linux/drivers/gpu/drm/i915/i915_cmd_parser.c
Chris Wilson 273500ae71 drm/i915: Whitelist context-local timestamp in the gen9 cmdparser
Allow batch buffers to read their own _local_ cumulative HW runtime of
their logical context.

Fixes: 0f2f397583 ("drm/i915: Add gen9 BCS cmdparsing")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: <stable@vger.kernel.org> # v5.4+
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200601161942.30854-1-chris@chris-wilson.co.uk
(cherry picked from commit f9496520df)
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
2020-06-02 16:35:29 +03:00

1598 lines
48 KiB
C

/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Brad Volkin <bradley.d.volkin@intel.com>
*
*/
#include "gt/intel_engine.h"
#include "i915_drv.h"
#include "i915_memcpy.h"
/**
* DOC: batch buffer command parser
*
* Motivation:
* Certain OpenGL features (e.g. transform feedback, performance monitoring)
* require userspace code to submit batches containing commands such as
* MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
* generations of the hardware will noop these commands in "unsecure" batches
* (which includes all userspace batches submitted via i915) even though the
* commands may be safe and represent the intended programming model of the
* device.
*
* The software command parser is similar in operation to the command parsing
* done in hardware for unsecure batches. However, the software parser allows
* some operations that would be noop'd by hardware, if the parser determines
* the operation is safe, and submits the batch as "secure" to prevent hardware
* parsing.
*
* Threats:
* At a high level, the hardware (and software) checks attempt to prevent
* granting userspace undue privileges. There are three categories of privilege.
*
* First, commands which are explicitly defined as privileged or which should
* only be used by the kernel driver. The parser rejects such commands
*
* Second, commands which access registers. To support correct/enhanced
* userspace functionality, particularly certain OpenGL extensions, the parser
* provides a whitelist of registers which userspace may safely access
*
* Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
* The parser always rejects such commands.
*
* The majority of the problematic commands fall in the MI_* range, with only a
* few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
*
* Implementation:
* Each engine maintains tables of commands and registers which the parser
* uses in scanning batch buffers submitted to that engine.
*
* Since the set of commands that the parser must check for is significantly
* smaller than the number of commands supported, the parser tables contain only
* those commands required by the parser. This generally works because command
* opcode ranges have standard command length encodings. So for commands that
* the parser does not need to check, it can easily skip them. This is
* implemented via a per-engine length decoding vfunc.
*
* Unfortunately, there are a number of commands that do not follow the standard
* length encoding for their opcode range, primarily amongst the MI_* commands.
* To handle this, the parser provides a way to define explicit "skip" entries
* in the per-engine command tables.
*
* Other command table entries map fairly directly to high level categories
* mentioned above: rejected, register whitelist. The parser implements a number
* of checks, including the privileged memory checks, via a general bitmasking
* mechanism.
*/
/*
* A command that requires special handling by the command parser.
*/
struct drm_i915_cmd_descriptor {
/*
* Flags describing how the command parser processes the command.
*
* CMD_DESC_FIXED: The command has a fixed length if this is set,
* a length mask if not set
* CMD_DESC_SKIP: The command is allowed but does not follow the
* standard length encoding for the opcode range in
* which it falls
* CMD_DESC_REJECT: The command is never allowed
* CMD_DESC_REGISTER: The command should be checked against the
* register whitelist for the appropriate ring
*/
u32 flags;
#define CMD_DESC_FIXED (1<<0)
#define CMD_DESC_SKIP (1<<1)
#define CMD_DESC_REJECT (1<<2)
#define CMD_DESC_REGISTER (1<<3)
#define CMD_DESC_BITMASK (1<<4)
/*
* The command's unique identification bits and the bitmask to get them.
* This isn't strictly the opcode field as defined in the spec and may
* also include type, subtype, and/or subop fields.
*/
struct {
u32 value;
u32 mask;
} cmd;
/*
* The command's length. The command is either fixed length (i.e. does
* not include a length field) or has a length field mask. The flag
* CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
* a length mask. All command entries in a command table must include
* length information.
*/
union {
u32 fixed;
u32 mask;
} length;
/*
* Describes where to find a register address in the command to check
* against the ring's register whitelist. Only valid if flags has the
* CMD_DESC_REGISTER bit set.
*
* A non-zero step value implies that the command may access multiple
* registers in sequence (e.g. LRI), in that case step gives the
* distance in dwords between individual offset fields.
*/
struct {
u32 offset;
u32 mask;
u32 step;
} reg;
#define MAX_CMD_DESC_BITMASKS 3
/*
* Describes command checks where a particular dword is masked and
* compared against an expected value. If the command does not match
* the expected value, the parser rejects it. Only valid if flags has
* the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
* are valid.
*
* If the check specifies a non-zero condition_mask then the parser
* only performs the check when the bits specified by condition_mask
* are non-zero.
