT_PAGE_SIZE_2M)
x += snprintf(buf + x, len - x, "2M, ");
if (page_sizes & I915_GTT_PAGE_SIZE_64K)
x += snprintf(buf + x, len - x, "64K, ");
if (page_sizes & I915_GTT_PAGE_SIZE_4K)
x += snprintf(buf + x, len - x, "4K, ");
buf[x-2] = '\0';
return buf;
}
}
void
i915_debugfs_describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct intel_engine_cs *engine;
struct i915_vma *vma;
int pin_count = 0;
seq_printf(m, "%pK: %c%c%c %8zdKiB %02x %02x %s%s%s",
&obj->base,
get_tiling_flag(obj),
get_global_flag(obj),
get_pin_mapped_flag(obj),
obj->base.size / 1024,
obj->read_domains,
obj->write_domain,
i915_cache_level_str(dev_priv, obj->cache_level),
obj->mm.dirty ? " dirty" : "",
obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
if (obj->base.name)
seq_printf(m, " (name: %d)", obj->base.name);
spin_lock(&obj->vma.lock);
list_for_each_entry(vma, &obj->vma.list, obj_link) {
if (!drm_mm_node_allocated(&vma->node))
continue;
spin_unlock(&obj->vma.lock);
if (i915_vma_is_pinned(vma))
pin_count++;
seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
i915_vma_is_ggtt(vma) ? "g" : "pp",
vma->node.start, vma->node.size,
stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
if (i915_vma_is_ggtt(vma)) {
switch (vma->ggtt_view.type) {
case I915_GGTT_VIEW_NORMAL:
seq_puts(m, ", normal");
break;
case I915_GGTT_VIEW_PARTIAL:
seq_printf(m, ", partial [%08llx+%x]",
vma->ggtt_view.partial.offset << PAGE_SHIFT,
vma->ggtt_view.partial.size << PAGE_SHIFT);
break;
case I915_GGTT_VIEW_ROTATED:
seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
vma->ggtt_view.rotated.plane[0].width,
vma->ggtt_view.rotated.plane[0].height,
vma->ggtt_view.rotated.plane[0].stride,
vma->ggtt_view.rotated.plane[0].offset,
vma->ggtt_view.rotated.plane[1].width,
vma->ggtt_view.rotated.plane[1].height,
vma->ggtt_view.rotated.plane[1].stride,
vma->ggtt_view.rotated.plane[1].offset);
break;
case I915_GGTT_VIEW_REMAPPED:
seq_printf(m, ", remapped [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
vma->ggtt_view.remapped.plane[0].width,
vma->ggtt_view.remapped.plane[0].height,
vma->ggtt_view.remapped.plane[0].stride,
vma->ggtt_view.remapped.plane[0].offset,
vma->ggtt_view.remapped.plane[1].width,
vma->ggtt_view.remapped.plane[1].height,
vma->ggtt_view.remapped.plane[1].stride,
vma->ggtt_view.remapped.plane[1].offset);
break;
default:
MISSING_CASE(vma->ggtt_view.type);
break;
}
}
if (vma->fence)
seq_printf(m, " , fence: %d", vma->fence->id);
seq_puts(m, ")");
spin_lock(&obj->vma.lock);
}
spin_unlock(&obj->vma.lock);
seq_printf(m, " (pinned x %d)", pin_count);
if (obj->stolen)
seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
if (i915_gem_object_is_framebuffer(obj))
seq_printf(m, " (fb)");
engine = i915_gem_object_last_write_engine(obj);
if (engine)
seq_printf(m, " (%s)", engine->name);
}
struct file_stats {
struct i915_address_space *vm;
unsigned long count;
u64 total;
u64 active, inactive;
u64 closed;
};
static int per_file_stats(int id, void *ptr, void *data)
{
struct drm_i915_gem_object *obj = ptr;
struct file_stats *stats = data;
struct i915_vma *vma;
if (!kref_get_unless_zero(&obj->base.refcount))
return 0;
stats->count++;
stats->total += obj->base.size;
spin_lock(&obj->vma.lock);
if (!stats->vm) {
for_each_ggtt_vma(vma, obj) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (i915_vma_is_active(vma))
stats->active += vma->node.size;
else
stats->inactive += vma->node.size;
if (i915_vma_is_closed(vma))
stats->closed += vma->node.size;
}
} else {
struct rb_node *p = obj->vma.tree.rb_node;
while (p) {
long cmp;
vma = rb_entry(p, typeof(*vma), obj_node);
cmp = i915_vma_compare(vma, stats->vm, NULL);
if (cmp == 0) {
if (drm_mm_node_allocated(&vma->node)) {
if (i915_vma_is_active(vma))
stats->active += vma->node.size;
else
stats->inactive += vma->node.size;
if (i915_vma_is_closed(vma))
stats->closed += vma->node.size;
}
break;
}
if (cmp < 0)
p = p->rb_right;
else
p = p->rb_left;
}
}
spin_unlock(&obj->vma.lock);
i915_gem_object_put(obj);
return 0;
}
#define print_file_stats(m, name, stats) do { \
if (stats.count) \
seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu closed)\n", \
name, \
stats.count, \
stats.total, \
stats.active, \
stats.inactive, \
stats.closed); \
} while (0)
static void print_context_stats(struct seq_file *m,
struct drm_i915_private *i915)
{
struct file_stats kstats = {};
struct i915_gem_context *ctx, *cn;
spin_lock(&i915->gem.contexts.lock);
list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
struct i915_gem_engines_iter it;
struct intel_context *ce;
if (!kref_get_unless_zero(&ctx->ref))
continue;
spin_unlock(&i915->gem.contexts.lock);
for_each_gem_engine(ce,
i915_gem_context_lock_engines(ctx), it) {
if (intel_context_pin_if_active(ce)) {
rcu_read_lock();
if (ce->state)
per_file_stats(0,
ce->state->obj, &kstats);
per_file_stats(0, ce->ring->vma->obj, &kstats);
rcu_read_unlock();
intel_context_unpin(ce);
}
}
i915_gem_context_unlock_engines(ctx);
if (!IS_ERR_OR_NULL(ctx->file_priv)) {
struct file_stats stats = {
.vm = rcu_access_pointer(ctx->vm),
};
struct drm_file *file = ctx->file_priv->file;
struct task_struct *task;
char name[80];
rcu_read_lock();
idr_for_each(&file->object_idr, per_file_stats, &stats);
rcu_read_unlock();
rcu_read_lock();
task = pid_task(ctx->pid ?: file->pid, PIDTYPE_PID);
snprintf(name, sizeof(name), "%s",
task ? task->comm : "<unknown>");
rcu_read_unlock();
