linux/arch/arm64/kernel/entry-common.c
Mark Brown 8bd7f91c03 arm64/sme: Implement traps and syscall handling for SME
By default all SME operations in userspace will trap.  When this happens
we allocate storage space for the SME register state, set up the SVE
registers and disable traps.  We do not need to initialize ZA since the
architecture guarantees that it will be zeroed when enabled and when we
trap ZA is disabled.

On syscall we exit streaming mode if we were previously in it and ensure
that all but the lower 128 bits of the registers are zeroed while
preserving the state of ZA. This follows the aarch64 PCS for SME, ZA
state is preserved over a function call and streaming mode is exited.
Since the traps for SME do not distinguish between streaming mode SVE
and ZA usage if ZA is in use rather than reenabling traps we instead
zero the parts of the SVE registers not shared with FPSIMD and leave SME
enabled, this simplifies handling SME traps. If ZA is not in use then we
reenable SME traps and fall through to normal handling of SVE.

Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220419112247.711548-17-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2022-04-22 18:51:05 +01:00

875 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Exception handling code
*
* Copyright (C) 2019 ARM Ltd.
*/
#include <linux/context_tracking.h>
#include <linux/kasan.h>
#include <linux/linkage.h>
#include <linux/lockdep.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/thread_info.h>
#include <asm/cpufeature.h>
#include <asm/daifflags.h>
#include <asm/esr.h>
#include <asm/exception.h>
#include <asm/irq_regs.h>
#include <asm/kprobes.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/sdei.h>
#include <asm/stacktrace.h>
#include <asm/sysreg.h>
#include <asm/system_misc.h>
/*
* Handle IRQ/context state management when entering from kernel mode.
* Before this function is called it is not safe to call regular kernel code,
* intrumentable code, or any code which may trigger an exception.
*
* This is intended to match the logic in irqentry_enter(), handling the kernel
* mode transitions only.
*/
static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
{
regs->exit_rcu = false;
if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
lockdep_hardirqs_off(CALLER_ADDR0);
rcu_irq_enter();
trace_hardirqs_off_finish();
regs->exit_rcu = true;
return;
}
lockdep_hardirqs_off(CALLER_ADDR0);
rcu_irq_enter_check_tick();
trace_hardirqs_off_finish();
}
static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
{
__enter_from_kernel_mode(regs);
mte_check_tfsr_entry();
mte_disable_tco_entry(current);
}
/*
* Handle IRQ/context state management when exiting to kernel mode.
* After this function returns it is not safe to call regular kernel code,
* intrumentable code, or any code which may trigger an exception.
*
* This is intended to match the logic in irqentry_exit(), handling the kernel
* mode transitions only, and with preemption handled elsewhere.
*/
static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
{
lockdep_assert_irqs_disabled();
if (interrupts_enabled(regs)) {
if (regs->exit_rcu) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
rcu_irq_exit();
lockdep_hardirqs_on(CALLER_ADDR0);
return;
}
trace_hardirqs_on();
} else {
if (regs->exit_rcu)
rcu_irq_exit();
}
}
static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
{
mte_check_tfsr_exit();
__exit_to_kernel_mode(regs);
}
/*
* Handle IRQ/context state management when entering from user mode.
* Before this function is called it is not safe to call regular kernel code,
* intrumentable code, or any code which may trigger an exception.
*/
static __always_inline void __enter_from_user_mode(void)
{
lockdep_hardirqs_off(CALLER_ADDR0);
CT_WARN_ON(ct_state() != CONTEXT_USER);
user_exit_irqoff();
trace_hardirqs_off_finish();
mte_disable_tco_entry(current);
}
static __always_inline void enter_from_user_mode(struct pt_regs *regs)
{
__enter_from_user_mode();
}
/*
* Handle IRQ/context state management when exiting to user mode.
* After this function returns it is not safe to call regular kernel code,
* intrumentable code, or any code which may trigger an exception.