*/
struct {
u32 offset;
u32 mask;
u32 expected;
u32 condition_offset;
u32 condition_mask;
} bits[MAX_CMD_DESC_BITMASKS];
};
/*
* A table of commands requiring special handling by the command parser.
*
* Each engine has an array of tables. Each table consists of an array of
* command descriptors, which must be sorted with command opcodes in
* ascending order.
*/
struct drm_i915_cmd_table {
const struct drm_i915_cmd_descriptor *table;
int count;
};
#define STD_MI_OPCODE_SHIFT (32 - 9)
#define STD_3D_OPCODE_SHIFT (32 - 16)
#define STD_2D_OPCODE_SHIFT (32 - 10)
#define STD_MFX_OPCODE_SHIFT (32 - 16)
#define MIN_OPCODE_SHIFT 16
#define CMD(op, opm, f, lm, fl, ...) \
{ \
.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
.cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \
.length = { (lm) }, \
__VA_ARGS__ \
}
/* Convenience macros to compress the tables */
#define SMI STD_MI_OPCODE_SHIFT
#define S3D STD_3D_OPCODE_SHIFT
#define S2D STD_2D_OPCODE_SHIFT
#define SMFX STD_MFX_OPCODE_SHIFT
#define F true
#define S CMD_DESC_SKIP
#define R CMD_DESC_REJECT
#define W CMD_DESC_REGISTER
#define B CMD_DESC_BITMASK
/* Command Mask Fixed Len Action
---------------------------------------------------------- */
static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
CMD( MI_NOOP, SMI, F, 1, S ),
CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ),
CMD( MI_ARB_CHECK, SMI, F, 1, S ),
CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
.reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
.reg = { .offset = 1, .mask = 0x007FFFFC },
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
.reg = { .offset = 1, .mask = 0x007FFFFC },
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
/*
* MI_BATCH_BUFFER_START requires some special handling. It's not
* really a 'skip' action but it doesn't seem like it's worth adding
* a new action. See intel_engine_cmd_parser().
*/
CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
};
static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
CMD( MI_FLUSH, SMI, F, 1, S ),
CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
CMD( MI_PREDICATE, SMI, F, 1, S ),
CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
CMD( MI_SET_APPID, SMI, F, 1, S ),
CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
.bits = {{
.offset = 1,
.mask = MI_REPORT_PERF_COUNT_GGTT,
.expected = 0,
}}, ),
CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
CMD( PIPELINE_SELECT, S3D, F, 1, S ),
CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
.bits = {{
.offset = 2,
.mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
.expected = 0,
}}, ),
CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
.bits = {{
.offset = 1,
.mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
.expected = 0,
},
{
.offset = 1,
.mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_STORE_DATA_INDEX),
.expected = 0,
.condition_offset = 1,
.condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
}}, ),
};
static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
CMD( MI_RS_CONTROL, SMI, F, 1, S ),
CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
CMD( MI_SET_APPID, SMI, F, 1, S ),
CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
.reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
};
static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
CMD( MI_SET_APPID, SMI, F, 1, S ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
.bits = {{
.offset = 0,
.mask = MI_FLUSH_DW_NOTIFY,
.expected = 0,
},
{
.offset = 1,
.mask = MI_FLUSH_DW_USE_GTT,
.expected = 0,
.condition_offset = 0,
.condition_mask = MI_FLUSH_DW_OP_MASK,
},
{
.offset = 0,
.mask = MI_FLUSH_DW_STORE_INDEX,
.expected = 0,
.condition_offset = 0,
.condition_mask = MI_FLUSH_DW_OP_MASK,
}}, ),
CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
/*
* MFX_WAIT doesn't fit the way we handle length for most commands.
* It has a length field but it uses a non-standard length bias.
* It is always 1 dword though, so just treat it as fixed length.