print_file_stats(m, name, stats);
}
spin_lock(&i915->gem.contexts.lock);
list_safe_reset_next(ctx, cn, link);
i915_gem_context_put(ctx);
}
spin_unlock(&i915->gem.contexts.lock);
print_file_stats(m, "[k]contexts", kstats);
}
static int i915_gem_object_info(struct seq_file *m, void *data)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
struct intel_memory_region *mr;
enum intel_region_id id;
seq_printf(m, "%u shrinkable [%u free] objects, %llu bytes\n",
i915->mm.shrink_count,
atomic_read(&i915->mm.free_count),
i915->mm.shrink_memory);
for_each_memory_region(mr, i915, id)
seq_printf(m, "%s: total:%pa, available:%pa bytes\n",
mr->name, &mr->total, &mr->avail);
seq_putc(m, '\n');
print_context_stats(m, i915);
return 0;
}
static void gen8_display_interrupt_info(struct seq_file *m)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
intel_wakeref_t wakeref;
power_domain = POWER_DOMAIN_PIPE(pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv,
power_domain);
if (!wakeref) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c IMR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IMR(pipe)));
seq_printf(m, "Pipe %c IIR:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IIR(pipe)));
seq_printf(m, "Pipe %c IER:\t%08x\n",
pipe_name(pipe),
I915_READ(GEN8_DE_PIPE_IER(pipe)));
intel_display_power_put(dev_priv, power_domain, wakeref);
}
seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_PORT_IMR));
seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_PORT_IIR));
seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_PORT_IER));
seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
I915_READ(GEN8_DE_MISC_IMR));
seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
I915_READ(GEN8_DE_MISC_IIR));
seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
I915_READ(GEN8_DE_MISC_IER));
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
}
static int i915_interrupt_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_engine_cs *engine;
intel_wakeref_t wakeref;
int i, pipe;
wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
if (IS_CHERRYVIEW(dev_priv)) {
intel_wakeref_t pref;
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
pref = intel_display_power_get_if_enabled(dev_priv,
power_domain);
if (!pref) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
intel_display_power_put(dev_priv, power_domain, pref);
}
pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
seq_printf(m, "PCU interrupt mask:\t%08x\n",
I915_READ(GEN8_PCU_IMR));
seq_printf(m, "PCU interrupt identity:\t%08x\n",
I915_READ(GEN8_PCU_IIR));
seq_printf(m, "PCU interrupt enable:\t%08x\n",
I915_READ(GEN8_PCU_IER));
} else if (INTEL_GEN(dev_priv) >= 11) {
seq_printf(m, "Master Interrupt Control: %08x\n",
I915_READ(GEN11_GFX_MSTR_IRQ));
seq_printf(m, "Render/Copy Intr Enable: %08x\n",
I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
seq_printf(m, "VCS/VECS Intr Enable: %08x\n",
I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
seq_printf(m, "GUC/SG Intr Enable:\t %08x\n",
I915_READ(GEN11_GUC_SG_INTR_ENABLE));
seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
seq_printf(m, "Crypto Intr Enable:\t %08x\n",
I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
seq_printf(m, "GUnit/CSME Intr Enable:\t %08x\n",
I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
seq_printf(m, "Display Interrupt Control:\t%08x\n",
I915_READ(GEN11_DISPLAY_INT_CTL));
gen8_display_interrupt_info(m);
} else if (INTEL_GEN(dev_priv) >= 8) {
seq_printf(m, "Master Interrupt Control:\t%08x\n",
I915_READ(GEN8_MASTER_IRQ));
for (i = 0; i < 4; i++) {
seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IMR(i)));
seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
i, I915_READ(GEN8_GT_IIR(i)));
seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
i, I915_READ(GEN8_GT_IER(i)));
}
gen8_display_interrupt_info(m);
} else if (IS_VALLEYVIEW(dev_priv)) {
intel_wakeref_t pref;
seq_printf(m, "Display IER:\t%08x\n",
I915_READ(VLV_IER));
seq_printf(m, "Display IIR:\t%08x\n",
I915_READ(VLV_IIR));
seq_printf(m, "Display IIR_RW:\t%08x\n",
I915_READ(VLV_IIR_RW));
seq_printf(m, "Display IMR:\t%08x\n",
I915_READ(VLV_IMR));
for_each_pipe(dev_priv, pipe) {
enum intel_display_power_domain power_domain;
power_domain = POWER_DOMAIN_PIPE(pipe);
pref = intel_display_power_get_if_enabled(dev_priv,
power_domain);
if (!pref) {
seq_printf(m, "Pipe %c power disabled\n",
pipe_name(pipe));
continue;
}
seq_printf(m, "Pipe %c stat:\t%08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
intel_display_power_put(dev_priv, power_domain, pref);
}
seq_printf(m, "Master IER:\t%08x\n",
I915_READ(VLV_MASTER_IER));
seq_printf(m, "Render IER:\t%08x\n",
I915_READ(GTIER));
seq_printf(m, "Render IIR:\t%08x\n",
I915_READ(GTIIR));
seq_printf(m, "Render IMR:\t%08x\n",
I915_READ(GTIMR));
seq_printf(m, "PM IER:\t\t%08x\n",
I915_READ(GEN6_PMIER));
seq_printf(m, "PM IIR:\t\t%08x\n",
I915_READ(GEN6_PMIIR));
seq_printf(m, "PM IMR:\t\t%08x\n",
I915_READ(GEN6_PMIMR));
pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
seq_printf(m, "Port hotplug:\t%08x\n",
I915_READ(PORT_HOTPLUG_EN));
seq_printf(m, "DPFLIPSTAT:\t%08x\n",
I915_READ(VLV_DPFLIPSTAT));
seq_printf(m, "DPINVGTT:\t%08x\n",
I915_READ(DPINVGTT));
intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);
} else if (!HAS_PCH_SPLIT(dev_priv)) {
seq_printf(m, "Interrupt enable: %08x\n",
I915_READ(GEN2_IER));