*/
static __always_inline void __exit_to_user_mode(void)
{
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
user_enter_irqoff();
lockdep_hardirqs_on(CALLER_ADDR0);
}
static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs)
{
unsigned long flags;
local_daif_mask();
flags = read_thread_flags();
if (unlikely(flags & _TIF_WORK_MASK))
do_notify_resume(regs, flags);
}
static __always_inline void exit_to_user_mode(struct pt_regs *regs)
{
prepare_exit_to_user_mode(regs);
mte_check_tfsr_exit();
__exit_to_user_mode();
}
asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
{
exit_to_user_mode(regs);
}
/*
* Handle IRQ/context state management when entering an NMI from user/kernel
* mode. Before this function is called it is not safe to call regular kernel
* code, intrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_enter_nmi(struct pt_regs *regs)
{
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
__nmi_enter();
lockdep_hardirqs_off(CALLER_ADDR0);
lockdep_hardirq_enter();
rcu_nmi_enter();
trace_hardirqs_off_finish();
ftrace_nmi_enter();
}
/*
* Handle IRQ/context state management when exiting an NMI from user/kernel
* mode. After this function returns it is not safe to call regular kernel
* code, intrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_exit_nmi(struct pt_regs *regs)
{
bool restore = regs->lockdep_hardirqs;
ftrace_nmi_exit();
if (restore) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
}
rcu_nmi_exit();
lockdep_hardirq_exit();
if (restore)
lockdep_hardirqs_on(CALLER_ADDR0);
__nmi_exit();
}
/*
* Handle IRQ/context state management when entering a debug exception from
* kernel mode. Before this function is called it is not safe to call regular
* kernel code, intrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
{
regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
lockdep_hardirqs_off(CALLER_ADDR0);
rcu_nmi_enter();
trace_hardirqs_off_finish();
}
/*
* Handle IRQ/context state management when exiting a debug exception from
* kernel mode. After this function returns it is not safe to call regular
* kernel code, intrumentable code, or any code which may trigger an exception.
*/
static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
{
bool restore = regs->lockdep_hardirqs;
if (restore) {
trace_hardirqs_on_prepare();
lockdep_hardirqs_on_prepare(CALLER_ADDR0);
}
rcu_nmi_exit();
if (restore)
lockdep_hardirqs_on(CALLER_ADDR0);
}
#ifdef CONFIG_PREEMPT_DYNAMIC
DEFINE_STATIC_KEY_TRUE(sk_dynamic_irqentry_exit_cond_resched);
#define need_irq_preemption() \
(static_branch_unlikely(&sk_dynamic_irqentry_exit_cond_resched))
#else
#define need_irq_preemption() (IS_ENABLED(CONFIG_PREEMPTION))
#endif
static void __sched arm64_preempt_schedule_irq(void)
{
if (!need_irq_preemption())
return;
/*
* Note: thread_info::preempt_count includes both thread_info::count
* and thread_info::need_resched, and is not equivalent to
* preempt_count().
*/
if (READ_ONCE(current_thread_info()->preempt_count) != 0)
return;
/*
* DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
* priority masking is used the GIC irqchip driver will clear DAIF.IF
* using gic_arch_enable_irqs() for normal IRQs. If anything is set in
* DAIF we must have handled an NMI, so skip preemption.
*/
if (system_uses_irq_prio_masking() && read_sysreg(daif))
return;
/*
* Preempting a task from an IRQ means we leave copies of PSTATE
* on the stack. cpufeature's enable calls may modify PSTATE, but
* resuming one of these preempted tasks would undo those changes.
*
* Only allow a task to be preempted once cpufeatures have been
* enabled.
*/
if (system_capabilities_finalized())
preempt_schedule_irq();
}
static void do_interrupt_handler(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
struct pt_regs *old_regs = set_irq_regs(regs);
if (on_thread_stack())
call_on_irq_stack(regs, handler);
else
handler(regs);
set_irq_regs(old_regs);
}
extern void (*handle_arch_irq)(struct pt_regs *);
extern void (*handle_arch_fiq)(struct pt_regs *);
static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
unsigned int esr)
{
arm64_enter_nmi(regs);
console_verbose();
pr_crit("Unhandled %s exception on CPU%d, ESR 0x%08x -- %s\n",
vector, smp_processor_id(), esr,
esr_get_class_string(esr));
__show_regs(regs);
panic("Unhandled exception");
}
#define UNHANDLED(el, regsize, vector) \
asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \
{ \
const char *desc = #regsize "-bit " #el " " #vector; \
__panic_unhandled(regs, desc, read_sysreg(esr_el1)); \
}
#ifdef CONFIG_ARM64_ERRATUM_1463225
static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
static void cortex_a76_erratum_1463225_svc_handler(void)
{
u32 reg, val;
if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
return;
if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
return;
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
reg = read_sysreg(mdscr_el1);
val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
write_sysreg(val, mdscr_el1);
asm volatile("msr daifclr, #8");
isb();
/* We will have taken a single-step exception by this point */
write_sysreg(reg, mdscr_el1);
__this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
}
static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
return false;
/*
* We've taken a dummy step exception from the kernel to ensure
* that interrupts are re-enabled on the syscall path. Return back
* to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
* masked so that we can safely restore the mdscr and get on with
* handling the syscall.