*/
CMD( MFX_WAIT, SMFX, F, 1, S ),
};
static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
CMD( MI_SET_APPID, SMI, F, 1, S ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
.bits = {{
.offset = 0,
.mask = MI_FLUSH_DW_NOTIFY,
.expected = 0,
},
{
.offset = 1,
.mask = MI_FLUSH_DW_USE_GTT,
.expected = 0,
.condition_offset = 0,
.condition_mask = MI_FLUSH_DW_OP_MASK,
},
{
.offset = 0,
.mask = MI_FLUSH_DW_STORE_INDEX,
.expected = 0,
.condition_offset = 0,
.condition_mask = MI_FLUSH_DW_OP_MASK,
}}, ),
CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
};
static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
.bits = {{
.offset = 0,
.mask = MI_GLOBAL_GTT,
.expected = 0,
}}, ),
CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
.bits = {{
.offset = 0,
.mask = MI_FLUSH_DW_NOTIFY,
.expected = 0,
},
{
.offset = 1,
.mask = MI_FLUSH_DW_USE_GTT,
.expected = 0,
.condition_offset = 0,
.condition_mask = MI_FLUSH_DW_OP_MASK,
},
{
.offset = 0,
.mask = MI_FLUSH_DW_STORE_INDEX,
.expected = 0,
.condition_offset = 0,
.condition_mask = MI_FLUSH_DW_OP_MASK,
}}, ),
CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
};
static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
};
/*
* For Gen9 we can still rely on the h/w to enforce cmd security, and only
* need to re-enforce the register access checks. We therefore only need to
* teach the cmdparser how to find the end of each command, and identify
* register accesses. The table doesn't need to reject any commands, and so
* the only commands listed here are:
* 1) Those that touch registers
* 2) Those that do not have the default 8-bit length
*
* Note that the default MI length mask chosen for this table is 0xFF, not
* the 0x3F used on older devices. This is because the vast majority of MI
* cmds on Gen9 use a standard 8-bit Length field.
* All the Gen9 blitter instructions are standard 0xFF length mask, and
* none allow access to non-general registers, so in fact no BLT cmds are
* included in the table at all.
*
*/
static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
CMD( MI_NOOP, SMI, F, 1, S ),
CMD( MI_USER_INTERRUPT, SMI, F, 1, S ),
CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ),
CMD( MI_FLUSH, SMI, F, 1, S ),
CMD( MI_ARB_CHECK, SMI, F, 1, S ),
CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
CMD( MI_ARB_ON_OFF, SMI, F, 1, S ),
CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ),
CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ),
CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ),
CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
.reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ),
CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W,
.reg = { .offset = 1, .mask = 0x007FFFFC } ),
CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ),
CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W,
.reg = { .offset = 1, .mask = 0x007FFFFC } ),
CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
.reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
/*
* We allow BB_START but apply further checks. We just sanitize the
* basic fields here.
*/
#define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0)
#define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B,
.bits = {{
.offset = 0,
.mask = MI_BB_START_OPERAND_MASK,
.expected = MI_BB_START_OPERAND_EXPECT,
}}, ),
};
static const struct drm_i915_cmd_descriptor noop_desc =
CMD(MI_NOOP, SMI, F, 1, S);
#undef CMD
#undef SMI
#undef S3D
#undef S2D
#undef SMFX
#undef F
#undef S
#undef R
#undef W
#undef B
static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
};
static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
};
static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
};
static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
};
static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
};
static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
};
static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
{ gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
};
/*
* Register whitelists, sorted by increasing register offset.
*/
/*
* An individual whitelist entry granting access to register addr. If
* mask is non-zero the argument of immediate register writes will be
* AND-ed with mask, and the command will be rejected if the result
* doesn't match value.
*
* Registers with non-zero mask are only allowed to be written using
* LRI.
*/
struct drm_i915_reg_descriptor {
i915_reg_t addr;
u32 mask;
u32 value;
};
/* Convenience macro for adding 32-bit registers. */
#define REG32(_reg, ...) \
{ .addr = (_reg), __VA_ARGS__ }
#define REG32_IDX(_reg, idx) \
{ .addr = _reg(idx) }
/*
* Convenience macro for adding 64-bit registers.
*
* Some registers that userspace accesses are 64 bits. The register
* access commands only allow 32-bit accesses. Hence, we have to include
* entries for both halves of the 64-bit registers.