seq_printf(m, "Interrupt identity: %08x\n",
I915_READ(GEN2_IIR));
seq_printf(m, "Interrupt mask: %08x\n",
I915_READ(GEN2_IMR));
for_each_pipe(dev_priv, pipe)
seq_printf(m, "Pipe %c stat: %08x\n",
pipe_name(pipe),
I915_READ(PIPESTAT(pipe)));
} else {
seq_printf(m, "North Display Interrupt enable: %08x\n",
I915_READ(DEIER));
seq_printf(m, "North Display Interrupt identity: %08x\n",
I915_READ(DEIIR));
seq_printf(m, "North Display Interrupt mask: %08x\n",
I915_READ(DEIMR));
seq_printf(m, "South Display Interrupt enable: %08x\n",
I915_READ(SDEIER));
seq_printf(m, "South Display Interrupt identity: %08x\n",
I915_READ(SDEIIR));
seq_printf(m, "South Display Interrupt mask: %08x\n",
I915_READ(SDEIMR));
seq_printf(m, "Graphics Interrupt enable: %08x\n",
I915_READ(GTIER));
seq_printf(m, "Graphics Interrupt identity: %08x\n",
I915_READ(GTIIR));
seq_printf(m, "Graphics Interrupt mask: %08x\n",
I915_READ(GTIMR));
}
if (INTEL_GEN(dev_priv) >= 11) {
seq_printf(m, "RCS Intr Mask:\t %08x\n",
I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
seq_printf(m, "BCS Intr Mask:\t %08x\n",
I915_READ(GEN11_BCS_RSVD_INTR_MASK));
seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
I915_READ(GEN11_GUC_SG_INTR_MASK));
seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
seq_printf(m, "Crypto Intr Mask:\t %08x\n",
I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
} else if (INTEL_GEN(dev_priv) >= 6) {
for_each_uabi_engine(engine, dev_priv) {
seq_printf(m,
"Graphics Interrupt mask (%s): %08x\n",
engine->name, ENGINE_READ(engine, RING_IMR));
}
}
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
return 0;
}
static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
unsigned int i;
seq_printf(m, "Total fences = %d\n", i915->ggtt.num_fences);
rcu_read_lock();
for (i = 0; i < i915->ggtt.num_fences; i++) {
struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
struct i915_vma *vma = reg->vma;
seq_printf(m, "Fence %d, pin count = %d, object = ",
i, atomic_read(&reg->pin_count));
if (!vma)
seq_puts(m, "unused");
else
i915_debugfs_describe_obj(m, vma->obj);
seq_putc(m, '\n');
}
rcu_read_unlock();
return 0;
}
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
size_t count, loff_t *pos)
{
struct i915_gpu_coredump *error;
ssize_t ret;
void *buf;
error = file->private_data;
if (!error)
return 0;
/* Bounce buffer required because of kernfs __user API convenience. */
buf = kmalloc(count, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = i915_gpu_coredump_copy_to_buffer(error, buf, *pos, count);
if (ret <= 0)
goto out;
if (!copy_to_user(ubuf, buf, ret))
*pos += ret;
else
ret = -EFAULT;
out:
kfree(buf);
return ret;
}
static int gpu_state_release(struct inode *inode, struct file *file)
{
i915_gpu_coredump_put(file->private_data);
return 0;
}
static int i915_gpu_info_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
struct i915_gpu_coredump *gpu;
intel_wakeref_t wakeref;
gpu = NULL;
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
gpu = i915_gpu_coredump(i915);
if (IS_ERR(gpu))
return PTR_ERR(gpu);
file->private_data = gpu;
return 0;
}
static const struct file_operations i915_gpu_info_fops = {
.owner = THIS_MODULE,
.open = i915_gpu_info_open,
.read = gpu_state_read,
.llseek = default_llseek,
.release = gpu_state_release,
};
static ssize_t
i915_error_state_write(struct file *filp,
const char __user *ubuf,
size_t cnt,
loff_t *ppos)
{
struct i915_gpu_coredump *error = filp->private_data;
if (!error)
return 0;
drm_dbg(&error->i915->drm, "Resetting error state\n");
i915_reset_error_state(error->i915);
return cnt;
}
static int i915_error_state_open(struct inode *inode, struct file *file)
{
struct i915_gpu_coredump *error;
error = i915_first_error_state(inode->i_private);
if (IS_ERR(error))
return PTR_ERR(error);
file->private_data = error;
return 0;
}
static const struct file_operations i915_error_state_fops = {
.owner = THIS_MODULE,
.open = i915_error_state_open,
.read = gpu_state_read,
.write = i915_error_state_write,
.llseek = default_llseek,
.release = gpu_state_release,
};
#endif
static int i915_frequency_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_uncore *uncore = &dev_priv->uncore;
struct intel_rps *rps = &dev_priv->gt.rps;
intel_wakeref_t wakeref;
int ret = 0;
wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
if (IS_GEN(dev_priv, 5)) {
u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK);
seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
MEMSTAT_VID_SHIFT);
seq_printf(m, "Current P-state: %d\n",
(rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
u32 rpmodectl, freq_sts;
rpmodectl = I915_READ(GEN6_RP_CONTROL);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
vlv_punit_get(dev_priv);
freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
vlv_punit_put(dev_priv);
seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
seq_printf(m, "actual GPU freq: %d MHz\n",
intel_gpu_freq(rps, (freq_sts >> 8) & 0xff));
seq_printf(m, "current GPU freq: %d MHz\n",
intel_gpu_freq(rps, rps->cur_freq));
seq_printf(m, "max GPU freq: %d MHz\n",
intel_gpu_freq(rps, rps->max_freq));
seq_printf(m, "min GPU freq: %d MHz\n",
intel_gpu_freq(rps, rps->min_freq));
seq_printf(m, "idle GPU freq: %d MHz\n",
intel_gpu_freq(rps, rps->idle_freq));
seq_printf(m,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(rps, rps->efficient_freq));
} else if (INTEL_GEN(dev_priv) >= 6) {
u32 rp_state_limits;