*/
regs->pstate |= PSR_D_BIT;
return true;
}
#else /* CONFIG_ARM64_ERRATUM_1463225 */
static void cortex_a76_erratum_1463225_svc_handler(void) { }
static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
{
return false;
}
#endif /* CONFIG_ARM64_ERRATUM_1463225 */
UNHANDLED(el1t, 64, sync)
UNHANDLED(el1t, 64, irq)
UNHANDLED(el1t, 64, fiq)
UNHANDLED(el1t, 64, error)
static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_mem_abort(far, esr, regs);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_sp_pc_abort(far, esr, regs);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_undef(struct pt_regs *regs)
{
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_undefinstr(regs);
local_daif_mask();
exit_to_kernel_mode(regs);
}
static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
arm64_enter_el1_dbg(regs);
if (!cortex_a76_erratum_1463225_debug_handler(regs))
do_debug_exception(far, esr, regs);
arm64_exit_el1_dbg(regs);
}
static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
{
enter_from_kernel_mode(regs);
local_daif_inherit(regs);
do_ptrauth_fault(regs, esr);
local_daif_mask();
exit_to_kernel_mode(regs);
}
asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_DABT_CUR:
case ESR_ELx_EC_IABT_CUR:
el1_abort(regs, esr);
break;
/*
* We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
* recursive exception when trying to push the initial pt_regs.
*/
case ESR_ELx_EC_PC_ALIGN:
el1_pc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_UNKNOWN:
el1_undef(regs);
break;
case ESR_ELx_EC_BREAKPT_CUR:
case ESR_ELx_EC_SOFTSTP_CUR:
case ESR_ELx_EC_WATCHPT_CUR:
case ESR_ELx_EC_BRK64:
el1_dbg(regs, esr);
break;
case ESR_ELx_EC_FPAC:
el1_fpac(regs, esr);
break;
default:
__panic_unhandled(regs, "64-bit el1h sync", esr);
}
}
static __always_inline void __el1_pnmi(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
arm64_enter_nmi(regs);
do_interrupt_handler(regs, handler);
arm64_exit_nmi(regs);
}
static __always_inline void __el1_irq(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
enter_from_kernel_mode(regs);
irq_enter_rcu();
do_interrupt_handler(regs, handler);
irq_exit_rcu();
arm64_preempt_schedule_irq();
exit_to_kernel_mode(regs);
}
static void noinstr el1_interrupt(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
__el1_pnmi(regs, handler);
else
__el1_irq(regs, handler);
}
asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
{
el1_interrupt(regs, handle_arch_irq);
}
asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
{
el1_interrupt(regs, handle_arch_fiq);
}
asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
local_daif_restore(DAIF_ERRCTX);
arm64_enter_nmi(regs);
do_serror(regs, esr);
arm64_exit_nmi(regs);
}
static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
/*
* We've taken an instruction abort from userspace and not yet
* re-enabled IRQs. If the address is a kernel address, apply
* BP hardening prior to enabling IRQs and pre-emption.
*/
if (!is_ttbr0_addr(far))
arm64_apply_bp_hardening();
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_mem_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_acc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sve_acc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sme_acc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sme_acc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_fpsimd_exc(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sysinstr(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
{
unsigned long far = read_sysreg(far_el1);
if (!is_ttbr0_addr(instruction_pointer(regs)))
arm64_apply_bp_hardening();
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(far, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_sp_pc_abort(regs->sp, esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_undef(struct pt_regs *regs)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_undefinstr(regs);
exit_to_user_mode(regs);
}
static void noinstr el0_bti(struct pt_regs *regs)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_bti(regs);
exit_to_user_mode(regs);
}
static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
bad_el0_sync(regs, 0, esr);
exit_to_user_mode(regs);
}
static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
{
/* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
unsigned long far = read_sysreg(far_el1);
enter_from_user_mode(regs);
do_debug_exception(far, esr, regs);
local_daif_restore(DAIF_PROCCTX);
exit_to_user_mode(regs);
}
static void noinstr el0_svc(struct pt_regs *regs)
{
enter_from_user_mode(regs);
cortex_a76_erratum_1463225_svc_handler();
do_el0_svc(regs);
exit_to_user_mode(regs);
}
static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_ptrauth_fault(regs, esr);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC64:
el0_svc(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_SVE:
el0_sve_acc(regs, esr);
break;
case ESR_ELx_EC_SME:
el0_sme_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC64:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_SYS64:
case ESR_ELx_EC_WFx:
el0_sys(regs, esr);
break;
case ESR_ELx_EC_SP_ALIGN:
el0_sp(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
el0_undef(regs);
break;
case ESR_ELx_EC_BTI:
el0_bti(regs);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BRK64:
el0_dbg(regs, esr);
break;
case ESR_ELx_EC_FPAC:
el0_fpac(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
static void noinstr el0_interrupt(struct pt_regs *regs,
void (*handler)(struct pt_regs *))
{
enter_from_user_mode(regs);
write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
if (regs->pc & BIT(55))
arm64_apply_bp_hardening();
irq_enter_rcu();
do_interrupt_handler(regs, handler);
irq_exit_rcu();
exit_to_user_mode(regs);
}
static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
{
el0_interrupt(regs, handle_arch_irq);
}
asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
{
__el0_irq_handler_common(regs);
}
static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
{
el0_interrupt(regs, handle_arch_fiq);
}
asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
{
__el0_fiq_handler_common(regs);
}
static void noinstr __el0_error_handler_common(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
enter_from_user_mode(regs);
local_daif_restore(DAIF_ERRCTX);
arm64_enter_nmi(regs);
do_serror(regs, esr);
arm64_exit_nmi(regs);
local_daif_restore(DAIF_PROCCTX);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
{
__el0_error_handler_common(regs);
}
#ifdef CONFIG_COMPAT
static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
{
enter_from_user_mode(regs);
local_daif_restore(DAIF_PROCCTX);
do_cp15instr(esr, regs);
exit_to_user_mode(regs);
}
static void noinstr el0_svc_compat(struct pt_regs *regs)
{
enter_from_user_mode(regs);
cortex_a76_erratum_1463225_svc_handler();
do_el0_svc_compat(regs);
exit_to_user_mode(regs);
}
asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
{
unsigned long esr = read_sysreg(esr_el1);
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_SVC32:
el0_svc_compat(regs);
break;
case ESR_ELx_EC_DABT_LOW:
el0_da(regs, esr);
break;
case ESR_ELx_EC_IABT_LOW:
el0_ia(regs, esr);
break;
case ESR_ELx_EC_FP_ASIMD:
el0_fpsimd_acc(regs, esr);
break;
case ESR_ELx_EC_FP_EXC32:
el0_fpsimd_exc(regs, esr);
break;
case ESR_ELx_EC_PC_ALIGN:
el0_pc(regs, esr);
break;
case ESR_ELx_EC_UNKNOWN:
case ESR_ELx_EC_CP14_MR:
case ESR_ELx_EC_CP14_LS:
case ESR_ELx_EC_CP14_64:
el0_undef(regs);
break;
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
el0_cp15(regs, esr);
break;
case ESR_ELx_EC_BREAKPT_LOW:
case ESR_ELx_EC_SOFTSTP_LOW:
case ESR_ELx_EC_WATCHPT_LOW:
case ESR_ELx_EC_BKPT32:
el0_dbg(regs, esr);
break;
default:
el0_inv(regs, esr);
}
}
asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
{
__el0_irq_handler_common(regs);
}
asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
{
__el0_fiq_handler_common(regs);
}
asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
{
__el0_error_handler_common(regs);
}
#else /* CONFIG_COMPAT */
UNHANDLED(el0t, 32, sync)
UNHANDLED(el0t, 32, irq)
UNHANDLED(el0t, 32, fiq)
UNHANDLED(el0t, 32, error)
#endif /* CONFIG_COMPAT */
#ifdef CONFIG_VMAP_STACK
asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
{
unsigned int esr = read_sysreg(esr_el1);
unsigned long far = read_sysreg(far_el1);
arm64_enter_nmi(regs);
panic_bad_stack(regs, esr, far);
}
#endif /* CONFIG_VMAP_STACK */
#ifdef CONFIG_ARM_SDE_INTERFACE
asmlinkage noinstr unsigned long
__sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
{
unsigned long ret;
/*
* We didn't take an exception to get here, so the HW hasn't
* set/cleared bits in PSTATE that we may rely on.
*
* The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
* whether PSTATE bits are inherited unchanged or generated from
* scratch, and the TF-A implementation always clears PAN and always
* clears UAO. There are no other known implementations.
*
* Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
* PSTATE is modified upon architectural exceptions, and so PAN is
* either inherited or set per SCTLR_ELx.SPAN, and UAO is always
* cleared.
*
* We must explicitly reset PAN to the expected state, including
* clearing it when the host isn't using it, in case a VM had it set.
*/
if (system_uses_hw_pan())
set_pstate_pan(1);
else if (cpu_has_pan())
set_pstate_pan(0);
arm64_enter_nmi(regs);
ret = do_sdei_event(regs, arg);
arm64_exit_nmi(regs);
return ret;
}
#endif /* CONFIG_ARM_SDE_INTERFACE */