*/
#define REG64(_reg) \
{ .addr = _reg }, \
{ .addr = _reg ## _UDW }
#define REG64_IDX(_reg, idx) \
{ .addr = _reg(idx) }, \
{ .addr = _reg ## _UDW(idx) }
static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
REG64(GPGPU_THREADS_DISPATCHED),
REG64(HS_INVOCATION_COUNT),
REG64(DS_INVOCATION_COUNT),
REG64(IA_VERTICES_COUNT),
REG64(IA_PRIMITIVES_COUNT),
REG64(VS_INVOCATION_COUNT),
REG64(GS_INVOCATION_COUNT),
REG64(GS_PRIMITIVES_COUNT),
REG64(CL_INVOCATION_COUNT),
REG64(CL_PRIMITIVES_COUNT),
REG64(PS_INVOCATION_COUNT),
REG64(PS_DEPTH_COUNT),
REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
REG64(MI_PREDICATE_SRC0),
REG64(MI_PREDICATE_SRC1),
REG32(GEN7_3DPRIM_END_OFFSET),
REG32(GEN7_3DPRIM_START_VERTEX),
REG32(GEN7_3DPRIM_VERTEX_COUNT),
REG32(GEN7_3DPRIM_INSTANCE_COUNT),
REG32(GEN7_3DPRIM_START_INSTANCE),
REG32(GEN7_3DPRIM_BASE_VERTEX),
REG32(GEN7_GPGPU_DISPATCHDIMX),
REG32(GEN7_GPGPU_DISPATCHDIMY),
REG32(GEN7_GPGPU_DISPATCHDIMZ),
REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
REG32(GEN7_SO_WRITE_OFFSET(0)),
REG32(GEN7_SO_WRITE_OFFSET(1)),
REG32(GEN7_SO_WRITE_OFFSET(2)),
REG32(GEN7_SO_WRITE_OFFSET(3)),
REG32(GEN7_L3SQCREG1),
REG32(GEN7_L3CNTLREG2),
REG32(GEN7_L3CNTLREG3),
REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
};
static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
REG64_IDX(HSW_CS_GPR, 0),
REG64_IDX(HSW_CS_GPR, 1),
REG64_IDX(HSW_CS_GPR, 2),
REG64_IDX(HSW_CS_GPR, 3),
REG64_IDX(HSW_CS_GPR, 4),
REG64_IDX(HSW_CS_GPR, 5),
REG64_IDX(HSW_CS_GPR, 6),
REG64_IDX(HSW_CS_GPR, 7),
REG64_IDX(HSW_CS_GPR, 8),
REG64_IDX(HSW_CS_GPR, 9),
REG64_IDX(HSW_CS_GPR, 10),
REG64_IDX(HSW_CS_GPR, 11),
REG64_IDX(HSW_CS_GPR, 12),
REG64_IDX(HSW_CS_GPR, 13),
REG64_IDX(HSW_CS_GPR, 14),
REG64_IDX(HSW_CS_GPR, 15),
REG32(HSW_SCRATCH1,
.mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
.value = 0),
REG32(HSW_ROW_CHICKEN3,
.mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
.value = 0),
};
static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
REG32(BCS_SWCTRL),
REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
};
static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
REG32(BCS_SWCTRL),
REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
REG64_IDX(BCS_GPR, 0),
REG64_IDX(BCS_GPR, 1),
REG64_IDX(BCS_GPR, 2),
REG64_IDX(BCS_GPR, 3),
REG64_IDX(BCS_GPR, 4),
REG64_IDX(BCS_GPR, 5),
REG64_IDX(BCS_GPR, 6),
REG64_IDX(BCS_GPR, 7),
REG64_IDX(BCS_GPR, 8),
REG64_IDX(BCS_GPR, 9),
REG64_IDX(BCS_GPR, 10),
REG64_IDX(BCS_GPR, 11),
REG64_IDX(BCS_GPR, 12),
REG64_IDX(BCS_GPR, 13),
REG64_IDX(BCS_GPR, 14),
REG64_IDX(BCS_GPR, 15),
};
#undef REG64
#undef REG32
struct drm_i915_reg_table {
const struct drm_i915_reg_descriptor *regs;
int num_regs;
};
static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
};
static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
};
static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
};
static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
};
static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
{ gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
};
static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
{
u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
u32 subclient =
(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
if (client == INSTR_MI_CLIENT)
return 0x3F;
else if (client == INSTR_RC_CLIENT) {
if (subclient == INSTR_MEDIA_SUBCLIENT)
return 0xFFFF;
else
return 0xFF;
}
DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
return 0;
}
static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
{
u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
u32 subclient =
(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
if (client == INSTR_MI_CLIENT)
return 0x3F;
else if (client == INSTR_RC_CLIENT) {
if (subclient == INSTR_MEDIA_SUBCLIENT) {
if (op == 6)
return 0xFFFF;
else
return 0xFFF;
} else
return 0xFF;
}
DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
return 0;
}
static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
{
u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
if (client == INSTR_MI_CLIENT)
return 0x3F;
else if (client == INSTR_BC_CLIENT)
return 0xFF;
DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
return 0;
}
static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
{
u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
return 0xFF;
DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
return 0;
}
static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
const struct drm_i915_cmd_table *cmd_tables,
int cmd_table_count)
{
int i;
bool ret = true;
if (!cmd_tables || cmd_table_count == 0)
return true;
for (i = 0; i < cmd_table_count; i++) {
const struct drm_i915_cmd_table *table = &cmd_tables[i];
u32 previous = 0;
int j;
for (j = 0; j < table->count; j++) {
const struct drm_i915_cmd_descriptor *desc =
&table->table[j];
u32 curr = desc->cmd.value & desc->cmd.mask;
if (curr < previous) {
drm_err(&engine->i915->drm,
"CMD: %s [%d] command table not sorted: "
"table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
engine->name, engine->id,
i, j, curr, previous);
ret = false;
}
previous = curr;
}
}
return ret;
}
static bool check_sorted(const struct intel_engine_cs *engine,
const struct drm_i915_reg_descriptor *reg_table,
int reg_count)
{
int i;
u32 previous = 0;
bool ret = true;
for (i = 0; i < reg_count; i++) {
u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
if (curr < previous) {
drm_err(&engine->i915->drm,
"CMD: %s [%d] register table not sorted: "
"entry=%d reg=0x%08X prev=0x%08X\n",
engine->name, engine->id,
i, curr, previous);
ret = false;
}
previous = curr;
}
return ret;
}
static bool validate_regs_sorted(struct intel_engine_cs *engine)
{
int i;
const struct drm_i915_reg_table *table;
for (i = 0; i < engine->reg_table_count; i++) {
table = &engine->reg_tables[i];
if (!check_sorted(engine, table->regs, table->num_regs))
return false;
}
return true;
}
struct cmd_node {
const struct drm_i915_cmd_descriptor *desc;
struct hlist_node node;
};
/*
* Different command ranges have different numbers of bits for the opcode. For
* example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
* problem is that, for example, MI commands use bits 22:16 for other fields
* such as GGTT vs PPGTT bits. If we include those bits in the mask then when
* we mask a command from a batch it could hash to the wrong bucket due to
* non-opcode bits being set. But if we don't include those bits, some 3D
* commands may hash to the same bucket due to not including opcode bits that
* make the command unique. For now, we will risk hashing to the same bucket.