u32 gt_perf_status;
u32 rp_state_cap;
u32 rpmodectl, rpinclimit, rpdeclimit;
u32 rpstat, cagf, reqf;
u32 rpupei, rpcurup, rpprevup;
u32 rpdownei, rpcurdown, rpprevdown;
u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
int max_freq;
rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
if (IS_GEN9_LP(dev_priv)) {
rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
} else {
rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
}
/* RPSTAT1 is in the GT power well */
intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
reqf = I915_READ(GEN6_RPNSWREQ);
if (INTEL_GEN(dev_priv) >= 9)
reqf >>= 23;
else {
reqf &= ~GEN6_TURBO_DISABLE;
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
reqf >>= 24;
else
reqf >>= 25;
}
reqf = intel_gpu_freq(rps, reqf);
rpmodectl = I915_READ(GEN6_RP_CONTROL);
rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
rpstat = I915_READ(GEN6_RPSTAT1);
rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
cagf = intel_rps_read_actual_frequency(rps);
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
if (INTEL_GEN(dev_priv) >= 11) {
pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE);
pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK);
/*
* The equivalent to the PM ISR & IIR cannot be read
* without affecting the current state of the system
*/
pm_isr = 0;
pm_iir = 0;
} else if (INTEL_GEN(dev_priv) >= 8) {
pm_ier = I915_READ(GEN8_GT_IER(2));
pm_imr = I915_READ(GEN8_GT_IMR(2));
pm_isr = I915_READ(GEN8_GT_ISR(2));
pm_iir = I915_READ(GEN8_GT_IIR(2));
} else {
pm_ier = I915_READ(GEN6_PMIER);
pm_imr = I915_READ(GEN6_PMIMR);
pm_isr = I915_READ(GEN6_PMISR);
pm_iir = I915_READ(GEN6_PMIIR);
}
pm_mask = I915_READ(GEN6_PMINTRMSK);
seq_printf(m, "Video Turbo Mode: %s\n",
yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
seq_printf(m, "HW control enabled: %s\n",
yesno(rpmodectl & GEN6_RP_ENABLE));
seq_printf(m, "SW control enabled: %s\n",
yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
GEN6_RP_MEDIA_SW_MODE));
seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
pm_ier, pm_imr, pm_mask);
if (INTEL_GEN(dev_priv) <= 10)
seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n",
pm_isr, pm_iir);
seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
rps->pm_intrmsk_mbz);
seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
seq_printf(m, "Render p-state ratio: %d\n",
(gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
seq_printf(m, "Render p-state VID: %d\n",
gt_perf_status & 0xff);
seq_printf(m, "Render p-state limit: %d\n",
rp_state_limits & 0xff);
seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
seq_printf(m, "CAGF: %dMHz\n", cagf);
seq_printf(m, "RP CUR UP EI: %d (%dns)\n",
rpupei,
intel_gt_pm_interval_to_ns(&dev_priv->gt, rpupei));
seq_printf(m, "RP CUR UP: %d (%dun)\n",
rpcurup,
intel_gt_pm_interval_to_ns(&dev_priv->gt, rpcurup));
seq_printf(m, "RP PREV UP: %d (%dns)\n",
rpprevup,
intel_gt_pm_interval_to_ns(&dev_priv->gt, rpprevup));
seq_printf(m, "Up threshold: %d%%\n",
rps->power.up_threshold);
seq_printf(m, "RP CUR DOWN EI: %d (%dns)\n",
rpdownei,
intel_gt_pm_interval_to_ns(&dev_priv->gt,
rpdownei));
seq_printf(m, "RP CUR DOWN: %d (%dns)\n",
rpcurdown,
intel_gt_pm_interval_to_ns(&dev_priv->gt,
rpcurdown));
seq_printf(m, "RP PREV DOWN: %d (%dns)\n",
rpprevdown,
intel_gt_pm_interval_to_ns(&dev_priv->gt,
rpprevdown));
seq_printf(m, "Down threshold: %d%%\n",
rps->power.down_threshold);
max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
rp_state_cap >> 16) & 0xff;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
intel_gpu_freq(rps, max_freq));
max_freq = (rp_state_cap & 0xff00) >> 8;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
intel_gpu_freq(rps, max_freq));
max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
rp_state_cap >> 0) & 0xff;
max_freq *= (IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
intel_gpu_freq(rps, max_freq));
seq_printf(m, "Max overclocked frequency: %dMHz\n",
intel_gpu_freq(rps, rps->max_freq));
seq_printf(m, "Current freq: %d MHz\n",
intel_gpu_freq(rps, rps->cur_freq));
seq_printf(m, "Actual freq: %d MHz\n", cagf);
seq_printf(m, "Idle freq: %d MHz\n",
intel_gpu_freq(rps, rps->idle_freq));
seq_printf(m, "Min freq: %d MHz\n",
intel_gpu_freq(rps, rps->min_freq));
seq_printf(m, "Boost freq: %d MHz\n",
intel_gpu_freq(rps, rps->boost_freq));
seq_printf(m, "Max freq: %d MHz\n",
intel_gpu_freq(rps, rps->max_freq));
seq_printf(m,
"efficient (RPe) frequency: %d MHz\n",
intel_gpu_freq(rps, rps->efficient_freq));
} else {
seq_puts(m, "no P-state info available\n");
}
seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
return ret;
}
static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_rps *rps = &dev_priv->gt.rps;
unsigned int max_gpu_freq, min_gpu_freq;
intel_wakeref_t wakeref;
int gpu_freq, ia_freq;
if (!HAS_LLC(dev_priv))
return -ENODEV;
min_gpu_freq = rps->min_freq;
max_gpu_freq = rps->max_freq;
if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
/* Convert GT frequency to 50 HZ units */
min_gpu_freq /= GEN9_FREQ_SCALER;
max_gpu_freq /= GEN9_FREQ_SCALER;
}
seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
ia_freq = gpu_freq;
sandybridge_pcode_read(dev_priv,
GEN6_PCODE_READ_MIN_FREQ_TABLE,
&ia_freq, NULL);
seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
intel_gpu_freq(rps,
(gpu_freq *
(IS_GEN9_BC(dev_priv) ||
INTEL_GEN(dev_priv) >= 10 ?