*/
static inline u32 cmd_header_key(u32 x)
{
switch (x >> INSTR_CLIENT_SHIFT) {
default:
case INSTR_MI_CLIENT:
return x >> STD_MI_OPCODE_SHIFT;
case INSTR_RC_CLIENT:
return x >> STD_3D_OPCODE_SHIFT;
case INSTR_BC_CLIENT:
return x >> STD_2D_OPCODE_SHIFT;
}
}
static int init_hash_table(struct intel_engine_cs *engine,
const struct drm_i915_cmd_table *cmd_tables,
int cmd_table_count)
{
int i, j;
hash_init(engine->cmd_hash);
for (i = 0; i < cmd_table_count; i++) {
const struct drm_i915_cmd_table *table = &cmd_tables[i];
for (j = 0; j < table->count; j++) {
const struct drm_i915_cmd_descriptor *desc =
&table->table[j];
struct cmd_node *desc_node =
kmalloc(sizeof(*desc_node), GFP_KERNEL);
if (!desc_node)
return -ENOMEM;
desc_node->desc = desc;
hash_add(engine->cmd_hash, &desc_node->node,
cmd_header_key(desc->cmd.value));
}
}
return 0;
}
static void fini_hash_table(struct intel_engine_cs *engine)
{
struct hlist_node *tmp;
struct cmd_node *desc_node;
int i;
hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
hash_del(&desc_node->node);
kfree(desc_node);
}
}
/**
* intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
* @engine: the engine to initialize
*
* Optionally initializes fields related to batch buffer command parsing in the
* struct intel_engine_cs based on whether the platform requires software
* command parsing.
*/
void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
{
const struct drm_i915_cmd_table *cmd_tables;
int cmd_table_count;
int ret;
if (!IS_GEN(engine->i915, 7) && !(IS_GEN(engine->i915, 9) &&
engine->class == COPY_ENGINE_CLASS))
return;
switch (engine->class) {
case RENDER_CLASS:
if (IS_HASWELL(engine->i915)) {
cmd_tables = hsw_render_ring_cmd_table;
cmd_table_count =
ARRAY_SIZE(hsw_render_ring_cmd_table);
} else {
cmd_tables = gen7_render_cmd_table;
cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
}
if (IS_HASWELL(engine->i915)) {
engine->reg_tables = hsw_render_reg_tables;
engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
} else {
engine->reg_tables = ivb_render_reg_tables;
engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
}
engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
break;
case VIDEO_DECODE_CLASS:
cmd_tables = gen7_video_cmd_table;
cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
break;
case COPY_ENGINE_CLASS:
engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
if (IS_GEN(engine->i915, 9)) {
cmd_tables = gen9_blt_cmd_table;
cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
engine->get_cmd_length_mask =
gen9_blt_get_cmd_length_mask;
/* BCS Engine unsafe without parser */
engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
} else if (IS_HASWELL(engine->i915)) {
cmd_tables = hsw_blt_ring_cmd_table;
cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
} else {
cmd_tables = gen7_blt_cmd_table;
cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
}
if (IS_GEN(engine->i915, 9)) {
engine->reg_tables = gen9_blt_reg_tables;
engine->reg_table_count =
ARRAY_SIZE(gen9_blt_reg_tables);
} else if (IS_HASWELL(engine->i915)) {
engine->reg_tables = hsw_blt_reg_tables;
engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
} else {
engine->reg_tables = ivb_blt_reg_tables;
engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
}
break;
case VIDEO_ENHANCEMENT_CLASS:
cmd_tables = hsw_vebox_cmd_table;
cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
/* VECS can use the same length_mask function as VCS */
engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
break;
default:
MISSING_CASE(engine->class);
return;
}
if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
drm_err(&engine->i915->drm,
"%s: command descriptions are not sorted\n",
engine->name);
return;
}
if (!validate_regs_sorted(engine)) {
drm_err(&engine->i915->drm,
"%s: registers are not sorted\n", engine->name);
return;
}
ret = init_hash_table(engine, cmd_tables, cmd_table_count);
if (ret) {
drm_err(&engine->i915->drm,
"%s: initialised failed!\n", engine->name);
fini_hash_table(engine);
return;
}
engine->flags |= I915_ENGINE_USING_CMD_PARSER;
}
/**
* intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
* @engine: the engine to clean up
*
* Releases any resources related to command parsing that may have been
* initialized for the specified engine.
*/
void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
{
if (!intel_engine_using_cmd_parser(engine))
return;
fini_hash_table(engine);
}
static const struct drm_i915_cmd_descriptor*
find_cmd_in_table(struct intel_engine_cs *engine,
u32 cmd_header)
{
struct cmd_node *desc_node;
hash_for_each_possible(engine->cmd_hash, desc_node, node,
cmd_header_key(cmd_header)) {
const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
return desc;
}
return NULL;
}
/*
* Returns a pointer to a descriptor for the command specified by cmd_header.
*
* The caller must supply space for a default descriptor via the default_desc
* parameter. If no descriptor for the specified command exists in the engine's
* command parser tables, this function fills in default_desc based on the
* engine's default length encoding and returns default_desc.
*/
static const struct drm_i915_cmd_descriptor*
find_cmd(struct intel_engine_cs *engine,
u32 cmd_header,
const struct drm_i915_cmd_descriptor *desc,
struct drm_i915_cmd_descriptor *default_desc)
{
u32 mask;
if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
return desc;
desc = find_cmd_in_table(engine, cmd_header);
if (desc)
return desc;
mask = engine->get_cmd_length_mask(cmd_header);
if (!mask)
return NULL;
default_desc->cmd.value = cmd_header;
default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
default_desc->length.mask = mask;
default_desc->flags = CMD_DESC_SKIP;
return default_desc;
}
static const struct drm_i915_reg_descriptor *
__find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
{
int start = 0, end = count;
while (start < end) {
int mid = start + (end - start) / 2;
int ret = addr - i915_mmio_reg_offset(table[mid].addr);
if (ret < 0)
end = mid;
else if (ret > 0)
start = mid + 1;
else
return &table[mid];
}
return NULL;
}
static const struct drm_i915_reg_descriptor *
find_reg(const struct intel_engine_cs *engine, u32 addr)
{
const struct drm_i915_reg_table *table = engine->reg_tables;
const struct drm_i915_reg_descriptor *reg = NULL;
int count = engine->reg_table_count;
for (; !reg && (count > 0); ++table, --count)
reg = __find_reg(table->regs, table->num_regs, addr);
return reg;
}
/* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
struct drm_i915_gem_object *src_obj,
u32 offset, u32 length)
{
bool needs_clflush;
void *dst, *src;
int ret;
dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB);
if (IS_ERR(dst))
return dst;
ret = i915_gem_object_pin_pages(src_obj);
if (ret) {
i915_gem_object_unpin_map(dst_obj);
return ERR_PTR(ret);
}
needs_clflush =
!(src_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ);
src = ERR_PTR(-ENODEV);
if (needs_clflush && i915_has_memcpy_from_wc()) {
src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
if (!IS_ERR(src)) {
i915_unaligned_memcpy_from_wc(dst,
src + offset,
length);
i915_gem_object_unpin_map(src_obj);
}
}
if (IS_ERR(src)) {
void *ptr;
int x, n;
/*
* We can avoid clflushing partial cachelines before the write
* if we only every write full cache-lines. Since we know that
* both the source and destination are in multiples of
* PAGE_SIZE, we can simply round up to the next cacheline.
* We don't care about copying too much here as we only
* validate up to the end of the batch.
*/
if (!(dst_obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
length = round_up(length,
boot_cpu_data.x86_clflush_size);
ptr = dst;
x = offset_in_page(offset);
for (n = offset >> PAGE_SHIFT; length; n++) {
int len = min_t(int, length, PAGE_SIZE - x);
src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
if (needs_clflush)
drm_clflush_virt_range(src + x, len);
memcpy(ptr, src + x, len);
kunmap_atomic(src);
ptr += len;
length -= len;
x = 0;
}
}
i915_gem_object_unpin_pages(src_obj);
/* dst_obj is returned with vmap pinned */
return dst;
}
static bool check_cmd(const struct intel_engine_cs *engine,
const struct drm_i915_cmd_descriptor *desc,
const u32 *cmd, u32 length)
{
if (desc->flags & CMD_DESC_SKIP)
return true;
if (desc->flags & CMD_DESC_REJECT) {
DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
return false;
}
if (desc->flags & CMD_DESC_REGISTER) {
/*
* Get the distance between individual register offset
* fields if the command can perform more than one
* access at a time.