GEN9_FREQ_SCALER : 1))),
((ia_freq >> 0) & 0xff) * 100,
((ia_freq >> 8) & 0xff) * 100);
}
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
return 0;
}
static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
{
seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
ring->space, ring->head, ring->tail, ring->emit);
}
static int i915_context_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
struct i915_gem_context *ctx, *cn;
spin_lock(&i915->gem.contexts.lock);
list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
struct i915_gem_engines_iter it;
struct intel_context *ce;
if (!kref_get_unless_zero(&ctx->ref))
continue;
spin_unlock(&i915->gem.contexts.lock);
seq_puts(m, "HW context ");
if (ctx->pid) {
struct task_struct *task;
task = get_pid_task(ctx->pid, PIDTYPE_PID);
if (task) {
seq_printf(m, "(%s [%d]) ",
task->comm, task->pid);
put_task_struct(task);
}
} else if (IS_ERR(ctx->file_priv)) {
seq_puts(m, "(deleted) ");
} else {
seq_puts(m, "(kernel) ");
}
seq_putc(m, ctx->remap_slice ? 'R' : 'r');
seq_putc(m, '\n');
for_each_gem_engine(ce,
i915_gem_context_lock_engines(ctx), it) {
if (intel_context_pin_if_active(ce)) {
seq_printf(m, "%s: ", ce->engine->name);
if (ce->state)
i915_debugfs_describe_obj(m, ce->state->obj);
describe_ctx_ring(m, ce->ring);
seq_putc(m, '\n');
intel_context_unpin(ce);
}
}
i915_gem_context_unlock_engines(ctx);
seq_putc(m, '\n');
spin_lock(&i915->gem.contexts.lock);
list_safe_reset_next(ctx, cn, link);
i915_gem_context_put(ctx);
}
spin_unlock(&i915->gem.contexts.lock);
return 0;
}
static const char *swizzle_string(unsigned swizzle)
{
switch (swizzle) {
case I915_BIT_6_SWIZZLE_NONE:
return "none";
case I915_BIT_6_SWIZZLE_9:
return "bit9";
case I915_BIT_6_SWIZZLE_9_10:
return "bit9/bit10";
case I915_BIT_6_SWIZZLE_9_11:
return "bit9/bit11";
case I915_BIT_6_SWIZZLE_9_10_11:
return "bit9/bit10/bit11";
case I915_BIT_6_SWIZZLE_9_17:
return "bit9/bit17";
case I915_BIT_6_SWIZZLE_9_10_17:
return "bit9/bit10/bit17";
case I915_BIT_6_SWIZZLE_UNKNOWN:
return "unknown";
}
return "bug";
}
static int i915_swizzle_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_uncore *uncore = &dev_priv->uncore;
intel_wakeref_t wakeref;
wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
swizzle_string(dev_priv->ggtt.bit_6_swizzle_x));
seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
swizzle_string(dev_priv->ggtt.bit_6_swizzle_y));
if (IS_GEN_RANGE(dev_priv, 3, 4)) {
seq_printf(m, "DDC = 0x%08x\n",
intel_uncore_read(uncore, DCC));
seq_printf(m, "DDC2 = 0x%08x\n",
intel_uncore_read(uncore, DCC2));
seq_printf(m, "C0DRB3 = 0x%04x\n",
intel_uncore_read16(uncore, C0DRB3));
seq_printf(m, "C1DRB3 = 0x%04x\n",
intel_uncore_read16(uncore, C1DRB3));
} else if (INTEL_GEN(dev_priv) >= 6) {
seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
intel_uncore_read(uncore, MAD_DIMM_C0));
seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
intel_uncore_read(uncore, MAD_DIMM_C1));
seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
intel_uncore_read(uncore, MAD_DIMM_C2));
seq_printf(m, "TILECTL = 0x%08x\n",
intel_uncore_read(uncore, TILECTL));
if (INTEL_GEN(dev_priv) >= 8)
seq_printf(m, "GAMTARBMODE = 0x%08x\n",
intel_uncore_read(uncore, GAMTARBMODE));
else
seq_printf(m, "ARB_MODE = 0x%08x\n",
intel_uncore_read(uncore, ARB_MODE));
seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
intel_uncore_read(uncore, DISP_ARB_CTL));
}
if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
seq_puts(m, "L-shaped memory detected\n");
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
return 0;
}
static const char *rps_power_to_str(unsigned int power)
{
static const char * const strings[] = {
[LOW_POWER] = "low power",
[BETWEEN] = "mixed",
[HIGH_POWER] = "high power",
};
if (power >= ARRAY_SIZE(strings) || !strings[power])
return "unknown";
return strings[power];
}
static int i915_rps_boost_info(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_rps *rps = &dev_priv->gt.rps;
seq_printf(m, "RPS enabled? %s\n", yesno(intel_rps_is_enabled(rps)));
seq_printf(m, "RPS active? %s\n", yesno(intel_rps_is_active(rps)));
seq_printf(m, "GPU busy? %s\n", yesno(dev_priv->gt.awake));
seq_printf(m, "Boosts outstanding? %d\n",
atomic_read(&rps->num_waiters));
seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive));
seq_printf(m, "Frequency requested %d, actual %d\n",
intel_gpu_freq(rps, rps->cur_freq),
intel_rps_read_actual_frequency(rps));
seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
intel_gpu_freq(rps, rps->min_freq),
intel_gpu_freq(rps, rps->min_freq_softlimit),
intel_gpu_freq(rps, rps->max_freq_softlimit),
intel_gpu_freq(rps, rps->max_freq));
seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
intel_gpu_freq(rps, rps->idle_freq),
intel_gpu_freq(rps, rps->efficient_freq),
intel_gpu_freq(rps, rps->boost_freq));
seq_printf(m, "Wait boosts: %d\n", atomic_read(&rps->boosts));
if (INTEL_GEN(dev_priv) >= 6 && intel_rps_is_active(rps)) {
u32 rpup, rpupei;
u32 rpdown, rpdownei;
intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
rps_power_to_str(rps->power.mode));
seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
rpup && rpupei ? 100 * rpup / rpupei : 0,
rps->power.up_threshold);
seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
rps->power.down_threshold);
} else {
seq_puts(m, "\nRPS Autotuning inactive\n");
}
return 0;
}
static int i915_llc(struct seq_file *m, void *data)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const bool edram = INTEL_GEN(dev_priv) > 8;
seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC",
dev_priv->edram_size_mb);
return 0;
}
static int i915_runtime_pm_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct pci_dev *pdev = dev_priv->drm.pdev;
if (!HAS_RUNTIME_PM(dev_priv))
seq_puts(m, "Runtime power management not supported\n");
seq_printf(m, "Runtime power status: %s\n",
enableddisabled(!dev_priv->power_domains.wakeref));
seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
seq_printf(m, "IRQs disabled: %s\n",
yesno(!intel_irqs_enabled(dev_priv)));
#ifdef CONFIG_PM
seq_printf(m, "Usage count: %d\n",
atomic_read(&dev_priv->drm.dev->power.usage_count));
#else
seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
#endif
seq_printf(m, "PCI device power state: %s [%d]\n",
pci_power_name(pdev->current_state),
pdev->current_state);
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)) {
struct drm_printer p = drm_seq_file_printer(m);
print_intel_runtime_pm_wakeref(&dev_priv->runtime_pm, &p);
}
return 0;
}
static int i915_engine_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct intel_engine_cs *engine;
intel_wakeref_t wakeref;
struct drm_printer p;
wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
seq_printf(m, "GT awake? %s [%d]\n",
yesno(dev_priv->gt.awake),
atomic_read(&dev_priv->gt.wakeref.count));
seq_printf(m, "CS timestamp frequency: %u Hz\n",
RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_hz);
p = drm_seq_file_printer(m);
for_each_uabi_engine(engine, dev_priv)
intel_engine_dump(engine, &p, "%s\n", engine->name);
intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
return 0;
}
static int i915_rcs_topology(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
struct drm_printer p = drm_seq_file_printer(m);
intel_device_info_print_topology(&RUNTIME_INFO(dev_priv)->sseu, &p);
return 0;
}
static int i915_shrinker_info(struct seq_file *m, void *unused)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
return 0;
}
static int i915_wa_registers(struct seq_file *m, void *unused)
{
struct drm_i915_private *i915 = node_to_i915(m->private);
struct intel_engine_cs *engine;
for_each_uabi_engine(engine, i915) {
const struct i915_wa_list *wal = &engine->ctx_wa_list;
const struct i915_wa *wa;
unsigned int count;
count = wal->count;
if (!count)
continue;
seq_printf(m, "%s: Workarounds applied: %u\n",
engine->name, count);
for (wa = wal->list; count--; wa++)
seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
i915_mmio_reg_offset(wa->reg),
wa->set, wa->clr);
seq_printf(m, "\n");
}
return 0;
}
static int
i915_wedged_get(void *data, u64 *val)
{
struct drm_i915_private *i915 = data;
int ret = intel_gt_terminally_wedged(&i915->gt);
switch (ret) {
case -EIO:
*val = 1;
return 0;
case 0:
*val = 0;
return 0;
default:
return ret;
}
}
static int
i915_wedged_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
/* Flush any previous reset before applying for a new one */
wait_event(i915->gt.reset.queue,
!test_bit(I915_RESET_BACKOFF, &i915->gt.reset.flags));
intel_gt_handle_error(&i915->gt, val, I915_ERROR_CAPTURE,
"Manually set wedged engine mask = %llx", val);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
i915_wedged_get, i915_wedged_set,
"%llu\n");
static int
i915_perf_noa_delay_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
/*
* This would lead to infinite waits as we're doing timestamp
* difference on the CS with only 32bits.