*/
const u32 step = desc->reg.step ? desc->reg.step : length;
u32 offset;
for (offset = desc->reg.offset; offset < length;
offset += step) {
const u32 reg_addr = cmd[offset] & desc->reg.mask;
const struct drm_i915_reg_descriptor *reg =
find_reg(engine, reg_addr);
if (!reg) {
DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
reg_addr, *cmd, engine->name);
return false;
}
/*
* Check the value written to the register against the
* allowed mask/value pair given in the whitelist entry.
*/
if (reg->mask) {
if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
reg_addr);
return false;
}
if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
reg_addr);
return false;
}
if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
(offset + 2 > length ||
(cmd[offset + 1] & reg->mask) != reg->value)) {
DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
reg_addr);
return false;
}
}
}
}
if (desc->flags & CMD_DESC_BITMASK) {
int i;
for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
u32 dword;
if (desc->bits[i].mask == 0)
break;
if (desc->bits[i].condition_mask != 0) {
u32 offset =
desc->bits[i].condition_offset;
u32 condition = cmd[offset] &
desc->bits[i].condition_mask;
if (condition == 0)
continue;
}
if (desc->bits[i].offset >= length) {
DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
*cmd, engine->name);
return false;
}
dword = cmd[desc->bits[i].offset] &
desc->bits[i].mask;
if (dword != desc->bits[i].expected) {
DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
*cmd,
desc->bits[i].mask,
desc->bits[i].expected,
dword, engine->name);
return false;
}
}
}
return true;
}
static int check_bbstart(u32 *cmd, u32 offset, u32 length,
u32 batch_length,
u64 batch_addr,
u64 shadow_addr,
const unsigned long *jump_whitelist)
{
u64 jump_offset, jump_target;
u32 target_cmd_offset, target_cmd_index;
/* For igt compatibility on older platforms */
if (!jump_whitelist) {
DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
return -EACCES;
}
if (length != 3) {
DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
length);
return -EINVAL;
}
jump_target = *(u64 *)(cmd + 1);
jump_offset = jump_target - batch_addr;
/*
* Any underflow of jump_target is guaranteed to be outside the range
* of a u32, so >= test catches both too large and too small
*/
if (jump_offset >= batch_length) {
DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
jump_target);
return -EINVAL;
}
/*
* This cannot overflow a u32 because we already checked jump_offset
* is within the BB, and the batch_length is a u32
*/
target_cmd_offset = lower_32_bits(jump_offset);
target_cmd_index = target_cmd_offset / sizeof(u32);
*(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
if (target_cmd_index == offset)
return 0;
if (IS_ERR(jump_whitelist))
return PTR_ERR(jump_whitelist);
if (!test_bit(target_cmd_index, jump_whitelist)) {
DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
jump_target);
return -EINVAL;
}
return 0;
}
static unsigned long *alloc_whitelist(u32 batch_length)
{
unsigned long *jmp;
/*
* We expect batch_length to be less than 256KiB for known users,
* i.e. we need at most an 8KiB bitmap allocation which should be
* reasonably cheap due to kmalloc caches.
*/
/* Prefer to report transient allocation failure rather than hit oom */
jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
if (!jmp)
return ERR_PTR(-ENOMEM);
return jmp;
}
#define LENGTH_BIAS 2
static bool shadow_needs_clflush(struct drm_i915_gem_object *obj)
{
return !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE);
}
/**
* intel_engine_cmd_parser() - parse a batch buffer for privilege violations
* @engine: the engine on which the batch is to execute
* @batch: the batch buffer in question
* @batch_offset: byte offset in the batch at which execution starts
* @batch_length: length of the commands in batch_obj
* @shadow: validated copy of the batch buffer in question
* @trampoline: whether to emit a conditional trampoline at the end of the batch
*
* Parses the specified batch buffer looking for privilege violations as
* described in the overview.
*
* Return: non-zero if the parser finds violations or otherwise fails; -EACCES
* if the batch appears legal but should use hardware parsing
*/
int intel_engine_cmd_parser(struct intel_engine_cs *engine,
struct i915_vma *batch,
u32 batch_offset,
u32 batch_length,
struct i915_vma *shadow,
bool trampoline)
{
u32 *cmd, *batch_end, offset = 0;
struct drm_i915_cmd_descriptor default_desc = noop_desc;
const struct drm_i915_cmd_descriptor *desc = &default_desc;
unsigned long *jump_whitelist;
u64 batch_addr, shadow_addr;
int ret = 0;
GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
batch->size));
GEM_BUG_ON(!batch_length);
cmd = copy_batch(shadow->obj, batch->obj, batch_offset, batch_length);
if (IS_ERR(cmd)) {
DRM_DEBUG("CMD: Failed to copy batch\n");
return PTR_ERR(cmd);
}
jump_whitelist = NULL;
if (!trampoline)
/* Defer failure until attempted use */
jump_whitelist = alloc_whitelist(batch_length);
shadow_addr = gen8_canonical_addr(shadow->node.start);
batch_addr = gen8_canonical_addr(batch->node.start + batch_offset);
/*
* We use the batch length as size because the shadow object is as
* large or larger and copy_batch() will write MI_NOPs to the extra
* space. Parsing should be faster in some cases this way.
*/
batch_end = cmd + batch_length / sizeof(*batch_end);
do {
u32 length;
if (*cmd == MI_BATCH_BUFFER_END)
break;
desc = find_cmd(engine, *cmd, desc, &default_desc);
if (!desc) {
DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
ret = -EINVAL;
break;
}
if (desc->flags & CMD_DESC_FIXED)
length = desc->length.fixed;
else
length = (*cmd & desc->length.mask) + LENGTH_BIAS;
if ((batch_end - cmd) < length) {
DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
*cmd,
length,
batch_end - cmd);
ret = -EINVAL;
break;
}
if (!check_cmd(engine, desc, cmd, length)) {
ret = -EACCES;
break;
}
if (desc->cmd.value == MI_BATCH_BUFFER_START) {
ret = check_bbstart(cmd, offset, length, batch_length,
batch_addr, shadow_addr,
jump_whitelist);
break;
}
if (!IS_ERR_OR_NULL(jump_whitelist))
__set_bit(offset, jump_whitelist);
cmd += length;
offset += length;
if (cmd >= batch_end) {
DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
ret = -EINVAL;
break;
}
} while (1);
if (trampoline) {
/*
* With the trampoline, the shadow is executed twice.
*
* 1 - starting at offset 0, in privileged mode
* 2 - starting at offset batch_len, as non-privileged
*
* Only if the batch is valid and safe to execute, do we
* allow the first privileged execution to proceed. If not,
* we terminate the first batch and use the second batchbuffer
* entry to chain to the original unsafe non-privileged batch,
* leaving it to the HW to validate.
*/
*batch_end = MI_BATCH_BUFFER_END;
if (ret) {
/* Batch unsafe to execute with privileges, cancel! */
cmd = page_mask_bits(shadow->obj->mm.mapping);
*cmd = MI_BATCH_BUFFER_END;
/* If batch is unsafe but valid, jump to the original */
if (ret == -EACCES) {
unsigned int flags;
flags = MI_BATCH_NON_SECURE_I965;
if (IS_HASWELL(engine->i915))
flags = MI_BATCH_NON_SECURE_HSW;
GEM_BUG_ON(!IS_GEN_RANGE(engine->i915, 6, 7));
__gen6_emit_bb_start(batch_end,
batch_addr,
flags);
ret = 0; /* allow execution */
}
}
if (shadow_needs_clflush(shadow->obj))
drm_clflush_virt_range(batch_end, 8);
}
if (shadow_needs_clflush(shadow->obj)) {
void *ptr = page_mask_bits(shadow->obj->mm.mapping);
drm_clflush_virt_range(ptr, (void *)(cmd + 1) - ptr);
}
if (!IS_ERR_OR_NULL(jump_whitelist))
kfree(jump_whitelist);
i915_gem_object_unpin_map(shadow->obj);
return ret;
}
/**
* i915_cmd_parser_get_version() - get the cmd parser version number
* @dev_priv: i915 device private
*
* The cmd parser maintains a simple increasing integer version number suitable
* for passing to userspace clients to determine what operations are permitted.
*
* Return: the current version number of the cmd parser
*/
int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
bool active = false;
/* If the command parser is not enabled, report 0 - unsupported */
for_each_uabi_engine(engine, dev_priv) {
if (intel_engine_using_cmd_parser(engine)) {
active = true;
break;
}
}
if (!active)
return 0;
/*
* Command parser version history
*
* 1. Initial version. Checks batches and reports violations, but leaves
* hardware parsing enabled (so does not allow new use cases).
* 2. Allow access to the MI_PREDICATE_SRC0 and
* MI_PREDICATE_SRC1 registers.
* 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
* 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
* 5. GPGPU dispatch compute indirect registers.
* 6. TIMESTAMP register and Haswell CS GPR registers
* 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
* 8. Don't report cmd_check() failures as EINVAL errors to userspace;
* rely on the HW to NOOP disallowed commands as it would without
* the parser enabled.
* 9. Don't whitelist or handle oacontrol specially, as ownership
* for oacontrol state is moving to i915-perf.
* 10. Support for Gen9 BCS Parsing
*/
return 10;
}