*/
if (i915_cs_timestamp_ns_to_ticks(i915, val) > U32_MAX)
return -EINVAL;
atomic64_set(&i915->perf.noa_programming_delay, val);
return 0;
}
static int
i915_perf_noa_delay_get(void *data, u64 *val)
{
struct drm_i915_private *i915 = data;
*val = atomic64_read(&i915->perf.noa_programming_delay);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_perf_noa_delay_fops,
i915_perf_noa_delay_get,
i915_perf_noa_delay_set,
"%llu\n");
#define DROP_UNBOUND BIT(0)
#define DROP_BOUND BIT(1)
#define DROP_RETIRE BIT(2)
#define DROP_ACTIVE BIT(3)
#define DROP_FREED BIT(4)
#define DROP_SHRINK_ALL BIT(5)
#define DROP_IDLE BIT(6)
#define DROP_RESET_ACTIVE BIT(7)
#define DROP_RESET_SEQNO BIT(8)
#define DROP_RCU BIT(9)
#define DROP_ALL (DROP_UNBOUND | \
DROP_BOUND | \
DROP_RETIRE | \
DROP_ACTIVE | \
DROP_FREED | \
DROP_SHRINK_ALL |\
DROP_IDLE | \
DROP_RESET_ACTIVE | \
DROP_RESET_SEQNO | \
DROP_RCU)
static int
i915_drop_caches_get(void *data, u64 *val)
{
*val = DROP_ALL;
return 0;
}
static int
gt_drop_caches(struct intel_gt *gt, u64 val)
{
int ret;
if (val & DROP_RESET_ACTIVE &&
wait_for(intel_engines_are_idle(gt), I915_IDLE_ENGINES_TIMEOUT))
intel_gt_set_wedged(gt);
if (val & DROP_RETIRE)
intel_gt_retire_requests(gt);
if (val & (DROP_IDLE | DROP_ACTIVE)) {
ret = intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
if (ret)
return ret;
}
if (val & DROP_IDLE) {
ret = intel_gt_pm_wait_for_idle(gt);
if (ret)
return ret;
}
if (val & DROP_RESET_ACTIVE && intel_gt_terminally_wedged(gt))
intel_gt_handle_error(gt, ALL_ENGINES, 0, NULL);
if (val & DROP_FREED)
intel_gt_flush_buffer_pool(gt);
return 0;
}
static int
i915_drop_caches_set(void *data, u64 val)
{
struct drm_i915_private *i915 = data;
int ret;
DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
val, val & DROP_ALL);
ret = gt_drop_caches(&i915->gt, val);
if (ret)
return ret;
fs_reclaim_acquire(GFP_KERNEL);
if (val & DROP_BOUND)
i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_BOUND);
if (val & DROP_UNBOUND)
i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
if (val & DROP_SHRINK_ALL)
i915_gem_shrink_all(i915);
fs_reclaim_release(GFP_KERNEL);
if (val & DROP_RCU)
rcu_barrier();
if (val & DROP_FREED)
i915_gem_drain_freed_objects(i915);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
i915_drop_caches_get, i915_drop_caches_set,
"0x%08llx\n");
static int
i915_cache_sharing_get(void *data, u64 *val)
{
struct drm_i915_private *dev_priv = data;
intel_wakeref_t wakeref;
u32 snpcr = 0;
if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
return -ENODEV;
with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
return 0;
}
static int
i915_cache_sharing_set(void *data, u64 val)
{
struct drm_i915_private *dev_priv = data;
intel_wakeref_t wakeref;
if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
return -ENODEV;
if (val > 3)
return -EINVAL;
drm_dbg(&dev_priv->drm,
"Manually setting uncore sharing to %llu\n", val);
with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
u32 snpcr;
/* Update the cache sharing policy here as well */
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= val << GEN6_MBC_SNPCR_SHIFT;
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
}
return 0;
}
static void
intel_sseu_copy_subslices(const struct sseu_dev_info *sseu, int slice,
u8 *to_mask)
{
int offset = slice * sseu->ss_stride;
memcpy(&to_mask[offset], &sseu->subslice_mask[offset], sseu->ss_stride);
}
DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
i915_cache_sharing_get, i915_cache_sharing_set,
"%llu\n");
static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 2
const int ss_max = SS_MAX;
u32 sig1[SS_MAX], sig2[SS_MAX];
int ss;
sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
for (ss = 0; ss < ss_max; ss++) {
unsigned int eu_cnt;
if (sig1[ss] & CHV_SS_PG_ENABLE)
/* skip disabled subslice */
continue;
sseu->slice_mask = BIT(0);
sseu->subslice_mask[0] |= BIT(ss);
eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice, eu_cnt);
}
#undef SS_MAX
}
static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 6
const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
/*
* FIXME: Valid SS Mask respects the spec and read
* only valid bits for those registers, excluding reserved
* although this seems wrong because it would leave many
* subslices without ACK.
*/
s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
GEN10_PGCTL_VALID_SS_MASK(s);
eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
intel_sseu_copy_subslices(&info->sseu, s, sseu->subslice_mask);
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
if (info->sseu.has_subslice_pg &&
!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
eu_mask[ss % 2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
#define SS_MAX 3
const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
int s, ss;
for (s = 0; s < info->sseu.max_slices; s++) {
s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < info->sseu.max_slices; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
if (IS_GEN9_BC(dev_priv))
intel_sseu_copy_subslices(&info->sseu, s,
sseu->subslice_mask);
for (ss = 0; ss < info->sseu.max_subslices; ss++) {
unsigned int eu_cnt;
u8 ss_idx = s * info->sseu.ss_stride +
ss / BITS_PER_BYTE;
if (IS_GEN9_LP(dev_priv)) {
if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
sseu->subslice_mask[ss_idx] |=
BIT(ss % BITS_PER_BYTE);
}
eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
eu_mask[ss%2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
#undef SS_MAX
}
static void bdw_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
int s;
sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
if (sseu->slice_mask) {
sseu->eu_per_subslice = info->sseu.eu_per_subslice;
for (s = 0; s < fls(sseu->slice_mask); s++)
intel_sseu_copy_subslices(&info->sseu, s,
sseu->subslice_mask);
sseu->eu_total = sseu->eu_per_subslice *
intel_sseu_subslice_total(sseu);
/* subtract fused off EU(s) from enabled slice(s) */
for (s = 0; s < fls(sseu->slice_mask); s++) {
u8 subslice_7eu = info->sseu.subslice_7eu[s];
sseu->eu_total -= hweight8(subslice_7eu);
}
}
}
static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
const struct sseu_dev_info *sseu)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const char *type = is_available_info ? "Available" : "Enabled";
int s;
seq_printf(m, " %s Slice Mask: %04x\n", type,
sseu->slice_mask);
seq_printf(m, " %s Slice Total: %u\n", type,
hweight8(sseu->slice_mask));
seq_printf(m, " %s Subslice Total: %u\n", type,
intel_sseu_subslice_total(sseu));
for (s = 0; s < fls(sseu->slice_mask); s++) {
seq_printf(m, " %s Slice%i subslices: %u\n", type,
s, intel_sseu_subslices_per_slice(sseu, s));
}
seq_printf(m, " %s EU Total: %u\n", type,
sseu->eu_total);
seq_printf(m, " %s EU Per Subslice: %u\n", type,
sseu->eu_per_subslice);
if (!is_available_info)
return;
seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
if (HAS_POOLED_EU(dev_priv))
seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
seq_printf(m, " Has Slice Power Gating: %s\n",
yesno(sseu->has_slice_pg));
seq_printf(m, " Has Subslice Power Gating: %s\n",
yesno(sseu->has_subslice_pg));
seq_printf(m, " Has EU Power Gating: %s\n",
yesno(sseu->has_eu_pg));
}
static int i915_sseu_status(struct seq_file *m, void *unused)
{
struct drm_i915_private *dev_priv = node_to_i915(m->private);
const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
struct sseu_dev_info sseu;
intel_wakeref_t wakeref;
if (INTEL_GEN(dev_priv) < 8)
return -ENODEV;
seq_puts(m, "SSEU Device Info\n");
i915_print_sseu_info(m, true, &info->sseu);
seq_puts(m, "SSEU Device Status\n");
memset(&sseu, 0, sizeof(sseu));
intel_sseu_set_info(&sseu, info->sseu.max_slices,
info->sseu.max_subslices,
info->sseu.max_eus_per_subslice);
with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
if (IS_CHERRYVIEW(dev_priv))
cherryview_sseu_device_status(dev_priv, &sseu);
else if (IS_BROADWELL(dev_priv))
bdw_sseu_device_status(dev_priv, &sseu);
else if (IS_GEN(dev_priv, 9))
gen9_sseu_device_status(dev_priv, &sseu);
else if (INTEL_GEN(dev_priv) >= 10)
gen10_sseu_device_status(dev_priv, &sseu);
}
i915_print_sseu_info(m, false, &sseu);
return 0;
}
static int i915_forcewake_open(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
struct intel_gt *gt = &i915->gt;
atomic_inc(&gt->user_wakeref);
intel_gt_pm_get(gt);
if (INTEL_GEN(i915) >= 6)
intel_uncore_forcewake_user_get(gt->uncore);
return 0;
}
static int i915_forcewake_release(struct inode *inode, struct file *file)
{
struct drm_i915_private *i915 = inode->i_private;
struct intel_gt *gt = &i915->gt;
if (INTEL_GEN(i915) >= 6)
intel_uncore_forcewake_user_put(&i915->uncore);
intel_gt_pm_put(gt);
atomic_dec(&gt->user_wakeref);
return 0;
}
static const struct file_operations i915_forcewake_fops = {
.owner = THIS_MODULE,
.open = i915_forcewake_open,
.release = i915_forcewake_release,
};
static const struct drm_info_list i915_debugfs_list[] = {
{"i915_capabilities", i915_capabilities, 0},
{"i915_gem_objects", i915_gem_object_info, 0},
{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
{"i915_gem_interrupt", i915_interrupt_info, 0},
{"i915_frequency_info", i915_frequency_info, 0},
{"i915_ring_freq_table", i915_ring_freq_table, 0},
{"i915_context_status", i915_context_status, 0},
{"i915_swizzle_info", i915_swizzle_info, 0},
{"i915_llc", i915_llc, 0},
{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
{"i915_engine_info", i915_engine_info, 0},
{"i915_rcs_topology", i915_rcs_topology, 0},
{"i915_shrinker_info", i915_shrinker_info, 0},
{"i915_wa_registers", i915_wa_registers, 0},
{"i915_sseu_status", i915_sseu_status, 0},
{"i915_rps_boost_info", i915_rps_boost_info, 0},
};
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
static const struct i915_debugfs_files {
const char *name;
const struct file_operations *fops;
} i915_debugfs_files[] = {
{"i915_perf_noa_delay", &i915_perf_noa_delay_fops},
{"i915_wedged", &i915_wedged_fops},
{"i915_cache_sharing", &i915_cache_sharing_fops},
{"i915_gem_drop_caches", &i915_drop_caches_fops},
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
{"i915_error_state", &i915_error_state_fops},
{"i915_gpu_info", &i915_gpu_info_fops},
#endif
};
void i915_debugfs_register(struct drm_i915_private *dev_priv)
{
struct drm_minor *minor = dev_priv->drm.primary;
int i;
i915_debugfs_params(dev_priv);
debugfs_create_file("i915_forcewake_user", S_IRUSR, minor->debugfs_root,
to_i915(minor->dev), &i915_forcewake_fops);
for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
debugfs_create_file(i915_debugfs_files[i].name,
S_IRUGO | S_IWUSR,
minor->debugfs_root,
to_i915(minor->dev),
i915_debugfs_files[i].fops);
}
drm_debugfs_create_files(i915_debugfs_list,
I915_DEBUGFS_ENTRIES,
minor->debugfs_root, minor);
}